blob: de6ae97dc6d64f6b6d41ef90d0aa5debc6597c54 [file] [log] [blame]
/**
* @file printer_lyb.c
* @author Michal Vasko <mvasko@cesnet.cz>
* @brief LYB printer for libyang data structure
*
* Copyright (c) 2020 - 2022 CESNET, z.s.p.o.
*
* This source code is licensed under BSD 3-Clause License (the "License").
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*/
#include "lyb.h"
#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "compat.h"
#include "context.h"
#include "hash_table.h"
#include "log.h"
#include "ly_common.h"
#include "out.h"
#include "out_internal.h"
#include "plugins_exts/metadata.h"
#include "printer_data.h"
#include "printer_internal.h"
#include "set.h"
#include "tree.h"
#include "tree_data.h"
#include "tree_data_internal.h"
#include "tree_edit.h"
#include "tree_schema.h"
#include "tree_schema_internal.h"
#include "xml.h"
static LY_ERR lyb_print_siblings(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx);
/**
* @brief Hash table equal callback for checking hash equality only.
*
* Implementation of ::lyht_value_equal_cb.
*/
static ly_bool
lyb_hash_equal_cb(void *UNUSED(val1_p), void *UNUSED(val2_p), ly_bool UNUSED(mod), void *UNUSED(cb_data))
{
/* for this purpose, if hash matches, the value does also, we do not want 2 values to have the same hash */
return 1;
}
/**
* @brief Hash table equal callback for checking value pointer equality only.
*
* Implementation of ::lyht_value_equal_cb.
*/
static ly_bool
lyb_ptr_equal_cb(void *val1_p, void *val2_p, ly_bool UNUSED(mod), void *UNUSED(cb_data))
{
struct lysc_node *val1 = *(struct lysc_node **)val1_p;
struct lysc_node *val2 = *(struct lysc_node **)val2_p;
if (val1 == val2) {
return 1;
}
return 0;
}
/**
* @brief Check that sibling collision hash is safe to insert into hash table.
*
* @param[in] ht Hash table.
* @param[in] sibling Hashed sibling.
* @param[in] ht_col_id Sibling hash collision ID.
* @param[in] compare_col_id Last collision ID to compare with.
* @return LY_SUCCESS when the whole hash sequence does not collide,
* @return LY_EEXIST when the whole hash sequence sollides.
*/
static LY_ERR
lyb_hash_sequence_check(struct ly_ht *ht, struct lysc_node *sibling, LYB_HASH ht_col_id, LYB_HASH compare_col_id)
{
struct lysc_node **col_node;
/* get the first node inserted with last hash col ID ht_col_id */
if (lyht_find(ht, &sibling, lyb_get_hash(sibling, ht_col_id), (void **)&col_node)) {
/* there is none. valid situation */
return LY_SUCCESS;
}
lyht_set_cb(ht, lyb_ptr_equal_cb);
do {
int64_t j;
for (j = (int64_t)compare_col_id; j > -1; --j) {
if (lyb_get_hash(sibling, j) != lyb_get_hash(*col_node, j)) {
/* one non-colliding hash */
break;
}
}
if (j == -1) {
/* all whole hash sequences of nodes inserted with last hash col ID compare_col_id collide */
lyht_set_cb(ht, lyb_hash_equal_cb);
return LY_EEXIST;
}
/* get next node inserted with last hash col ID ht_col_id */
} while (!lyht_find_next_with_collision_cb(ht, col_node, lyb_get_hash(*col_node, ht_col_id), lyb_hash_equal_cb,
(void **)&col_node));
lyht_set_cb(ht, lyb_hash_equal_cb);
return LY_SUCCESS;
}
/**
* @brief Hash all the siblings and add them also into a separate hash table.
*
* @param[in] sibling Any sibling in all the siblings on one level.
* @param[out] ht_p Created hash table.
* @return LY_ERR value.
*/
static LY_ERR
lyb_hash_siblings(struct lysc_node *sibling, struct ly_ht **ht_p)
{
struct ly_ht *ht;
const struct lysc_node *parent;
const struct lys_module *mod;
LYB_HASH i;
uint32_t getnext_opts;
ht = lyht_new(1, sizeof(struct lysc_node *), lyb_hash_equal_cb, NULL, 1);
LY_CHECK_ERR_RET(!ht, LOGMEM(sibling->module->ctx), LY_EMEM);
getnext_opts = 0;
if (sibling->flags & LYS_IS_OUTPUT) {
getnext_opts = LYS_GETNEXT_OUTPUT;
}
parent = lysc_data_parent(sibling);
mod = sibling->module;
sibling = NULL;
while ((sibling = (struct lysc_node *)lys_getnext(sibling, parent, mod->compiled, getnext_opts))) {
/* find the first non-colliding hash (or specifically non-colliding hash sequence) */
for (i = 0; i < LYB_HASH_BITS; ++i) {
/* check that we are not colliding with nodes inserted with a lower collision ID than ours */
int64_t j;
for (j = (int64_t)i - 1; j > -1; --j) {
if (lyb_hash_sequence_check(ht, sibling, (LYB_HASH)j, i)) {
break;
}
}
if (j > -1) {
/* some check failed, we must use a higher collision ID */
continue;
}
/* try to insert node with the current collision ID */
if (!lyht_insert_with_resize_cb(ht, &sibling, lyb_get_hash(sibling, i), lyb_ptr_equal_cb, NULL)) {
/* success, no collision */
break;
}
/* make sure we really cannot insert it with this hash col ID (meaning the whole hash sequence is colliding) */
if (i && !lyb_hash_sequence_check(ht, sibling, i, i)) {
/* it can be inserted after all, even though there is already a node with the same last collision ID */
lyht_set_cb(ht, lyb_ptr_equal_cb);
if (lyht_insert(ht, &sibling, lyb_get_hash(sibling, i), NULL)) {
LOGINT(sibling->module->ctx);
lyht_set_cb(ht, lyb_hash_equal_cb);
lyht_free(ht, NULL);
return LY_EINT;
}
lyht_set_cb(ht, lyb_hash_equal_cb);
break;
}
/* there is still another colliding schema node with the same hash sequence, try higher collision ID */
}
if (i == LYB_HASH_BITS) {
/* wow */
LOGINT(sibling->module->ctx);
lyht_free(ht, NULL);
return LY_EINT;
}
}
/* change val equal callback so that the HT is usable for finding value hashes */
lyht_set_cb(ht, lyb_ptr_equal_cb);
*ht_p = ht;
return LY_SUCCESS;
}
/**
* @brief Find node hash in a hash table.
*
* @param[in] ht Hash table to search in.
* @param[in] node Node to find.
* @param[out] hash_p First non-colliding hash found.
* @return LY_ERR value.
*/
static LY_ERR
lyb_hash_find(struct ly_ht *ht, struct lysc_node *node, LYB_HASH *hash_p)
{
LYB_HASH hash;
uint32_t i;
for (i = 0; i < LYB_HASH_BITS; ++i) {
hash = lyb_get_hash(node, i);
if (!hash) {
LOGINT_RET(node->module->ctx);
}
if (!lyht_find(ht, &node, hash, NULL)) {
/* success, no collision */
break;
}
}
/* cannot happen, we already calculated the hash */
if (i == LYB_HASH_BITS) {
LOGINT_RET(node->module->ctx);
}
*hash_p = hash;
return LY_SUCCESS;
}
/**
* @brief Write metadata about siblings.
*
* @param[in] out Out structure.
* @param[in] sib Contains metadata that is written.
*/
static LY_ERR
lyb_write_sibling_meta(struct ly_out *out, struct lyd_lyb_sibling *sib)
{
uint8_t meta_buf[LYB_META_BYTES];
uint64_t num = 0;
/* write the meta chunk information */
num = htole64((uint64_t)sib->written & LYB_SIZE_MAX);
memcpy(meta_buf, &num, LYB_SIZE_BYTES);
num = htole64((uint64_t)sib->inner_chunks & LYB_INCHUNK_MAX);
memcpy(meta_buf + LYB_SIZE_BYTES, &num, LYB_INCHUNK_BYTES);
LY_CHECK_RET(ly_write_skipped(out, sib->position, (char *)&meta_buf, LYB_META_BYTES));
return LY_SUCCESS;
}
/**
* @brief Write LYB data fully handling the metadata.
*
* @param[in] out Out structure.
* @param[in] buf Source buffer.
* @param[in] count Number of bytes to write.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_write(struct ly_out *out, const uint8_t *buf, size_t count, struct lylyb_ctx *lybctx)
{
LY_ARRAY_COUNT_TYPE u;
struct lyd_lyb_sibling *full, *iter;
size_t to_write;
while (1) {
/* check for full data chunks */
to_write = count;
full = NULL;
LY_ARRAY_FOR(lybctx->siblings, u) {
/* we want the innermost chunks resolved first, so replace previous full chunks */
if (lybctx->siblings[u].written + to_write >= LYB_SIZE_MAX) {
/* full chunk, do not write more than allowed */
to_write = LYB_SIZE_MAX - lybctx->siblings[u].written;
full = &lybctx->siblings[u];
}
}
if (!full && !count) {
break;
}
/* we are actually writing some data, not just finishing another chunk */
if (to_write) {
LY_CHECK_RET(ly_write_(out, (char *)buf, to_write));
LY_ARRAY_FOR(lybctx->siblings, u) {
/* increase all written counters */
lybctx->siblings[u].written += to_write;
assert(lybctx->siblings[u].written <= LYB_SIZE_MAX);
}
/* decrease count/buf */
count -= to_write;
buf += to_write;
}
if (full) {
/* write the meta information (inner chunk count and chunk size) */
LY_CHECK_RET(lyb_write_sibling_meta(out, full));
/* zero written and inner chunks */
full->written = 0;
full->inner_chunks = 0;
/* skip space for another chunk size */
LY_CHECK_RET(ly_write_skip(out, LYB_META_BYTES, &full->position));
/* increase inner chunk count */
for (iter = &lybctx->siblings[0]; iter != full; ++iter) {
if (iter->inner_chunks == LYB_INCHUNK_MAX) {
LOGINT(lybctx->ctx);
return LY_EINT;
}
++iter->inner_chunks;
}
}
}
return LY_SUCCESS;
}
/**
* @brief Stop the current "siblings" - write its final metadata.
*
* @param[in] out Out structure.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_write_stop_siblings(struct ly_out *out, struct lylyb_ctx *lybctx)
{
/* write the meta chunk information */
lyb_write_sibling_meta(out, &LYB_LAST_SIBLING(lybctx));
LY_ARRAY_DECREMENT(lybctx->siblings);
return LY_SUCCESS;
}
/**
* @brief Start a new "siblings" - skip bytes for its metadata.
*
* @param[in] out Out structure.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_write_start_siblings(struct ly_out *out, struct lylyb_ctx *lybctx)
{
LY_ARRAY_COUNT_TYPE u;
u = LY_ARRAY_COUNT(lybctx->siblings);
if (u == lybctx->sibling_size) {
LY_ARRAY_CREATE_RET(lybctx->ctx, lybctx->siblings, u + LYB_SIBLING_STEP, LY_EMEM);
lybctx->sibling_size = u + LYB_SIBLING_STEP;
}
LY_ARRAY_INCREMENT(lybctx->siblings);
LYB_LAST_SIBLING(lybctx).written = 0;
LYB_LAST_SIBLING(lybctx).inner_chunks = 0;
/* another inner chunk */
for (u = 0; u < LY_ARRAY_COUNT(lybctx->siblings) - 1; ++u) {
if (lybctx->siblings[u].inner_chunks == LYB_INCHUNK_MAX) {
LOGINT(lybctx->ctx);
return LY_EINT;
}
++lybctx->siblings[u].inner_chunks;
}
LY_CHECK_RET(ly_write_skip(out, LYB_META_BYTES, &LYB_LAST_SIBLING(lybctx).position));
return LY_SUCCESS;
}
/**
* @brief Write a number.
*
* @param[in] num Number to write.
* @param[in] bytes Actual accessible bytes of @p num.
* @param[in] out Out structure.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_write_number(uint64_t num, size_t bytes, struct ly_out *out, struct lylyb_ctx *lybctx)
{
/* correct byte order */
num = htole64(num);
return lyb_write(out, (uint8_t *)&num, bytes, lybctx);
}
/**
* @brief Write a string.
*
* @param[in] str String to write.
* @param[in] str_len Length of @p str.
* @param[in] len_size Size of @p str_len in bytes.
* @param[in] out Out structure.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_write_string(const char *str, size_t str_len, uint8_t len_size, struct ly_out *out, struct lylyb_ctx *lybctx)
{
ly_bool error;
if (!str) {
str = "";
LY_CHECK_ERR_RET(str_len, LOGINT(lybctx->ctx), LY_EINT);
}
if (!str_len) {
str_len = strlen(str);
}
switch (len_size) {
case sizeof(uint8_t):
error = str_len > UINT8_MAX;
break;
case sizeof(uint16_t):
error = str_len > UINT16_MAX;
break;
case sizeof(uint32_t):
error = str_len > UINT32_MAX;
break;
case sizeof(uint64_t):
error = 0;
break;
default:
error = 1;
}
if (error) {
LOGINT(lybctx->ctx);
return LY_EINT;
}
LY_CHECK_RET(lyb_write_number(str_len, len_size, out, lybctx));
LY_CHECK_RET(lyb_write(out, (const uint8_t *)str, str_len, lybctx));
return LY_SUCCESS;
}
/**
* @brief Print YANG module info.
*
* @param[in] out Out structure.
* @param[in] mod Module to print.
* @param[in] with_features Whether to also print enabled features or not.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_model(struct ly_out *out, const struct lys_module *mod, ly_bool with_features, struct lylyb_ctx *lybctx)
{
LY_ERR rc = LY_SUCCESS;
uint16_t revision;
struct ly_set feat_set = {0};
struct lysp_feature *f = NULL;
uint32_t i = 0;
int r;
/* model name length and model name */
LY_CHECK_GOTO(rc = lyb_write_string(mod->name, 0, sizeof(uint16_t), out, lybctx), cleanup);
/* model revision as XXXX XXXX XXXX XXXX (2B) (year is offset from 2000)
* YYYY YYYM MMMD DDDD */
revision = 0;
if (mod->revision) {
r = atoi(mod->revision);
r -= LYB_REV_YEAR_OFFSET;
r <<= LYB_REV_YEAR_SHIFT;
revision |= r;
r = atoi(mod->revision + ly_strlen_const("YYYY-"));
r <<= LYB_REV_MONTH_SHIFT;
revision |= r;
r = atoi(mod->revision + ly_strlen_const("YYYY-MM-"));
revision |= r;
}
LY_CHECK_GOTO(rc = lyb_write_number(revision, sizeof revision, out, lybctx), cleanup);
if (with_features) {
/* collect enabled module features */
while ((f = lysp_feature_next(f, mod->parsed, &i))) {
if (f->flags & LYS_FENABLED) {
LY_CHECK_GOTO(rc = ly_set_add(&feat_set, f, 1, NULL), cleanup);
}
}
/* print enabled feature count and their names */
LY_CHECK_GOTO(rc = lyb_write_number(feat_set.count, sizeof(uint16_t), out, lybctx), cleanup);
for (i = 0; i < feat_set.count; ++i) {
f = feat_set.objs[i];
LY_CHECK_GOTO(rc = lyb_write_string(f->name, 0, sizeof(uint16_t), out, lybctx), cleanup);
}
}
/* fill cached hashes, if not already */
lyb_cache_module_hash(mod);
cleanup:
ly_set_erase(&feat_set, NULL);
return rc;
}
/**
* @brief Print all used YANG modules.
*
* @param[in] out Out structure.
* @param[in] root Data root.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_data_models(struct ly_out *out, const struct lyd_node *root, struct lylyb_ctx *lybctx)
{
struct ly_set *set;
LY_ARRAY_COUNT_TYPE u;
LY_ERR ret = LY_SUCCESS;
struct lys_module *mod;
const struct lyd_node *elem, *node;
uint32_t i;
LY_CHECK_RET(ly_set_new(&set));
/* collect all data node modules */
LY_LIST_FOR(root, elem) {
LYD_TREE_DFS_BEGIN(elem, node) {
if (node->schema) {
mod = node->schema->module;
ret = ly_set_add(set, mod, 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
/* add also their modules deviating or augmenting them */
LY_ARRAY_FOR(mod->deviated_by, u) {
ret = ly_set_add(set, mod->deviated_by[u], 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
LY_ARRAY_FOR(mod->augmented_by, u) {
ret = ly_set_add(set, mod->augmented_by[u], 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
/* only top-level nodes are processed */
LYD_TREE_DFS_continue = 1;
}
LYD_TREE_DFS_END(elem, node);
}
}
/* now write module count on 2 bytes */
LY_CHECK_GOTO(ret = lyb_write_number(set->count, 2, out, lybctx), cleanup);
/* and all the used models */
for (i = 0; i < set->count; ++i) {
LY_CHECK_GOTO(ret = lyb_print_model(out, set->objs[i], 1, lybctx), cleanup);
}
cleanup:
ly_set_free(set, NULL);
return ret;
}
/**
* @brief Print LYB magic number.
*
* @param[in] out Out structure.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_magic_number(struct ly_out *out)
{
/* 'l', 'y', 'b' - 0x6c7962 */
char magic_number[] = {'l', 'y', 'b'};
LY_CHECK_RET(ly_write_(out, magic_number, 3));
return LY_SUCCESS;
}
/**
* @brief Print LYB header.
*
* @param[in] out Out structure.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_header(struct ly_out *out)
{
uint8_t byte = 0;
/* version, future flags */
byte |= LYB_VERSION_NUM;
LY_CHECK_RET(ly_write_(out, (char *)&byte, 1));
return LY_SUCCESS;
}
/**
* @brief Print prefix data.
*
* @param[in] out Out structure.
* @param[in] format Value prefix format.
* @param[in] prefix_data Format-specific data for resolving any prefixes (see ::ly_resolve_prefix).
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_prefix_data(struct ly_out *out, LY_VALUE_FORMAT format, const void *prefix_data, struct lylyb_ctx *lybctx)
{
const struct ly_set *set;
const struct lyxml_ns *ns;
uint32_t i;
switch (format) {
case LY_VALUE_XML:
set = prefix_data;
if (!set) {
/* no prefix data */
i = 0;
LY_CHECK_RET(lyb_write(out, (uint8_t *)&i, 1, lybctx));
break;
}
if (set->count > UINT8_MAX) {
LOGERR(lybctx->ctx, LY_EINT, "Maximum supported number of prefixes is %u.", UINT8_MAX);
return LY_EINT;
}
/* write number of prefixes on 1 byte */
LY_CHECK_RET(lyb_write_number(set->count, 1, out, lybctx));
/* write all the prefixes */
for (i = 0; i < set->count; ++i) {
ns = set->objs[i];
/* prefix */
LY_CHECK_RET(lyb_write_string(ns->prefix, 0, sizeof(uint16_t), out, lybctx));
/* namespace */
LY_CHECK_RET(lyb_write_string(ns->uri, 0, sizeof(uint16_t), out, lybctx));
}
break;
case LY_VALUE_JSON:
case LY_VALUE_LYB:
/* nothing to print */
break;
default:
LOGINT_RET(lybctx->ctx);
}
return LY_SUCCESS;
}
/**
* @brief Print term node.
*
* @param[in] term Node to print.
* @param[in] out Out structure.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_term_value(struct lyd_node_term *term, struct ly_out *out, struct lylyb_ctx *lybctx)
{
LY_ERR ret = LY_SUCCESS;
ly_bool dynamic = 0;
void *value;
size_t value_len = 0;
int32_t lyb_data_len;
lyplg_type_print_clb print;
assert(term->value.realtype && term->value.realtype->plugin && term->value.realtype->plugin->print &&
term->schema);
/* Get length of LYB data to print. */
lyb_data_len = term->value.realtype->plugin->lyb_data_len;
/* Get value and also print its length only if size is not fixed. */
print = term->value.realtype->plugin->print;
if (lyb_data_len < 0) {
/* Variable-length data. */
/* Get value and its length from plugin. */
value = (void *)print(term->schema->module->ctx, &term->value,
LY_VALUE_LYB, NULL, &dynamic, &value_len);
LY_CHECK_GOTO(ret, cleanup);
if (value_len > UINT32_MAX) {
LOGERR(lybctx->ctx, LY_EINT, "The maximum length of the LYB data "
"from a term node must not exceed %" PRIu32 ".", UINT32_MAX);
ret = LY_EINT;
goto cleanup;
}
/* Print the length of the data as 64-bit unsigned integer. */
ret = lyb_write_number(value_len, sizeof(uint64_t), out, lybctx);
LY_CHECK_GOTO(ret, cleanup);
} else {
/* Fixed-length data. */
/* Get value from plugin. */
value = (void *)print(term->schema->module->ctx, &term->value,
LY_VALUE_LYB, NULL, &dynamic, NULL);
LY_CHECK_GOTO(ret, cleanup);
/* Copy the length from the compiled node. */
value_len = lyb_data_len;
}
/* Print value. */
if (value_len > 0) {
/* Print the value simply as it is. */
ret = lyb_write(out, value, value_len, lybctx);
LY_CHECK_GOTO(ret, cleanup);
}
cleanup:
if (dynamic) {
free(value);
}
return ret;
}
/**
* @brief Print YANG node metadata.
*
* @param[in] out Out structure.
* @param[in] node Data node whose metadata to print.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_metadata(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx)
{
uint8_t count = 0;
const struct lys_module *wd_mod = NULL;
struct lyd_meta *iter;
/* with-defaults */
if (node->schema->nodetype & LYD_NODE_TERM) {
if (((node->flags & LYD_DEFAULT) && (lybctx->print_options & (LYD_PRINT_WD_ALL_TAG | LYD_PRINT_WD_IMPL_TAG))) ||
((lybctx->print_options & LYD_PRINT_WD_ALL_TAG) && lyd_is_default(node))) {
/* we have implicit OR explicit default node, print attribute only if context include with-defaults schema */
wd_mod = ly_ctx_get_module_latest(node->schema->module->ctx, "ietf-netconf-with-defaults");
}
}
/* count metadata */
if (wd_mod) {
++count;
}
for (iter = node->meta; iter; iter = iter->next) {
if (!lyd_metadata_should_print(iter)) {
continue;
}
if (count == UINT8_MAX) {
LOGERR(lybctx->lybctx->ctx, LY_EINT, "Maximum supported number of data node metadata is %u.", UINT8_MAX);
return LY_EINT;
}
++count;
}
/* write number of metadata on 1 byte */
LY_CHECK_RET(lyb_write(out, &count, 1, lybctx->lybctx));
if (wd_mod) {
/* write the "default" metadata */
LY_CHECK_RET(lyb_print_model(out, wd_mod, 0, lybctx->lybctx));
LY_CHECK_RET(lyb_write_string("default", 0, sizeof(uint16_t), out, lybctx->lybctx));
LY_CHECK_RET(lyb_write_string("true", 0, sizeof(uint16_t), out, lybctx->lybctx));
}
/* write all the node metadata */
LY_LIST_FOR(node->meta, iter) {
if (!lyd_metadata_should_print(iter)) {
continue;
}
/* model */
LY_CHECK_RET(lyb_print_model(out, iter->annotation->module, 0, lybctx->lybctx));
/* annotation name with length */
LY_CHECK_RET(lyb_write_string(iter->name, 0, sizeof(uint16_t), out, lybctx->lybctx));
/* metadata value */
LY_CHECK_RET(lyb_write_string(lyd_get_meta_value(iter), 0, sizeof(uint64_t), out, lybctx->lybctx));
}
return LY_SUCCESS;
}
/**
* @brief Print opaque node attributes.
*
* @param[in] out Out structure.
* @param[in] node Opaque node whose attributes to print.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_attributes(struct ly_out *out, const struct lyd_node_opaq *node, struct lylyb_ctx *lybctx)
{
uint8_t count = 0;
struct lyd_attr *iter;
for (iter = node->attr; iter; iter = iter->next) {
if (count == UINT8_MAX) {
LOGERR(lybctx->ctx, LY_EINT, "Maximum supported number of data node attributes is %u.", UINT8_MAX);
return LY_EINT;
}
++count;
}
/* write number of attributes on 1 byte */
LY_CHECK_RET(lyb_write(out, &count, 1, lybctx));
/* write all the attributes */
LY_LIST_FOR(node->attr, iter) {
/* prefix */
LY_CHECK_RET(lyb_write_string(iter->name.prefix, 0, sizeof(uint16_t), out, lybctx));
/* namespace */
LY_CHECK_RET(lyb_write_string(iter->name.module_name, 0, sizeof(uint16_t), out, lybctx));
/* name */
LY_CHECK_RET(lyb_write_string(iter->name.name, 0, sizeof(uint16_t), out, lybctx));
/* format */
LY_CHECK_RET(lyb_write_number(iter->format, 1, out, lybctx));
/* value prefixes */
LY_CHECK_RET(lyb_print_prefix_data(out, iter->format, iter->val_prefix_data, lybctx));
/* value */
LY_CHECK_RET(lyb_write_string(iter->value, 0, sizeof(uint64_t), out, lybctx));
}
return LY_SUCCESS;
}
/**
* @brief Print schema node hash.
*
* @param[in] out Out structure.
* @param[in] schema Schema node whose hash to print.
* @param[in,out] sibling_ht Cached hash table for these siblings, created if NULL.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_schema_hash(struct ly_out *out, struct lysc_node *schema, struct ly_ht **sibling_ht, struct lylyb_ctx *lybctx)
{
LY_ARRAY_COUNT_TYPE u;
uint32_t i;
LYB_HASH hash;
struct lyd_lyb_sib_ht *sib_ht;
struct lysc_node *first_sibling;
if (!schema) {
/* opaque node, write empty hash */
hash = 0;
LY_CHECK_RET(lyb_write(out, &hash, sizeof hash, lybctx));
return LY_SUCCESS;
}
/* create whole sibling HT if not already created and saved */
if (!*sibling_ht) {
/* get first schema data sibling */
first_sibling = (struct lysc_node *)lys_getnext(NULL, lysc_data_parent(schema), schema->module->compiled,
(schema->flags & LYS_IS_OUTPUT) ? LYS_GETNEXT_OUTPUT : 0);
LY_ARRAY_FOR(lybctx->sib_hts, u) {
if (lybctx->sib_hts[u].first_sibling == first_sibling) {
/* we have already created a hash table for these siblings */
*sibling_ht = lybctx->sib_hts[u].ht;
break;
}
}
if (!*sibling_ht) {
/* we must create sibling hash table */
LY_CHECK_RET(lyb_hash_siblings(first_sibling, sibling_ht));
/* and save it */
LY_ARRAY_NEW_RET(lybctx->ctx, lybctx->sib_hts, sib_ht, LY_EMEM);
sib_ht->first_sibling = first_sibling;
sib_ht->ht = *sibling_ht;
}
}
/* get our hash */
LY_CHECK_RET(lyb_hash_find(*sibling_ht, schema, &hash));
/* write the hash */
LY_CHECK_RET(lyb_write(out, &hash, sizeof hash, lybctx));
if (hash & LYB_HASH_COLLISION_ID) {
/* no collision for this hash, we are done */
return LY_SUCCESS;
}
/* written hash was a collision, write also all the preceding hashes */
for (i = 0; !(hash & (LYB_HASH_COLLISION_ID >> i)); ++i) {}
for ( ; i; --i) {
hash = lyb_get_hash(schema, i - 1);
if (!hash) {
return LY_EINT;
}
assert(hash & (LYB_HASH_COLLISION_ID >> (i - 1)));
LY_CHECK_RET(lyb_write(out, &hash, sizeof hash, lybctx));
}
return LY_SUCCESS;
}
/**
* @brief Print header for non-opaq node.
*
* @param[in] out Out structure.
* @param[in] node Current data node to print.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_node_header(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx)
{
/* write any metadata */
LY_CHECK_RET(lyb_print_metadata(out, node, lybctx));
/* write node flags */
LY_CHECK_RET(lyb_write_number(node->flags, sizeof node->flags, out, lybctx->lybctx));
return LY_SUCCESS;
}
/**
* @brief Print LYB node type.
*
* @param[in] out Out structure.
* @param[in] node Current data node to print.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_lyb_type(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx)
{
enum lylyb_node_type lyb_type;
if (node->flags & LYD_EXT) {
assert(node->schema);
lyb_type = LYB_NODE_EXT;
} else if (!node->schema) {
lyb_type = LYB_NODE_OPAQ;
} else if (!lysc_data_parent(node->schema)) {
lyb_type = LYB_NODE_TOP;
} else {
lyb_type = LYB_NODE_CHILD;
}
LY_CHECK_RET(lyb_write_number(lyb_type, 1, out, lybctx->lybctx));
return LY_SUCCESS;
}
/**
* @brief Print inner node.
*
* @param[in] out Out structure.
* @param[in] node Current data node to print.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_node_inner(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx)
{
/* write necessary basic data */
LY_CHECK_RET(lyb_print_node_header(out, node, lybctx));
/* recursively write all the descendants */
LY_CHECK_RET(lyb_print_siblings(out, lyd_child(node), lybctx));
return LY_SUCCESS;
}
/**
* @brief Print opaque node and its descendants.
*
* @param[in] out Out structure.
* @param[in] opaq Node to print.
* @param[in] lyd_lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_node_opaq(struct ly_out *out, const struct lyd_node_opaq *opaq, struct lyd_lyb_ctx *lyd_lybctx)
{
struct lylyb_ctx *lybctx = lyd_lybctx->lybctx;
/* write attributes */
LY_CHECK_RET(lyb_print_attributes(out, opaq, lybctx));
/* write node flags */
LY_CHECK_RET(lyb_write_number(opaq->flags, sizeof opaq->flags, out, lybctx));
/* prefix */
LY_CHECK_RET(lyb_write_string(opaq->name.prefix, 0, sizeof(uint16_t), out, lybctx));
/* module reference */
LY_CHECK_RET(lyb_write_string(opaq->name.module_name, 0, sizeof(uint16_t), out, lybctx));
/* name */
LY_CHECK_RET(lyb_write_string(opaq->name.name, 0, sizeof(uint16_t), out, lybctx));
/* value */
LY_CHECK_RET(lyb_write_string(opaq->value, 0, sizeof(uint64_t), out, lybctx));
/* format */
LY_CHECK_RET(lyb_write_number(opaq->format, 1, out, lybctx));
/* value prefixes */
LY_CHECK_RET(lyb_print_prefix_data(out, opaq->format, opaq->val_prefix_data, lybctx));
/* recursively write all the descendants */
LY_CHECK_RET(lyb_print_siblings(out, opaq->child, lyd_lybctx));
return LY_SUCCESS;
}
/**
* @brief Print anydata or anyxml node.
*
* @param[in] anydata Node to print.
* @param[in] out Out structure.
* @param[in] lyd_lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_node_any(struct ly_out *out, struct lyd_node_any *anydata, struct lyd_lyb_ctx *lyd_lybctx)
{
LY_ERR ret = LY_SUCCESS;
LYD_ANYDATA_VALUETYPE value_type;
int len;
char *buf = NULL;
const char *str;
struct ly_out *out2 = NULL;
struct lylyb_ctx *lybctx = lyd_lybctx->lybctx;
if ((anydata->schema->nodetype == LYS_ANYDATA) && (anydata->value_type != LYD_ANYDATA_DATATREE)) {
LOGINT_RET(lybctx->ctx);
}
if (anydata->value_type == LYD_ANYDATA_DATATREE) {
/* will be printed as a nested LYB data tree because the used modules need to be written */
value_type = LYD_ANYDATA_LYB;
} else {
value_type = anydata->value_type;
}
/* write necessary basic data */
LY_CHECK_RET(lyb_print_node_header(out, (struct lyd_node *)anydata, lyd_lybctx));
/* first byte is type */
LY_CHECK_GOTO(ret = lyb_write_number(value_type, sizeof value_type, out, lybctx), cleanup);
if (anydata->value_type == LYD_ANYDATA_DATATREE) {
/* print LYB data tree to memory */
LY_CHECK_GOTO(ret = ly_out_new_memory(&buf, 0, &out2), cleanup);
LY_CHECK_GOTO(ret = lyb_print_data(out2, anydata->value.tree, LYD_PRINT_WITHSIBLINGS), cleanup);
len = lyd_lyb_data_length(buf);
assert(len != -1);
str = buf;
} else if (anydata->value_type == LYD_ANYDATA_LYB) {
len = lyd_lyb_data_length(anydata->value.mem);
assert(len != -1);
str = anydata->value.mem;
} else {
len = strlen(anydata->value.str);
str = anydata->value.str;
}
/* followed by the content */
LY_CHECK_GOTO(ret = lyb_write_string(str, (size_t)len, sizeof(uint64_t), out, lybctx), cleanup);
cleanup:
ly_out_free(out2, NULL, 1);
return ret;
}
/**
* @brief Print leaf node.
*
* @param[in] out Out structure.
* @param[in] node Current data node to print.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_node_leaf(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx)
{
/* write necessary basic data */
LY_CHECK_RET(lyb_print_node_header(out, node, lybctx));
/* write term value */
LY_CHECK_RET(lyb_print_term_value((struct lyd_node_term *)node, out, lybctx->lybctx));
return LY_SUCCESS;
}
/**
* @brief Print all leaflist nodes which belong to same schema.
*
* @param[in] out Out structure.
* @param[in] node Current data node to print.
* @param[in] lybctx LYB context.
* @param[out] printed_node Last node that was printed by this function.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_node_leaflist(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx,
const struct lyd_node **printed_node)
{
const struct lysc_node *schema;
/* register a new sibling */
LY_CHECK_RET(lyb_write_start_siblings(out, lybctx->lybctx));
schema = node->schema;
/* write all the siblings */
LY_LIST_FOR(node, node) {
if (schema != node->schema) {
/* all leaflist nodes was printed */
break;
}
/* write leaf data */
LY_CHECK_RET(lyb_print_node_leaf(out, node, lybctx));
*printed_node = node;
}
/* finish this sibling */
LY_CHECK_RET(lyb_write_stop_siblings(out, lybctx->lybctx));
return LY_SUCCESS;
}
/**
* @brief Print all list nodes which belong to same schema.
*
* @param[in] out Out structure.
* @param[in] node Current data node to print.
* @param[in] lybctx LYB context.
* @param[out] printed_node Last node that was printed by this function.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_node_list(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx,
const struct lyd_node **printed_node)
{
const struct lysc_node *schema;
/* register a new sibling */
LY_CHECK_RET(lyb_write_start_siblings(out, lybctx->lybctx));
schema = node->schema;
LY_LIST_FOR(node, node) {
if (schema != node->schema) {
/* all list nodes was printed */
break;
}
/* write necessary basic data */
LY_CHECK_RET(lyb_print_node_header(out, node, lybctx));
/* recursively write all the descendants */
LY_CHECK_RET(lyb_print_siblings(out, lyd_child(node), lybctx));
*printed_node = node;
}
/* finish this sibling */
LY_CHECK_RET(lyb_write_stop_siblings(out, lybctx->lybctx));
return LY_SUCCESS;
}
/**
* @brief Print node.
*
* @param[in] out Out structure.
* @param[in,out] printed_node Current data node to print. Sets to the last printed node.
* @param[in,out] sibling_ht Cached hash table for these siblings, created if NULL.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_node(struct ly_out *out, const struct lyd_node **printed_node, struct ly_ht **sibling_ht,
struct lyd_lyb_ctx *lybctx)
{
const struct lyd_node *node = *printed_node;
/* write node type */
LY_CHECK_RET(lyb_print_lyb_type(out, node, lybctx));
/* write model info first */
if (node->schema && ((node->flags & LYD_EXT) || !lysc_data_parent(node->schema))) {
LY_CHECK_RET(lyb_print_model(out, node->schema->module, 0, lybctx->lybctx));
}
if (node->flags & LYD_EXT) {
/* write schema node name */
LY_CHECK_RET(lyb_write_string(node->schema->name, 0, sizeof(uint16_t), out, lybctx->lybctx));
} else {
/* write schema hash */
LY_CHECK_RET(lyb_print_schema_hash(out, (struct lysc_node *)node->schema, sibling_ht, lybctx->lybctx));
}
if (!node->schema) {
LY_CHECK_RET(lyb_print_node_opaq(out, (struct lyd_node_opaq *)node, lybctx));
} else if (node->schema->nodetype & LYS_LEAFLIST) {
LY_CHECK_RET(lyb_print_node_leaflist(out, node, lybctx, &node));
} else if (node->schema->nodetype == LYS_LIST) {
LY_CHECK_RET(lyb_print_node_list(out, node, lybctx, &node));
} else if (node->schema->nodetype & LYD_NODE_ANY) {
LY_CHECK_RET(lyb_print_node_any(out, (struct lyd_node_any *)node, lybctx));
} else if (node->schema->nodetype & LYD_NODE_INNER) {
LY_CHECK_RET(lyb_print_node_inner(out, node, lybctx));
} else {
LY_CHECK_RET(lyb_print_node_leaf(out, node, lybctx));
}
*printed_node = node;
return LY_SUCCESS;
}
/**
* @brief Print siblings.
*
* @param[in] out Out structure.
* @param[in] node Current data node to print.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_siblings(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx)
{
struct ly_ht *sibling_ht = NULL;
const struct lys_module *prev_mod = NULL;
LY_CHECK_RET(lyb_write_start_siblings(out, lybctx->lybctx));
/* write all the siblings */
LY_LIST_FOR(node, node) {
/* do not reuse top-level sibling hash tables from different modules */
if (!node->schema || (!lysc_data_parent(node->schema) && (node->schema->module != prev_mod))) {
sibling_ht = NULL;
prev_mod = node->schema ? node->schema->module : NULL;
}
LY_CHECK_RET(lyb_print_node(out, &node, &sibling_ht, lybctx));
if (!lyd_parent(node) && !(lybctx->print_options & LYD_PRINT_WITHSIBLINGS)) {
break;
}
}
LY_CHECK_RET(lyb_write_stop_siblings(out, lybctx->lybctx));
return LY_SUCCESS;
}
LY_ERR
lyb_print_data(struct ly_out *out, const struct lyd_node *root, uint32_t options)
{
LY_ERR ret = LY_SUCCESS;
uint8_t zero = 0;
struct lyd_lyb_ctx *lybctx;
const struct ly_ctx *ctx = root ? LYD_CTX(root) : NULL;
lybctx = calloc(1, sizeof *lybctx);
LY_CHECK_ERR_GOTO(!lybctx, LOGMEM(ctx); ret = LY_EMEM, cleanup);
lybctx->lybctx = calloc(1, sizeof *lybctx->lybctx);
LY_CHECK_ERR_GOTO(!lybctx->lybctx, LOGMEM(ctx); ret = LY_EMEM, cleanup);
lybctx->print_options = options;
if (root) {
lybctx->lybctx->ctx = ctx;
if (root->schema && lysc_data_parent(root->schema)) {
LOGERR(lybctx->lybctx->ctx, LY_EINVAL, "LYB printer supports only printing top-level nodes.");
ret = LY_EINVAL;
goto cleanup;
}
}
/* LYB magic number */
LY_CHECK_GOTO(ret = lyb_print_magic_number(out), cleanup);
/* LYB header */
LY_CHECK_GOTO(ret = lyb_print_header(out), cleanup);
/* all used models */
LY_CHECK_GOTO(ret = lyb_print_data_models(out, root, lybctx->lybctx), cleanup);
ret = lyb_print_siblings(out, root, lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* ending zero byte */
LY_CHECK_GOTO(ret = lyb_write(out, &zero, sizeof zero, lybctx->lybctx), cleanup);
cleanup:
lyd_lyb_ctx_free((struct lyd_ctx *)lybctx);
return ret;
}