| /** |
| * @file tree_data.c |
| * @author Radek Krejci <rkrejci@cesnet.cz> |
| * @author Michal Vasko <mvasko@cesnet.cz> |
| * @brief Data tree functions |
| * |
| * Copyright (c) 2015 - 2022 CESNET, z.s.p.o. |
| * |
| * This source code is licensed under BSD 3-Clause License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * https://opensource.org/licenses/BSD-3-Clause |
| */ |
| |
| #define _GNU_SOURCE |
| |
| #include "tree_data.h" |
| |
| #include <assert.h> |
| #include <ctype.h> |
| #include <inttypes.h> |
| #include <stdarg.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "compat.h" |
| #include "context.h" |
| #include "dict.h" |
| #include "diff.h" |
| #include "hash_table.h" |
| #include "in.h" |
| #include "in_internal.h" |
| #include "log.h" |
| #include "ly_common.h" |
| #include "parser_data.h" |
| #include "parser_internal.h" |
| #include "path.h" |
| #include "plugins.h" |
| #include "plugins_exts/metadata.h" |
| #include "plugins_internal.h" |
| #include "plugins_types.h" |
| #include "set.h" |
| #include "tree.h" |
| #include "tree_data_internal.h" |
| #include "tree_data_sorted.h" |
| #include "tree_edit.h" |
| #include "tree_schema.h" |
| #include "tree_schema_internal.h" |
| #include "validation.h" |
| #include "xml.h" |
| #include "xpath.h" |
| |
| static LY_ERR lyd_compare_siblings_(const struct lyd_node *node1, const struct lyd_node *node2, uint32_t options, |
| ly_bool parental_schemas_checked); |
| |
| static LYD_FORMAT |
| lyd_parse_get_format(const struct ly_in *in, LYD_FORMAT format) |
| { |
| if (!format && (in->type == LY_IN_FILEPATH)) { |
| /* unknown format - try to detect it from filename's suffix */ |
| const char *path = in->method.fpath.filepath; |
| size_t len = strlen(path); |
| |
| /* ignore trailing whitespaces */ |
| for ( ; len > 0 && isspace(path[len - 1]); len--) {} |
| |
| if ((len >= LY_XML_SUFFIX_LEN + 1) && |
| !strncmp(&path[len - LY_XML_SUFFIX_LEN], LY_XML_SUFFIX, LY_XML_SUFFIX_LEN)) { |
| format = LYD_XML; |
| } else if ((len >= LY_JSON_SUFFIX_LEN + 1) && |
| !strncmp(&path[len - LY_JSON_SUFFIX_LEN], LY_JSON_SUFFIX, LY_JSON_SUFFIX_LEN)) { |
| format = LYD_JSON; |
| } else if ((len >= LY_LYB_SUFFIX_LEN + 1) && |
| !strncmp(&path[len - LY_LYB_SUFFIX_LEN], LY_LYB_SUFFIX, LY_LYB_SUFFIX_LEN)) { |
| format = LYD_LYB; |
| } /* else still unknown */ |
| } |
| |
| return format; |
| } |
| |
| /** |
| * @brief Parse YANG data into a data tree. |
| * |
| * @param[in] ctx libyang context. |
| * @param[in] ext Optional extenion instance to parse data following the schema tree specified in the extension instance |
| * @param[in] parent Parent to connect the parsed nodes to, if any. |
| * @param[in,out] first_p Pointer to the first parsed node. |
| * @param[in] in Input handle to read the input from. |
| * @param[in] format Expected format of the data in @p in. |
| * @param[in] parse_opts Options for parser. |
| * @param[in] val_opts Options for validation. |
| * @param[out] op Optional pointer to the parsed operation, if any. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyd_parse(const struct ly_ctx *ctx, const struct lysc_ext_instance *ext, struct lyd_node *parent, struct lyd_node **first_p, |
| struct ly_in *in, LYD_FORMAT format, uint32_t parse_opts, uint32_t val_opts, struct lyd_node **op) |
| { |
| LY_ERR r = LY_SUCCESS, rc = LY_SUCCESS; |
| struct lyd_ctx *lydctx = NULL; |
| struct ly_set parsed = {0}; |
| uint32_t i, int_opts = 0; |
| const struct ly_err_item *eitem; |
| ly_bool subtree_sibling = 0; |
| |
| assert(ctx && (parent || first_p)); |
| |
| format = lyd_parse_get_format(in, format); |
| if (first_p) { |
| *first_p = NULL; |
| } |
| |
| /* remember input position */ |
| in->func_start = in->current; |
| |
| /* set internal options */ |
| if (!(parse_opts & LYD_PARSE_SUBTREE)) { |
| int_opts = LYD_INTOPT_WITH_SIBLINGS; |
| } |
| |
| /* parse the data */ |
| switch (format) { |
| case LYD_XML: |
| r = lyd_parse_xml(ctx, ext, parent, first_p, in, parse_opts, val_opts, int_opts, &parsed, |
| &subtree_sibling, &lydctx); |
| break; |
| case LYD_JSON: |
| r = lyd_parse_json(ctx, ext, parent, first_p, in, parse_opts, val_opts, int_opts, &parsed, |
| &subtree_sibling, &lydctx); |
| break; |
| case LYD_LYB: |
| r = lyd_parse_lyb(ctx, ext, parent, first_p, in, parse_opts, val_opts, int_opts, &parsed, |
| &subtree_sibling, &lydctx); |
| break; |
| case LYD_UNKNOWN: |
| LOGARG(ctx, format); |
| r = LY_EINVAL; |
| break; |
| } |
| if (r) { |
| rc = r; |
| if ((r != LY_EVALID) || !lydctx || !(lydctx->val_opts & LYD_VALIDATE_MULTI_ERROR)) { |
| goto cleanup; |
| } |
| |
| eitem = ly_err_last(ctx); |
| assert(eitem); |
| if (eitem->vecode == LYVE_SYNTAX) { |
| /* cannot get more errors on a syntax error */ |
| goto cleanup; |
| } |
| } |
| |
| if (parent && parsed.count) { |
| /* use the first parsed node */ |
| if (first_p) { |
| *first_p = parsed.dnodes[0]; |
| } else { |
| first_p = &parsed.dnodes[0]; |
| } |
| } |
| |
| if (!(parse_opts & LYD_PARSE_ONLY)) { |
| /* validate data */ |
| r = lyd_validate(first_p, NULL, ctx, val_opts, 0, &lydctx->node_when, &lydctx->node_types, &lydctx->meta_types, |
| &lydctx->ext_node, &lydctx->ext_val, NULL); |
| LY_CHECK_ERR_GOTO(r, rc = r, cleanup); |
| } |
| |
| /* set the operation node */ |
| if (op) { |
| *op = lydctx->op_node; |
| } |
| |
| cleanup: |
| if (lydctx) { |
| lydctx->free(lydctx); |
| } |
| if (rc) { |
| if (parent) { |
| /* free all the parsed subtrees */ |
| for (i = 0; i < parsed.count; ++i) { |
| lyd_free_tree(parsed.dnodes[i]); |
| } |
| } else { |
| /* free everything */ |
| lyd_free_all(*first_p); |
| *first_p = NULL; |
| } |
| } else if (subtree_sibling) { |
| rc = LY_ENOT; |
| } |
| ly_set_erase(&parsed, NULL); |
| return rc; |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_parse_ext_data(const struct lysc_ext_instance *ext, struct lyd_node *parent, struct ly_in *in, LYD_FORMAT format, |
| uint32_t parse_options, uint32_t validate_options, struct lyd_node **tree) |
| { |
| const struct ly_ctx *ctx = ext ? ext->module->ctx : NULL; |
| |
| LY_CHECK_ARG_RET(ctx, ext, in, parent || tree, LY_EINVAL); |
| LY_CHECK_ARG_RET(ctx, !(parse_options & ~LYD_PARSE_OPTS_MASK), LY_EINVAL); |
| LY_CHECK_ARG_RET(ctx, !(validate_options & ~LYD_VALIDATE_OPTS_MASK), LY_EINVAL); |
| |
| return lyd_parse(ctx, ext, parent, tree, in, format, parse_options, validate_options, NULL); |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_parse_data(const struct ly_ctx *ctx, struct lyd_node *parent, struct ly_in *in, LYD_FORMAT format, |
| uint32_t parse_options, uint32_t validate_options, struct lyd_node **tree) |
| { |
| LY_CHECK_ARG_RET(ctx, ctx, in, parent || tree, LY_EINVAL); |
| LY_CHECK_ARG_RET(ctx, !(parse_options & ~LYD_PARSE_OPTS_MASK), LY_EINVAL); |
| LY_CHECK_ARG_RET(ctx, !(validate_options & ~LYD_VALIDATE_OPTS_MASK), LY_EINVAL); |
| |
| return lyd_parse(ctx, NULL, parent, tree, in, format, parse_options, validate_options, NULL); |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_parse_data_mem(const struct ly_ctx *ctx, const char *data, LYD_FORMAT format, uint32_t parse_options, |
| uint32_t validate_options, struct lyd_node **tree) |
| { |
| LY_ERR ret; |
| struct ly_in *in; |
| |
| LY_CHECK_RET(ly_in_new_memory(data, &in)); |
| ret = lyd_parse_data(ctx, NULL, in, format, parse_options, validate_options, tree); |
| |
| ly_in_free(in, 0); |
| return ret; |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_parse_data_fd(const struct ly_ctx *ctx, int fd, LYD_FORMAT format, uint32_t parse_options, uint32_t validate_options, |
| struct lyd_node **tree) |
| { |
| LY_ERR ret; |
| struct ly_in *in; |
| |
| LY_CHECK_RET(ly_in_new_fd(fd, &in)); |
| ret = lyd_parse_data(ctx, NULL, in, format, parse_options, validate_options, tree); |
| |
| ly_in_free(in, 0); |
| return ret; |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_parse_data_path(const struct ly_ctx *ctx, const char *path, LYD_FORMAT format, uint32_t parse_options, |
| uint32_t validate_options, struct lyd_node **tree) |
| { |
| LY_ERR ret; |
| struct ly_in *in; |
| |
| LY_CHECK_RET(ly_in_new_filepath(path, 0, &in)); |
| ret = lyd_parse_data(ctx, NULL, in, format, parse_options, validate_options, tree); |
| |
| ly_in_free(in, 0); |
| return ret; |
| } |
| |
| /** |
| * @brief Parse YANG data into an operation data tree, in case the extension instance is specified, keep the searching |
| * for schema nodes locked inside the extension instance. |
| * |
| * At least one of @p parent, @p tree, or @p op must always be set. |
| * |
| * Specific @p data_type values have different parameter meaning as mentioned for ::lyd_parse_op(). |
| * |
| * @param[in] ctx libyang context. |
| * @param[in] ext Extension instance providing the specific schema tree to match with the data being parsed. |
| * @param[in] parent Optional parent to connect the parsed nodes to. |
| * @param[in] in Input handle to read the input from. |
| * @param[in] format Expected format of the data in @p in. |
| * @param[in] data_type Expected operation to parse (@ref datatype). |
| * @param[out] tree Optional full parsed data tree. If @p parent is set, set to NULL. |
| * @param[out] op Optional parsed operation node. |
| * @return LY_ERR value. |
| * @return LY_ENOT if @p data_type is a NETCONF message and the root XML element is not the expected one. |
| */ |
| static LY_ERR |
| lyd_parse_op_(const struct ly_ctx *ctx, const struct lysc_ext_instance *ext, struct lyd_node *parent, |
| struct ly_in *in, LYD_FORMAT format, enum lyd_type data_type, struct lyd_node **tree, struct lyd_node **op) |
| { |
| LY_ERR rc = LY_SUCCESS; |
| struct lyd_ctx *lydctx = NULL; |
| struct ly_set parsed = {0}; |
| struct lyd_node *first = NULL, *envp = NULL; |
| uint32_t i, parse_opts, val_opts, int_opts = 0; |
| ly_bool proto_msg = 0; |
| |
| if (!ctx) { |
| ctx = LYD_CTX(parent); |
| } |
| if (tree) { |
| *tree = NULL; |
| } |
| if (op) { |
| *op = NULL; |
| } |
| |
| format = lyd_parse_get_format(in, format); |
| |
| /* remember input position */ |
| in->func_start = in->current; |
| |
| /* set parse and validation opts */ |
| parse_opts = LYD_PARSE_ONLY | LYD_PARSE_STRICT; |
| val_opts = 0; |
| |
| switch (data_type) { |
| case LYD_TYPE_RPC_NETCONF: |
| case LYD_TYPE_NOTIF_NETCONF: |
| LY_CHECK_ARG_RET(ctx, format == LYD_XML, !parent, tree, op, LY_EINVAL); |
| proto_msg = 1; |
| break; |
| case LYD_TYPE_REPLY_NETCONF: |
| LY_CHECK_ARG_RET(ctx, format == LYD_XML, parent, parent->schema, parent->schema->nodetype & (LYS_RPC | LYS_ACTION), |
| tree, !op, LY_EINVAL); |
| proto_msg = 1; |
| break; |
| case LYD_TYPE_RPC_RESTCONF: |
| case LYD_TYPE_REPLY_RESTCONF: |
| LY_CHECK_ARG_RET(ctx, parent, parent->schema, parent->schema->nodetype & (LYS_RPC | LYS_ACTION), tree, !op, LY_EINVAL); |
| proto_msg = 1; |
| break; |
| case LYD_TYPE_NOTIF_RESTCONF: |
| LY_CHECK_ARG_RET(ctx, format == LYD_JSON, !parent, tree, op, LY_EINVAL); |
| proto_msg = 1; |
| break; |
| |
| /* set internal opts */ |
| case LYD_TYPE_RPC_YANG: |
| int_opts = LYD_INTOPT_RPC | LYD_INTOPT_ACTION | (parent ? LYD_INTOPT_WITH_SIBLINGS : LYD_INTOPT_NO_SIBLINGS); |
| break; |
| case LYD_TYPE_NOTIF_YANG: |
| int_opts = LYD_INTOPT_NOTIF | (parent ? LYD_INTOPT_WITH_SIBLINGS : LYD_INTOPT_NO_SIBLINGS); |
| break; |
| case LYD_TYPE_REPLY_YANG: |
| int_opts = LYD_INTOPT_REPLY | (parent ? LYD_INTOPT_WITH_SIBLINGS : LYD_INTOPT_NO_SIBLINGS); |
| break; |
| case LYD_TYPE_DATA_YANG: |
| LOGINT(ctx); |
| rc = LY_EINT; |
| goto cleanup; |
| } |
| |
| /* parse a full protocol message */ |
| if (proto_msg) { |
| if (format == LYD_XML) { |
| /* parse the NETCONF (or RESTCONF XML) message */ |
| rc = lyd_parse_xml_netconf(ctx, ext, parent, &first, in, parse_opts, val_opts, data_type, &envp, &parsed, &lydctx); |
| } else { |
| /* parse the RESTCONF message */ |
| rc = lyd_parse_json_restconf(ctx, ext, parent, &first, in, parse_opts, val_opts, data_type, &envp, &parsed, &lydctx); |
| } |
| if (rc) { |
| if (envp) { |
| /* special situation when the envelopes were parsed successfully */ |
| *tree = envp; |
| } |
| goto cleanup; |
| } |
| |
| /* set out params correctly */ |
| if (envp) { |
| /* special out param meaning */ |
| *tree = envp; |
| } else { |
| *tree = parent ? NULL : first; |
| } |
| if (op) { |
| *op = lydctx->op_node; |
| } |
| goto cleanup; |
| } |
| |
| /* parse the data */ |
| switch (format) { |
| case LYD_XML: |
| rc = lyd_parse_xml(ctx, ext, parent, &first, in, parse_opts, val_opts, int_opts, &parsed, NULL, &lydctx); |
| break; |
| case LYD_JSON: |
| rc = lyd_parse_json(ctx, ext, parent, &first, in, parse_opts, val_opts, int_opts, &parsed, NULL, &lydctx); |
| break; |
| case LYD_LYB: |
| rc = lyd_parse_lyb(ctx, ext, parent, &first, in, parse_opts, val_opts, int_opts, &parsed, NULL, &lydctx); |
| break; |
| case LYD_UNKNOWN: |
| LOGARG(ctx, format); |
| rc = LY_EINVAL; |
| break; |
| } |
| LY_CHECK_GOTO(rc, cleanup); |
| |
| /* set out params correctly */ |
| if (tree) { |
| *tree = parent ? NULL : first; |
| } |
| if (op) { |
| *op = lydctx->op_node; |
| } |
| |
| cleanup: |
| if (lydctx) { |
| lydctx->free(lydctx); |
| } |
| if (rc) { |
| /* free all the parsed nodes */ |
| if (parsed.count) { |
| i = parsed.count; |
| do { |
| --i; |
| lyd_free_tree(parsed.dnodes[i]); |
| } while (i); |
| } |
| if (tree && !envp) { |
| *tree = NULL; |
| } |
| if (op) { |
| *op = NULL; |
| } |
| } |
| ly_set_erase(&parsed, NULL); |
| return rc; |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_parse_op(const struct ly_ctx *ctx, struct lyd_node *parent, struct ly_in *in, LYD_FORMAT format, |
| enum lyd_type data_type, struct lyd_node **tree, struct lyd_node **op) |
| { |
| LY_CHECK_ARG_RET(ctx, ctx || parent, in, data_type, parent || tree || op, LY_EINVAL); |
| |
| return lyd_parse_op_(ctx, NULL, parent, in, format, data_type, tree, op); |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_parse_ext_op(const struct lysc_ext_instance *ext, struct lyd_node *parent, struct ly_in *in, LYD_FORMAT format, |
| enum lyd_type data_type, struct lyd_node **tree, struct lyd_node **op) |
| { |
| const struct ly_ctx *ctx = ext ? ext->module->ctx : NULL; |
| |
| LY_CHECK_ARG_RET(ctx, ext, in, data_type, parent || tree || op, LY_EINVAL); |
| |
| return lyd_parse_op_(ctx, ext, parent, in, format, data_type, tree, op); |
| } |
| |
| struct lyd_node * |
| lyd_insert_get_next_anchor(const struct lyd_node *first_sibling, const struct lyd_node *new_node) |
| { |
| const struct lysc_node *schema, *sparent; |
| struct lyd_node *match = NULL; |
| ly_bool found; |
| uint32_t getnext_opts; |
| |
| assert(new_node); |
| |
| if (!first_sibling || !new_node->schema || (LYD_CTX(first_sibling) != LYD_CTX(new_node))) { |
| /* insert at the end, no next anchor */ |
| return NULL; |
| } |
| |
| getnext_opts = 0; |
| if (new_node->schema->flags & LYS_IS_OUTPUT) { |
| getnext_opts = LYS_GETNEXT_OUTPUT; |
| } |
| |
| if (first_sibling->parent && first_sibling->parent->schema && first_sibling->parent->children_ht) { |
| /* find the anchor using hashes */ |
| sparent = first_sibling->parent->schema; |
| schema = lys_getnext(new_node->schema, sparent, NULL, getnext_opts); |
| while (schema) { |
| /* keep trying to find the first existing instance of the closest following schema sibling, |
| * otherwise return NULL - inserting at the end */ |
| if (!lyd_find_sibling_schema(first_sibling, schema, &match)) { |
| break; |
| } |
| |
| schema = lys_getnext(schema, sparent, NULL, getnext_opts); |
| } |
| } else { |
| /* find the anchor without hashes */ |
| match = (struct lyd_node *)first_sibling; |
| sparent = lysc_data_parent(new_node->schema); |
| if (!sparent) { |
| /* we are in top-level, skip all the data from preceding modules */ |
| LY_LIST_FOR(match, match) { |
| if (!match->schema || (strcmp(lyd_owner_module(match)->name, lyd_owner_module(new_node)->name) >= 0)) { |
| break; |
| } |
| } |
| } |
| |
| /* get the first schema sibling */ |
| schema = lys_getnext(NULL, sparent, new_node->schema->module->compiled, getnext_opts); |
| if (!schema) { |
| /* must be a top-level extension instance data, no anchor */ |
| return NULL; |
| } |
| |
| found = 0; |
| LY_LIST_FOR(match, match) { |
| if (!match->schema || (lyd_owner_module(match) != lyd_owner_module(new_node))) { |
| /* we have found an opaque node, which must be at the end, so use it OR |
| * modules do not match, so we must have traversed all the data from new_node module (if any), |
| * we have found the first node of the next module, that is what we want */ |
| break; |
| } |
| |
| /* skip schema nodes until we find the instantiated one */ |
| while (!found) { |
| if (new_node->schema == schema) { |
| /* we have found the schema of the new node, continue search to find the first |
| * data node with a different schema (after our schema) */ |
| found = 1; |
| break; |
| } |
| if (match->schema == schema) { |
| /* current node (match) is a data node still before the new node, continue search in data */ |
| break; |
| } |
| |
| schema = lys_getnext(schema, sparent, new_node->schema->module->compiled, getnext_opts); |
| if (!schema) { |
| /* must be a top-level extension instance data, no anchor */ |
| return NULL; |
| } |
| } |
| |
| if (found && (match->schema != new_node->schema)) { |
| /* find the next node after we have found our node schema data instance */ |
| break; |
| } |
| } |
| } |
| |
| return match; |
| } |
| |
| void |
| lyd_insert_after_node(struct lyd_node **first_sibling_p, struct lyd_node *sibling, struct lyd_node *node) |
| { |
| struct lyd_node *first_sibling; |
| |
| assert(!node->next && (node->prev == node) && (sibling != node)); |
| |
| if (sibling->next) { |
| /* sibling had a succeeding node */ |
| sibling->next->prev = node; |
| node->next = sibling->next; |
| } else { |
| /* sibling was last, find first sibling and change its prev */ |
| if (first_sibling_p && *first_sibling_p) { |
| assert(!(*first_sibling_p)->prev->next); |
| (*first_sibling_p)->prev = node; |
| } else { |
| first_sibling = lyd_first_sibling(sibling); |
| first_sibling->prev = node; |
| if (first_sibling_p) { |
| *first_sibling_p = first_sibling; |
| } |
| } |
| } |
| node->prev = sibling; |
| sibling->next = node; |
| node->parent = sibling->parent; |
| |
| if (!(node->flags & LYD_DEFAULT)) { |
| /* remove default flags from NP containers */ |
| lyd_np_cont_dflt_del(lyd_parent(node)); |
| } |
| } |
| |
| void |
| lyd_insert_before_node(struct lyd_node *sibling, struct lyd_node *node) |
| { |
| assert(!node->next && (node->prev == node) && (sibling != node)); |
| |
| node->next = sibling; |
| /* covers situation of sibling being first */ |
| node->prev = sibling->prev; |
| sibling->prev = node; |
| if (node->prev->next) { |
| /* sibling had a preceding node */ |
| node->prev->next = node; |
| } else if (sibling->parent) { |
| /* sibling was first and we must also change parent child pointer */ |
| sibling->parent->child = node; |
| } |
| node->parent = sibling->parent; |
| |
| if (!(node->flags & LYD_DEFAULT)) { |
| /* remove default flags from NP containers */ |
| lyd_np_cont_dflt_del(lyd_parent(node)); |
| } |
| } |
| |
| /** |
| * @brief Insert node as the first and only child of a parent. |
| * |
| * Handles inserting into NP containers and key-less lists. |
| * |
| * @param[in] parent Parent to insert into. |
| * @param[in] node Node to insert. |
| */ |
| static void |
| lyd_insert_only_child(struct lyd_node *parent, struct lyd_node *node) |
| { |
| struct lyd_node_inner *par; |
| |
| assert(parent && !lyd_child(parent) && !node->next && (node->prev == node)); |
| assert(!parent->schema || (parent->schema->nodetype & LYD_NODE_INNER)); |
| |
| par = (struct lyd_node_inner *)parent; |
| |
| par->child = node; |
| node->parent = par; |
| |
| if (!(node->flags & LYD_DEFAULT)) { |
| /* remove default flags from NP containers */ |
| lyd_np_cont_dflt_del(parent); |
| } |
| } |
| |
| /** |
| * @brief Learn whether a list instance has all the keys. |
| * |
| * @param[in] list List instance to check. |
| * @return non-zero if all the keys were found, |
| * @return 0 otherwise. |
| */ |
| static int |
| lyd_insert_has_keys(const struct lyd_node *list) |
| { |
| const struct lyd_node *key; |
| const struct lysc_node *skey = NULL; |
| |
| assert(list->schema->nodetype == LYS_LIST); |
| key = lyd_child(list); |
| while ((skey = lys_getnext(skey, list->schema, NULL, 0)) && (skey->flags & LYS_KEY)) { |
| if (!key || (key->schema != skey)) { |
| /* key missing */ |
| return 0; |
| } |
| |
| key = key->next; |
| } |
| |
| /* all keys found */ |
| return 1; |
| } |
| |
| /** |
| * @brief Get the first subsequent data node that contains a different schema definition. |
| * |
| * @param[in] first_sibling First sibling, NULL if no top-level sibling exist yet. |
| * @param[in] node Node to be inserted. |
| * @return Subsequent data node with a different schema. |
| */ |
| static struct lyd_node * |
| lyd_insert_node_find_anchor(struct lyd_node *first_sibling, struct lyd_node *node) |
| { |
| struct lyd_node *anchor; |
| |
| if (first_sibling && (first_sibling->flags & LYD_EXT)) { |
| return NULL; |
| } |
| |
| /* find the anchor, so we can insert somewhere before it */ |
| anchor = lyd_insert_get_next_anchor(first_sibling, node); |
| /* cannot insert data node after opaque nodes */ |
| if (!anchor && node->schema && first_sibling && !first_sibling->prev->schema) { |
| anchor = first_sibling->prev; |
| while ((anchor != first_sibling) && !anchor->prev->schema) { |
| anchor = anchor->prev; |
| } |
| } |
| |
| return anchor; |
| } |
| |
| /** |
| * @brief Insert @p node as the last node. |
| * |
| * @param[in] parent Parent to insert into, NULL for top-level sibling. |
| * @param[in,out] first_sibling First sibling, NULL if no top-level sibling exist yet. |
| * Can be also NULL if @p parent is set. |
| * @param[in] node Individual node (without siblings) to insert. |
| */ |
| static void |
| lyd_insert_node_last(struct lyd_node *parent, struct lyd_node **first_sibling, struct lyd_node *node) |
| { |
| assert(first_sibling && node); |
| |
| if (*first_sibling) { |
| lyd_insert_after_node(first_sibling, (*first_sibling)->prev, node); |
| } else if (parent) { |
| lyd_insert_only_child(parent, node); |
| *first_sibling = node; |
| } else { |
| *first_sibling = node; |
| } |
| } |
| |
| void |
| lyd_insert_node_ordby_schema(struct lyd_node *parent, struct lyd_node **first_sibling, struct lyd_node *node) |
| { |
| struct lyd_node *anchor; |
| |
| assert(first_sibling && node); |
| |
| if ((anchor = lyd_insert_node_find_anchor(*first_sibling, node))) { |
| lyd_insert_before_node(anchor, node); |
| *first_sibling = *first_sibling != anchor ? *first_sibling : node; |
| } else if (*first_sibling && node->schema && !(*first_sibling)->prev->schema) { |
| /* cannot insert data node after opaque nodes */ |
| anchor = (*first_sibling)->prev; |
| while ((anchor != *first_sibling) && !anchor->prev->schema) { |
| anchor = anchor->prev; |
| } |
| lyd_insert_before_node(anchor, node); |
| *first_sibling = *first_sibling != anchor ? *first_sibling : node; |
| } else { |
| lyd_insert_node_last(parent, first_sibling, node); |
| } |
| } |
| |
| void |
| lyd_insert_node(struct lyd_node *parent, struct lyd_node **first_sibling_p, struct lyd_node *node, uint32_t order) |
| { |
| LY_ERR ret = LY_SUCCESS; |
| struct lyd_node *first_sibling, *leader; |
| |
| /* inserting list without its keys is not supported */ |
| assert((parent || first_sibling_p) && node && (node->hash || !node->schema)); |
| assert(!parent || !parent->schema || |
| (parent->schema->nodetype & (LYS_CONTAINER | LYS_LIST | LYS_RPC | LYS_ACTION | LYS_NOTIF))); |
| |
| if (!parent && first_sibling_p && (*first_sibling_p)) { |
| parent = lyd_parent(*first_sibling_p); |
| } |
| first_sibling = parent ? lyd_child(parent) : *first_sibling_p; |
| |
| if ((order == LYD_INSERT_NODE_LAST) || !node->schema || (first_sibling && (first_sibling->flags & LYD_EXT))) { |
| lyd_insert_node_last(parent, &first_sibling, node); |
| } else if (order == LYD_INSERT_NODE_LAST_BY_SCHEMA) { |
| lyd_insert_node_ordby_schema(parent, &first_sibling, node); |
| } else if (lyds_is_supported(node) && |
| (lyd_find_sibling_schema(first_sibling, node->schema, &leader) == LY_SUCCESS)) { |
| ret = lyds_insert(&first_sibling, &leader, node); |
| if (ret) { |
| /* The operation on the sorting tree unexpectedly failed due to some internal issue, |
| * but insert the node anyway although the nodes will not be sorted. |
| */ |
| LOGWRN(LYD_CTX(node), "Data in \"%s\" are not sorted.", node->schema->name); |
| lyd_insert_node_ordby_schema(parent, &first_sibling, node); |
| } |
| } else { |
| lyd_insert_node_ordby_schema(parent, &first_sibling, node); |
| } |
| |
| /* insert into parent HT */ |
| lyd_insert_hash(node); |
| |
| /* finish hashes for our parent, if needed and possible */ |
| if (node->schema && (node->schema->flags & LYS_KEY) && parent && parent->schema && lyd_insert_has_keys(parent)) { |
| lyd_hash(parent); |
| |
| /* now we can insert even the list into its parent HT */ |
| lyd_insert_hash(parent); |
| } |
| |
| if (first_sibling_p) { |
| *first_sibling_p = first_sibling; |
| } |
| |
| #ifndef NDEBUG |
| if ((order == LYD_INSERT_NODE_LAST) && lyds_is_supported(node) && |
| (node->prev->schema == node->schema) && (lyds_compare_single(node->prev, node) > 0)) { |
| LOGWRN(LYD_CTX(node), "Data in \"%s\" are not sorted, inserted node should not be added to the end.", |
| node->schema->name); |
| } |
| #endif |
| } |
| |
| /** |
| * @brief Check that @p node can be unlinked. |
| * |
| * @param[in] node Node to check |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyd_unlink_check(struct lyd_node *node) |
| { |
| if (!node) { |
| return LY_SUCCESS; |
| } |
| |
| if (lysc_is_key(node->schema) && node->parent) { |
| LOGERR(LYD_CTX(node), LY_EINVAL, "Cannot unlink a list key \"%s\", unlink the list instance instead.", |
| LYD_NAME(node)); |
| return LY_EINVAL; |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Move schema instances before anchor or as the last. |
| * |
| * The nodes will remain sorted according to the schema. |
| * |
| * @param[in] first_dst First sibling, destination. |
| * @param[in] node Starting node, all following nodes with the same schema will be moved. |
| * @param[out] next_p Next node that has a different schema or NULL. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyd_move_nodes_ordby_schema(struct lyd_node **first_dst, struct lyd_node *node, struct lyd_node **next_p) |
| { |
| struct lyd_node *second, *anchor, *iter, *next, *dst, *src, *first_src = NULL; |
| |
| assert(first_dst && *first_dst && !(*first_dst)->prev->next && node && next_p); |
| |
| if ((anchor = lyd_insert_node_find_anchor(*first_dst, node))) { |
| /* move the first node to the correct place according to the schema */ |
| LY_CHECK_RET(lyd_unlink_check(node)); |
| second = node->next; |
| lyd_unlink_ignore_lyds(&first_src, node); |
| lyd_insert_before_node(anchor, node); |
| lyd_insert_hash(node); |
| *first_dst = *first_dst != anchor ? *first_dst : node; |
| if (!second || (node->schema != second->schema)) { |
| /* no more nodes to move */ |
| *next_p = second; |
| return LY_SUCCESS; |
| } |
| dst = node; |
| src = second; |
| } else { |
| /* just move all instances to the end */ |
| dst = (*first_dst)->prev; |
| src = node; |
| } |
| |
| /* move the rest of source instances after @p node */ |
| LY_LIST_FOR_SAFE(src, next, iter) { |
| LY_CHECK_RET(lyd_unlink_check(iter)); |
| if (iter->schema != src->schema) { |
| break; |
| } |
| lyd_unlink_ignore_lyds(&first_src, iter); |
| lyd_insert_after_node(first_dst, dst, iter); |
| lyd_insert_hash(iter); |
| dst = iter; |
| } |
| *next_p = iter; |
| |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Move nodes regardless of schema. |
| * |
| * The destination for the move is NULL, or a childless parent. |
| * |
| * @param[in] parent Parent to insert into, NULL for top-level sibling. |
| * @param[in] first_src First sibling, all following nodes will be moved. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyd_move_nodes_at_once(struct lyd_node *parent, struct lyd_node *first_src) |
| { |
| struct lyd_node *start, *next, *iter, *first_dst; |
| |
| assert(!lyd_child(parent) && first_src && !first_src->prev->next && !first_src->parent); |
| |
| LY_CHECK_RET(lyd_unlink_check(first_src)); |
| |
| /* move the first node */ |
| start = first_src->next; |
| first_dst = first_src; |
| if (parent) { |
| lyd_unlink_ignore_lyds(&first_src, first_dst); |
| lyd_insert_only_child(parent, first_dst); |
| lyd_insert_hash(first_dst); |
| } else { |
| lyd_unlink_ignore_lyds(&first_src, first_dst); |
| } |
| |
| /* move the rest of the nodes */ |
| LY_LIST_FOR_SAFE(start, next, iter) { |
| LY_CHECK_RET(lyd_unlink_check(iter)); |
| lyd_unlink_ignore_lyds(&first_src, iter); |
| lyd_insert_after_node(&first_dst, first_dst->prev, iter); |
| lyd_insert_hash(iter); |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Move the nodes in parts according to the schema. |
| * |
| * @param[in,out] first_dst First sibling, destination. |
| * @param[in] first_src First sibling, all following nodes will be moved. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyd_move_nodes_by_schema(struct lyd_node **first_dst, struct lyd_node *first_src) |
| { |
| LY_ERR ret; |
| struct lyd_node *next, *iter, *leader; |
| |
| assert(first_dst && *first_dst && !(*first_dst)->prev->next && first_src && |
| !first_src->prev->next && !first_src->parent); |
| |
| for (iter = first_src; iter; iter = next) { |
| if (lyds_is_supported(iter) && |
| (lyd_find_sibling_schema(*first_dst, iter->schema, &leader) == LY_SUCCESS)) { |
| ret = lyds_merge(first_dst, &leader, &first_src, iter, &next); |
| if (ret) { |
| /* The operation on the sorting tree unexpectedly failed due to some internal issue, |
| * but insert the node anyway although the nodes will not be sorted. |
| */ |
| LOGWRN(LYD_CTX(first_src), "Data in \"%s\" are not sorted.", leader->schema->name); |
| LY_CHECK_RET(lyd_move_nodes_ordby_schema(first_dst, next, &next)); |
| } |
| } else { |
| LY_CHECK_RET(lyd_move_nodes_ordby_schema(first_dst, iter, &next)); |
| } |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Move a nodes into parent/siblings. |
| * |
| * @param[in] parent Parent to insert into, NULL for top-level sibling. |
| * @param[in,out] first_dst_p First sibling, NULL if no top-level sibling exist yet. |
| * Can be also NULL if @p parent is set. |
| * @param[in] first_src First sibling, all following nodes will be moved. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyd_move_nodes(struct lyd_node *parent, struct lyd_node **first_dst_p, struct lyd_node *first_src) |
| { |
| LY_ERR ret; |
| struct lyd_node *first_dst; |
| |
| assert((parent || first_dst_p) && first_src && !first_src->prev->next); |
| |
| if (!first_dst_p || !*first_dst_p) { |
| first_dst = lyd_child(parent); |
| } else { |
| first_dst = *first_dst_p; |
| } |
| |
| if (first_dst) { |
| ret = lyd_move_nodes_by_schema(&first_dst, first_src); |
| } else { |
| ret = lyd_move_nodes_at_once(parent, first_src); |
| first_dst = first_src; |
| } |
| |
| if (first_dst_p) { |
| *first_dst_p = first_dst; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * @brief Check schema place of a node to be inserted. |
| * |
| * @param[in] parent Schema node of the parent data node. |
| * @param[in] sibling Schema node of a sibling data node. |
| * @param[in] schema Schema node if the data node to be inserted. |
| * @return LY_SUCCESS on success. |
| * @return LY_EINVAL if the place is invalid. |
| */ |
| static LY_ERR |
| lyd_insert_check_schema(const struct lysc_node *parent, const struct lysc_node *sibling, const struct lysc_node *schema) |
| { |
| const struct lysc_node *par2; |
| |
| assert(!parent || !(parent->nodetype & (LYS_CASE | LYS_CHOICE))); |
| assert(!sibling || !(sibling->nodetype & (LYS_CASE | LYS_CHOICE))); |
| assert(!schema || !(schema->nodetype & (LYS_CASE | LYS_CHOICE))); |
| |
| if (!schema || (!parent && !sibling)) { |
| /* opaque nodes can be inserted wherever */ |
| return LY_SUCCESS; |
| } |
| |
| if (!parent) { |
| parent = lysc_data_parent(sibling); |
| } |
| |
| /* find schema parent */ |
| par2 = lysc_data_parent(schema); |
| |
| if (parent) { |
| /* inner node */ |
| if (par2 != parent) { |
| LOGERR(schema->module->ctx, LY_EINVAL, "Cannot insert, parent of \"%s\" is not \"%s\".", schema->name, |
| parent->name); |
| return LY_EINVAL; |
| } |
| } else { |
| /* top-level node */ |
| if (par2) { |
| LOGERR(schema->module->ctx, LY_EINVAL, "Cannot insert, node \"%s\" is not top-level.", schema->name); |
| return LY_EINVAL; |
| } |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_insert_child(struct lyd_node *parent, struct lyd_node *node) |
| { |
| LY_CHECK_ARG_RET(NULL, parent, node, !parent->schema || (parent->schema->nodetype & LYD_NODE_INNER), LY_EINVAL); |
| LY_CHECK_CTX_EQUAL_RET(LYD_CTX(parent), LYD_CTX(node), LY_EINVAL); |
| |
| LY_CHECK_RET(lyd_insert_check_schema(parent->schema, NULL, node->schema)); |
| |
| if (node->parent || node->prev->next || !node->next) { |
| LY_CHECK_RET(lyd_unlink_tree(node)); |
| lyd_insert_node(parent, NULL, node, LYD_INSERT_NODE_DEFAULT); |
| } else { |
| LY_CHECK_RET(lyd_move_nodes(parent, NULL, node)); |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyplg_ext_insert(struct lyd_node *parent, struct lyd_node *first) |
| { |
| struct lyd_node *iter; |
| |
| LY_CHECK_ARG_RET(NULL, parent, first, !first->parent, !first->prev->next, |
| !parent->schema || (parent->schema->nodetype & LYD_NODE_INNER), LY_EINVAL); |
| |
| if (first->schema && (first->schema->flags & LYS_KEY)) { |
| LOGERR(LYD_CTX(parent), LY_EINVAL, "Cannot insert key \"%s\".", first->schema->name); |
| return LY_EINVAL; |
| } |
| |
| while (first) { |
| iter = first->next; |
| lyd_unlink(first); |
| lyd_insert_node(parent, NULL, first, LYD_INSERT_NODE_LAST); |
| first = iter; |
| } |
| return LY_SUCCESS; |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_insert_sibling(struct lyd_node *sibling, struct lyd_node *node, struct lyd_node **first) |
| { |
| struct lyd_node *first_sibling; |
| |
| LY_CHECK_ARG_RET(NULL, node, sibling != node, LY_EINVAL); |
| |
| if (sibling) { |
| LY_CHECK_RET(lyd_insert_check_schema(NULL, sibling->schema, node->schema)); |
| } |
| |
| first_sibling = lyd_first_sibling(sibling); |
| if (node->parent || node->prev->next || !node->next) { |
| LY_CHECK_RET(lyd_unlink_tree(node)); |
| lyd_insert_node(NULL, &first_sibling, node, LYD_INSERT_NODE_DEFAULT); |
| } else { |
| LY_CHECK_RET(lyd_move_nodes(NULL, &first_sibling, node)); |
| } |
| |
| if (first) { |
| *first = first_sibling; |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_insert_before(struct lyd_node *sibling, struct lyd_node *node) |
| { |
| LY_CHECK_ARG_RET(NULL, sibling, node, sibling != node, LY_EINVAL); |
| LY_CHECK_CTX_EQUAL_RET(LYD_CTX(sibling), LYD_CTX(node), LY_EINVAL); |
| |
| LY_CHECK_RET(lyd_insert_check_schema(NULL, sibling->schema, node->schema)); |
| |
| if (node->schema && (!(node->schema->nodetype & (LYS_LIST | LYS_LEAFLIST)) || !(node->schema->flags & LYS_ORDBY_USER))) { |
| LOGERR(LYD_CTX(sibling), LY_EINVAL, "Can be used only for user-ordered nodes."); |
| return LY_EINVAL; |
| } |
| if (node->schema && sibling->schema && (node->schema != sibling->schema)) { |
| LOGERR(LYD_CTX(sibling), LY_EINVAL, "Cannot insert before a different schema node instance."); |
| return LY_EINVAL; |
| } |
| |
| lyd_unlink(node); |
| lyd_insert_before_node(sibling, node); |
| lyd_insert_hash(node); |
| |
| return LY_SUCCESS; |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_insert_after(struct lyd_node *sibling, struct lyd_node *node) |
| { |
| LY_CHECK_ARG_RET(NULL, sibling, node, sibling != node, LY_EINVAL); |
| LY_CHECK_CTX_EQUAL_RET(LYD_CTX(sibling), LYD_CTX(node), LY_EINVAL); |
| |
| LY_CHECK_RET(lyd_insert_check_schema(NULL, sibling->schema, node->schema)); |
| |
| if (node->schema && (!(node->schema->nodetype & (LYS_LIST | LYS_LEAFLIST)) || !(node->schema->flags & LYS_ORDBY_USER))) { |
| LOGERR(LYD_CTX(sibling), LY_EINVAL, "Can be used only for user-ordered nodes."); |
| return LY_EINVAL; |
| } |
| if (node->schema && sibling->schema && (node->schema != sibling->schema)) { |
| LOGERR(LYD_CTX(sibling), LY_EINVAL, "Cannot insert after a different schema node instance."); |
| return LY_EINVAL; |
| } |
| |
| lyd_unlink(node); |
| lyd_insert_after_node(NULL, sibling, node); |
| lyd_insert_hash(node); |
| |
| return LY_SUCCESS; |
| } |
| |
| void |
| lyd_unlink_ignore_lyds(struct lyd_node **first_sibling_p, struct lyd_node *node) |
| { |
| struct lyd_node *first_sibling; |
| |
| /* update hashes while still linked into the tree */ |
| lyd_unlink_hash(node); |
| |
| /* unlink leafref nodes */ |
| if (node->schema && (node->schema->nodetype & LYD_NODE_TERM)) { |
| lyd_free_leafref_nodes((struct lyd_node_term *)node); |
| } |
| |
| /* unlink from siblings */ |
| if (node->next) { |
| node->next->prev = node->prev; |
| if (node->prev->next) { |
| node->prev->next = node->next; |
| } else if (first_sibling_p) { |
| /* unlinking the first node */ |
| *first_sibling_p = node->next; |
| } |
| } else { |
| /* unlinking the last node */ |
| /* update the "last" pointer from the first node */ |
| if (first_sibling_p && *first_sibling_p) { |
| (*first_sibling_p)->prev = node->prev; |
| } else { |
| first_sibling = lyd_first_sibling(node); |
| first_sibling->prev = node->prev; |
| if (first_sibling_p) { |
| *first_sibling_p = first_sibling; |
| } |
| } |
| node->prev->next = NULL; |
| } |
| |
| /* unlink from parent */ |
| if (node->parent) { |
| if (node->parent->child == node) { |
| /* the node is the first child */ |
| node->parent->child = node->next; |
| } |
| |
| /* check for NP container whether its last non-default node is not being unlinked */ |
| lyd_np_cont_dflt_set(lyd_parent(node)); |
| |
| node->parent = NULL; |
| } |
| |
| node->next = NULL; |
| node->prev = node; |
| } |
| |
| void |
| lyd_unlink(struct lyd_node *node) |
| { |
| struct lyd_node *leader; |
| |
| if (!node) { |
| return; |
| } |
| |
| /* unlink from the lyds tree */ |
| if (lyds_is_supported(node)) { |
| if (!node->prev->next || (node->prev->schema != node->schema)) { |
| leader = node; |
| } else { |
| lyd_find_sibling_val(node, node->schema, NULL, 0, &leader); |
| assert(leader); |
| } |
| lyds_unlink(&leader, node); |
| } |
| |
| /* unlink data tree */ |
| lyd_unlink_ignore_lyds(NULL, node); |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_unlink_siblings(struct lyd_node *node) |
| { |
| struct lyd_node *next, *iter, *leader, *start, *first_sibling = NULL; |
| |
| if (lyds_is_supported(node) && node->prev->next && (node->prev->schema == node->schema)) { |
| /* unlink starts at the non-first item in the (leaf-)list */ |
| lyd_find_sibling_val(node, node->schema, NULL, 0, &leader); |
| lyds_split(&first_sibling, leader, node, &start); |
| } else { |
| /* unlink @p node */ |
| LY_CHECK_RET(lyd_unlink_check(node)); |
| start = node->next; |
| lyd_unlink_ignore_lyds(&first_sibling, node); |
| } |
| |
| /* continue unlinking the rest */ |
| LY_LIST_FOR_SAFE(start, next, iter) { |
| LY_CHECK_RET(lyd_unlink_check(iter)); |
| lyd_unlink_ignore_lyds(&first_sibling, iter); |
| lyd_insert_after_node(&node, node->prev, iter); |
| lyd_insert_hash(iter); |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_unlink_tree(struct lyd_node *node) |
| { |
| LY_CHECK_RET(lyd_unlink_check(node)); |
| lyd_unlink(node); |
| |
| return LY_SUCCESS; |
| } |
| |
| void |
| lyd_insert_meta(struct lyd_node *parent, struct lyd_meta *meta, ly_bool clear_dflt) |
| { |
| struct lyd_meta *last, *iter; |
| |
| assert(parent); |
| |
| if (!meta) { |
| return; |
| } |
| |
| for (iter = meta; iter; iter = iter->next) { |
| iter->parent = parent; |
| } |
| |
| /* insert as the last attribute */ |
| if (parent->meta) { |
| for (last = parent->meta; last->next; last = last->next) {} |
| last->next = meta; |
| } else { |
| parent->meta = meta; |
| } |
| |
| /* remove default flags from NP containers */ |
| if (clear_dflt) { |
| lyd_np_cont_dflt_del(parent); |
| } |
| } |
| |
| void |
| lyd_unlink_meta_single(struct lyd_meta *meta) |
| { |
| struct lyd_meta *iter; |
| |
| if (!meta) { |
| return; |
| } |
| |
| if (meta->parent && (meta->parent->meta == meta)) { |
| meta->parent->meta = meta->next; |
| } else if (meta->parent) { |
| for (iter = meta->parent->meta; iter->next && (iter->next != meta); iter = iter->next) {} |
| if (iter->next) { |
| iter->next = meta->next; |
| } |
| } |
| |
| meta->next = NULL; |
| meta->parent = NULL; |
| } |
| |
| /** |
| * @brief Get the annotation definition in the module. |
| * |
| * @param[in] mod Metadata module (with the annotation definition). |
| * @param[in] name Attribute name. |
| * @param[in] name_len Length of @p name, must be set correctly. |
| * @return compiled YANG extension instance on success. |
| */ |
| static struct lysc_ext_instance * |
| lyd_get_meta_annotation(const struct lys_module *mod, const char *name, size_t name_len) |
| { |
| LY_ARRAY_COUNT_TYPE u; |
| struct lyplg_ext *plugin; |
| |
| if (!mod) { |
| return NULL; |
| } |
| |
| LY_ARRAY_FOR(mod->compiled->exts, u) { |
| plugin = mod->compiled->exts[u].def->plugin; |
| if (plugin && !strncmp(plugin->id, "ly2 metadata", 12) && |
| !ly_strncmp(mod->compiled->exts[u].argument, name, name_len)) { |
| return &mod->compiled->exts[u]; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| LY_ERR |
| lyd_create_meta(struct lyd_node *parent, struct lyd_meta **meta, const struct lys_module *mod, const char *name, |
| size_t name_len, const char *value, size_t value_len, ly_bool is_utf8, ly_bool store_only, ly_bool *dynamic, |
| LY_VALUE_FORMAT format, void *prefix_data, uint32_t hints, const struct lysc_node *ctx_node, ly_bool clear_dflt, |
| ly_bool *incomplete) |
| { |
| LY_ERR ret = LY_SUCCESS; |
| struct lysc_ext_instance *ant = NULL; |
| const struct lysc_type *ant_type; |
| struct lyd_meta *mt, *last; |
| |
| assert((parent || meta) && mod); |
| |
| ant = lyd_get_meta_annotation(mod, name, name_len); |
| if (!ant) { |
| /* attribute is not defined as a metadata annotation (RFC 7952) */ |
| LOGVAL(mod->ctx, LYVE_REFERENCE, "Annotation definition for attribute \"%s:%.*s\" not found.", |
| mod->name, (int)name_len, name); |
| ret = LY_EINVAL; |
| goto cleanup; |
| } |
| |
| mt = calloc(1, sizeof *mt); |
| LY_CHECK_ERR_GOTO(!mt, LOGMEM(mod->ctx); ret = LY_EMEM, cleanup); |
| mt->parent = parent; |
| mt->annotation = ant; |
| lyplg_ext_get_storage(ant, LY_STMT_TYPE, sizeof ant_type, (const void **)&ant_type); |
| ret = lyd_value_store(mod->ctx, &mt->value, ant_type, value, value_len, is_utf8, store_only, dynamic, format, prefix_data, hints, |
| ctx_node, incomplete); |
| LY_CHECK_ERR_GOTO(ret, free(mt), cleanup); |
| ret = lydict_insert(mod->ctx, name, name_len, &mt->name); |
| LY_CHECK_ERR_GOTO(ret, free(mt), cleanup); |
| |
| /* insert as the last attribute */ |
| if (parent) { |
| lyd_insert_meta(parent, mt, clear_dflt); |
| } else if (*meta) { |
| for (last = *meta; last->next; last = last->next) {} |
| last->next = mt; |
| } |
| |
| if (meta) { |
| *meta = mt; |
| } |
| |
| cleanup: |
| return ret; |
| } |
| |
| void |
| lyd_insert_attr(struct lyd_node *parent, struct lyd_attr *attr) |
| { |
| struct lyd_attr *last, *iter; |
| struct lyd_node_opaq *opaq; |
| |
| assert(parent && !parent->schema); |
| |
| if (!attr) { |
| return; |
| } |
| |
| opaq = (struct lyd_node_opaq *)parent; |
| for (iter = attr; iter; iter = iter->next) { |
| iter->parent = opaq; |
| } |
| |
| /* insert as the last attribute */ |
| if (opaq->attr) { |
| for (last = opaq->attr; last->next; last = last->next) {} |
| last->next = attr; |
| } else { |
| opaq->attr = attr; |
| } |
| } |
| |
| LY_ERR |
| lyd_create_attr(struct lyd_node *parent, struct lyd_attr **attr, const struct ly_ctx *ctx, const char *name, size_t name_len, |
| const char *prefix, size_t prefix_len, const char *module_key, size_t module_key_len, const char *value, |
| size_t value_len, ly_bool *dynamic, LY_VALUE_FORMAT format, void *val_prefix_data, uint32_t hints) |
| { |
| LY_ERR ret = LY_SUCCESS; |
| struct lyd_attr *at, *last; |
| |
| assert(ctx && (parent || attr) && (!parent || !parent->schema)); |
| assert(name && name_len && format); |
| |
| if (!value_len && (!dynamic || !*dynamic)) { |
| value = ""; |
| } |
| |
| at = calloc(1, sizeof *at); |
| LY_CHECK_ERR_RET(!at, LOGMEM(ctx); ly_free_prefix_data(format, val_prefix_data), LY_EMEM); |
| |
| LY_CHECK_GOTO(ret = lydict_insert(ctx, name, name_len, &at->name.name), finish); |
| if (prefix_len) { |
| LY_CHECK_GOTO(ret = lydict_insert(ctx, prefix, prefix_len, &at->name.prefix), finish); |
| } |
| if (module_key_len) { |
| LY_CHECK_GOTO(ret = lydict_insert(ctx, module_key, module_key_len, &at->name.module_ns), finish); |
| } |
| |
| if (dynamic && *dynamic) { |
| ret = lydict_insert_zc(ctx, (char *)value, &at->value); |
| LY_CHECK_GOTO(ret, finish); |
| *dynamic = 0; |
| } else { |
| LY_CHECK_GOTO(ret = lydict_insert(ctx, value, value_len, &at->value), finish); |
| } |
| at->format = format; |
| at->val_prefix_data = val_prefix_data; |
| at->hints = hints; |
| |
| /* insert as the last attribute */ |
| if (parent) { |
| lyd_insert_attr(parent, at); |
| } else if (*attr) { |
| for (last = *attr; last->next; last = last->next) {} |
| last->next = at; |
| } |
| |
| finish: |
| if (ret) { |
| lyd_free_attr_single(ctx, at); |
| } else if (attr) { |
| *attr = at; |
| } |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Check the equality of the two schemas from different contexts. |
| * |
| * @param schema1 of first node. |
| * @param schema2 of second node. |
| * @return 1 if the schemas are equal otherwise 0. |
| */ |
| static ly_bool |
| lyd_compare_schema_equal(const struct lysc_node *schema1, const struct lysc_node *schema2) |
| { |
| if (!schema1 && !schema2) { |
| return 1; |
| } else if (!schema1 || !schema2) { |
| return 0; |
| } |
| |
| assert(schema1->module->ctx != schema2->module->ctx); |
| |
| if (schema1->nodetype != schema2->nodetype) { |
| return 0; |
| } |
| |
| if (strcmp(schema1->name, schema2->name)) { |
| return 0; |
| } |
| |
| if (strcmp(schema1->module->name, schema2->module->name)) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /** |
| * @brief Check the equality of the schemas for all parent nodes. |
| * |
| * Both nodes must be from different contexts. |
| * |
| * @param node1 Data of first node. |
| * @param node2 Data of second node. |
| * @return 1 if the all related parental schemas are equal otherwise 0. |
| */ |
| static ly_bool |
| lyd_compare_schema_parents_equal(const struct lyd_node *node1, const struct lyd_node *node2) |
| { |
| const struct lysc_node *parent1, *parent2; |
| |
| assert(node1 && node2); |
| |
| for (parent1 = node1->schema->parent, parent2 = node2->schema->parent; |
| parent1 && parent2; |
| parent1 = parent1->parent, parent2 = parent2->parent) { |
| if (!lyd_compare_schema_equal(parent1, parent2)) { |
| return 0; |
| } |
| } |
| |
| if (parent1 || parent2) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /** |
| * @brief Compare 2 nodes values including opaque node values. |
| * |
| * @param[in] node1 First node to compare. |
| * @param[in] node2 Second node to compare. |
| * @return LY_SUCCESS if equal. |
| * @return LY_ENOT if not equal. |
| * @return LY_ERR on error. |
| */ |
| static LY_ERR |
| lyd_compare_single_value(const struct lyd_node *node1, const struct lyd_node *node2) |
| { |
| const struct lyd_node_opaq *opaq1 = NULL, *opaq2 = NULL; |
| const char *val1, *val2, *col; |
| const struct lys_module *mod; |
| char *val_dyn = NULL; |
| LY_ERR rc = LY_SUCCESS; |
| |
| if (!node1->schema) { |
| opaq1 = (struct lyd_node_opaq *)node1; |
| } |
| if (!node2->schema) { |
| opaq2 = (struct lyd_node_opaq *)node2; |
| } |
| |
| if (opaq1 && opaq2 && (opaq1->format == LY_VALUE_XML) && (opaq2->format == LY_VALUE_XML)) { |
| /* opaque XML and opaque XML node */ |
| if (lyxml_value_compare(LYD_CTX(node1), opaq1->value, opaq1->val_prefix_data, LYD_CTX(node2), opaq2->value, |
| opaq2->val_prefix_data)) { |
| return LY_ENOT; |
| } |
| return LY_SUCCESS; |
| } |
| |
| /* get their values */ |
| if (opaq1 && ((opaq1->format == LY_VALUE_XML) || (opaq1->format == LY_VALUE_STR_NS)) && (col = strchr(opaq1->value, ':'))) { |
| /* XML value with a prefix, try to transform it into a JSON (canonical) value */ |
| mod = ly_resolve_prefix(LYD_CTX(node1), opaq1->value, col - opaq1->value, opaq1->format, opaq1->val_prefix_data); |
| if (!mod) { |
| /* unable to compare */ |
| return LY_ENOT; |
| } |
| |
| if (asprintf(&val_dyn, "%s%s", mod->name, col) == -1) { |
| LOGMEM(LYD_CTX(node1)); |
| return LY_EMEM; |
| } |
| val1 = val_dyn; |
| } else { |
| val1 = lyd_get_value(node1); |
| } |
| if (opaq2 && ((opaq2->format == LY_VALUE_XML) || (opaq2->format == LY_VALUE_STR_NS)) && (col = strchr(opaq2->value, ':'))) { |
| mod = ly_resolve_prefix(LYD_CTX(node2), opaq2->value, col - opaq2->value, opaq2->format, opaq2->val_prefix_data); |
| if (!mod) { |
| return LY_ENOT; |
| } |
| |
| assert(!val_dyn); |
| if (asprintf(&val_dyn, "%s%s", mod->name, col) == -1) { |
| LOGMEM(LYD_CTX(node2)); |
| return LY_EMEM; |
| } |
| val2 = val_dyn; |
| } else { |
| val2 = lyd_get_value(node2); |
| } |
| |
| /* compare values */ |
| if (strcmp(val1, val2)) { |
| rc = LY_ENOT; |
| } |
| |
| free(val_dyn); |
| return rc; |
| } |
| |
| /** |
| * @brief Compare 2 data nodes if they are equivalent regarding the schema tree. |
| * |
| * Works correctly even if @p node1 and @p node2 have different contexts. |
| * |
| * @param[in] node1 The first node to compare. |
| * @param[in] node2 The second node to compare. |
| * @param[in] options Various @ref datacompareoptions. |
| * @param[in] parental_schemas_checked Flag set if parent schemas were checked for match. |
| * @return LY_SUCCESS if the nodes are equivalent. |
| * @return LY_ENOT if the nodes are not equivalent. |
| */ |
| static LY_ERR |
| lyd_compare_single_schema(const struct lyd_node *node1, const struct lyd_node *node2, uint32_t options, |
| ly_bool parental_schemas_checked) |
| { |
| if (LYD_CTX(node1) == LYD_CTX(node2)) { |
| /* same contexts */ |
| if (options & LYD_COMPARE_OPAQ) { |
| if (lyd_node_schema(node1) != lyd_node_schema(node2)) { |
| return LY_ENOT; |
| } |
| } else { |
| if (node1->schema != node2->schema) { |
| return LY_ENOT; |
| } |
| } |
| } else { |
| /* different contexts */ |
| if (!lyd_compare_schema_equal(node1->schema, node2->schema)) { |
| return LY_ENOT; |
| } |
| if (!parental_schemas_checked) { |
| if (!lyd_compare_schema_parents_equal(node1, node2)) { |
| return LY_ENOT; |
| } |
| parental_schemas_checked = 1; |
| } |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Compare 2 data nodes if they are equivalent regarding the data they contain. |
| * |
| * Works correctly even if @p node1 and @p node2 have different contexts. |
| * |
| * @param[in] node1 The first node to compare. |
| * @param[in] node2 The second node to compare. |
| * @param[in] options Various @ref datacompareoptions. |
| * @return LY_SUCCESS if the nodes are equivalent. |
| * @return LY_ENOT if the nodes are not equivalent. |
| */ |
| static LY_ERR |
| lyd_compare_single_data(const struct lyd_node *node1, const struct lyd_node *node2, uint32_t options) |
| { |
| const struct lyd_node *iter1, *iter2; |
| struct lyd_node_any *any1, *any2; |
| int len1, len2; |
| LY_ERR r; |
| |
| if (!(options & LYD_COMPARE_OPAQ) && (node1->hash != node2->hash)) { |
| return LY_ENOT; |
| } |
| /* equal hashes do not mean equal nodes, they can be just in collision so the nodes must be checked explicitly */ |
| |
| if (!node1->schema || !node2->schema) { |
| if (!(options & LYD_COMPARE_OPAQ) && ((node1->schema && !node2->schema) || (!node1->schema && node2->schema))) { |
| return LY_ENOT; |
| } |
| if ((!node1->schema && !node2->schema) || (node1->schema && (node1->schema->nodetype & LYD_NODE_TERM)) || |
| (node2->schema && (node2->schema->nodetype & LYD_NODE_TERM))) { |
| /* compare values only if there are any to compare */ |
| if ((r = lyd_compare_single_value(node1, node2))) { |
| return r; |
| } |
| } |
| |
| if (options & LYD_COMPARE_FULL_RECURSION) { |
| return lyd_compare_siblings_(lyd_child(node1), lyd_child(node2), options, 1); |
| } |
| return LY_SUCCESS; |
| } else { |
| switch (node1->schema->nodetype) { |
| case LYS_LEAF: |
| case LYS_LEAFLIST: |
| if (options & LYD_COMPARE_DEFAULTS) { |
| if ((node1->flags & LYD_DEFAULT) != (node2->flags & LYD_DEFAULT)) { |
| return LY_ENOT; |
| } |
| } |
| if ((r = lyd_compare_single_value(node1, node2))) { |
| return r; |
| } |
| |
| return LY_SUCCESS; |
| case LYS_CONTAINER: |
| case LYS_RPC: |
| case LYS_ACTION: |
| case LYS_NOTIF: |
| /* implicit container is always equal to a container with non-default descendants */ |
| if (options & LYD_COMPARE_FULL_RECURSION) { |
| return lyd_compare_siblings_(lyd_child(node1), lyd_child(node2), options, 1); |
| } |
| return LY_SUCCESS; |
| case LYS_LIST: |
| iter1 = lyd_child(node1); |
| iter2 = lyd_child(node2); |
| |
| if (options & LYD_COMPARE_FULL_RECURSION) { |
| return lyd_compare_siblings_(iter1, iter2, options, 1); |
| } else if (node1->schema->flags & LYS_KEYLESS) { |
| /* always equal */ |
| return LY_SUCCESS; |
| } |
| |
| /* lists with keys, their equivalence is based on their keys */ |
| for (const struct lysc_node *key = lysc_node_child(node1->schema); |
| key && (key->flags & LYS_KEY); |
| key = key->next) { |
| if (!iter1 || !iter2) { |
| return (iter1 == iter2) ? LY_SUCCESS : LY_ENOT; |
| } |
| r = lyd_compare_single_schema(iter1, iter2, options, 1); |
| LY_CHECK_RET(r); |
| r = lyd_compare_single_data(iter1, iter2, options); |
| LY_CHECK_RET(r); |
| |
| iter1 = iter1->next; |
| iter2 = iter2->next; |
| } |
| |
| return LY_SUCCESS; |
| case LYS_ANYXML: |
| case LYS_ANYDATA: |
| any1 = (struct lyd_node_any *)node1; |
| any2 = (struct lyd_node_any *)node2; |
| |
| if (any1->value_type != any2->value_type) { |
| return LY_ENOT; |
| } |
| switch (any1->value_type) { |
| case LYD_ANYDATA_DATATREE: |
| return lyd_compare_siblings_(any1->value.tree, any2->value.tree, options, 1); |
| case LYD_ANYDATA_STRING: |
| case LYD_ANYDATA_XML: |
| case LYD_ANYDATA_JSON: |
| if ((!any1->value.str && any2->value.str) || (any1->value.str && !any2->value.str)) { |
| return LY_ENOT; |
| } else if (!any1->value.str && !any2->value.str) { |
| return LY_SUCCESS; |
| } |
| len1 = strlen(any1->value.str); |
| len2 = strlen(any2->value.str); |
| if ((len1 != len2) || strcmp(any1->value.str, any2->value.str)) { |
| return LY_ENOT; |
| } |
| return LY_SUCCESS; |
| case LYD_ANYDATA_LYB: |
| len1 = lyd_lyb_data_length(any1->value.mem); |
| len2 = lyd_lyb_data_length(any2->value.mem); |
| if ((len1 == -1) || (len2 == -1) || (len1 != len2) || memcmp(any1->value.mem, any2->value.mem, len1)) { |
| return LY_ENOT; |
| } |
| return LY_SUCCESS; |
| } |
| } |
| } |
| |
| LOGINT(LYD_CTX(node1)); |
| return LY_EINT; |
| } |
| |
| /** |
| * @brief Compare all siblings at a node level. |
| * |
| * @param[in] node1 First sibling list. |
| * @param[in] node2 Second sibling list. |
| * @param[in] options Various @ref datacompareoptions. |
| * @param[in] parental_schemas_checked Flag set if parent schemas were checked for match. |
| * @return LY_SUCCESS if equal. |
| * @return LY_ENOT if not equal. |
| * @return LY_ERR on error. |
| */ |
| static LY_ERR |
| lyd_compare_siblings_(const struct lyd_node *node1, const struct lyd_node *node2, uint32_t options, |
| ly_bool parental_schemas_checked) |
| { |
| LY_ERR r; |
| const struct lyd_node *iter2; |
| |
| while (node1 && node2) { |
| /* schema match */ |
| r = lyd_compare_single_schema(node1, node2, options, parental_schemas_checked); |
| LY_CHECK_RET(r); |
| |
| if (node1->schema && (((node1->schema->nodetype == LYS_LIST) && !(node1->schema->flags & LYS_KEYLESS)) || |
| ((node1->schema->nodetype == LYS_LEAFLIST) && (node1->schema->flags & LYS_CONFIG_W))) && |
| (node1->schema->flags & LYS_ORDBY_SYSTEM)) { |
| /* find a matching instance in case they are ordered differently */ |
| r = lyd_find_sibling_first(node2, node1, (struct lyd_node **)&iter2); |
| if (r == LY_ENOTFOUND) { |
| /* no matching instance, data not equal */ |
| r = LY_ENOT; |
| } |
| LY_CHECK_RET(r); |
| } else { |
| /* compare with the current node */ |
| iter2 = node2; |
| } |
| |
| /* data match */ |
| r = lyd_compare_single_data(node1, iter2, options | LYD_COMPARE_FULL_RECURSION); |
| LY_CHECK_RET(r); |
| |
| node1 = node1->next; |
| node2 = node2->next; |
| } |
| |
| return (node1 || node2) ? LY_ENOT : LY_SUCCESS; |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_compare_single(const struct lyd_node *node1, const struct lyd_node *node2, uint32_t options) |
| { |
| LY_ERR r; |
| |
| if (!node1 || !node2) { |
| return (node1 == node2) ? LY_SUCCESS : LY_ENOT; |
| } |
| |
| /* schema match */ |
| if ((r = lyd_compare_single_schema(node1, node2, options, 0))) { |
| return r; |
| } |
| |
| /* data match */ |
| return lyd_compare_single_data(node1, node2, options); |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_compare_siblings(const struct lyd_node *node1, const struct lyd_node *node2, uint32_t options) |
| { |
| return lyd_compare_siblings_(node1, node2, options, 0); |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_compare_meta(const struct lyd_meta *meta1, const struct lyd_meta *meta2) |
| { |
| const struct ly_ctx *ctx; |
| |
| if (!meta1 || !meta2) { |
| if (meta1 == meta2) { |
| return LY_SUCCESS; |
| } else { |
| return LY_ENOT; |
| } |
| } |
| |
| ctx = meta1->annotation->module->ctx; |
| if ((ctx != meta2->annotation->module->ctx) || (meta1->annotation != meta2->annotation)) { |
| return LY_ENOT; |
| } |
| |
| return meta1->value.realtype->plugin->compare(ctx, &meta1->value, &meta2->value); |
| } |
| |
| /** |
| * @brief Create a copy of the attribute. |
| * |
| * @param[in] attr Attribute to copy. |
| * @param[in] node Opaque where to append the new attribute. |
| * @param[out] dup Optional created attribute copy. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyd_dup_attr_single(const struct lyd_attr *attr, struct lyd_node *node, struct lyd_attr **dup) |
| { |
| LY_ERR ret = LY_SUCCESS; |
| struct lyd_attr *a, *last; |
| struct lyd_node_opaq *opaq = (struct lyd_node_opaq *)node; |
| |
| LY_CHECK_ARG_RET(NULL, attr, node, !node->schema, LY_EINVAL); |
| |
| /* create a copy */ |
| a = calloc(1, sizeof *attr); |
| LY_CHECK_ERR_RET(!a, LOGMEM(LYD_CTX(node)), LY_EMEM); |
| |
| LY_CHECK_GOTO(ret = lydict_insert(LYD_CTX(node), attr->name.name, 0, &a->name.name), finish); |
| LY_CHECK_GOTO(ret = lydict_insert(LYD_CTX(node), attr->name.prefix, 0, &a->name.prefix), finish); |
| LY_CHECK_GOTO(ret = lydict_insert(LYD_CTX(node), attr->name.module_ns, 0, &a->name.module_ns), finish); |
| LY_CHECK_GOTO(ret = lydict_insert(LYD_CTX(node), attr->value, 0, &a->value), finish); |
| a->hints = attr->hints; |
| a->format = attr->format; |
| if (attr->val_prefix_data) { |
| ret = ly_dup_prefix_data(LYD_CTX(node), attr->format, attr->val_prefix_data, &a->val_prefix_data); |
| LY_CHECK_GOTO(ret, finish); |
| } |
| |
| /* insert as the last attribute */ |
| a->parent = opaq; |
| if (opaq->attr) { |
| for (last = opaq->attr; last->next; last = last->next) {} |
| last->next = a; |
| } else { |
| opaq->attr = a; |
| } |
| |
| finish: |
| if (ret) { |
| lyd_free_attr_single(LYD_CTX(node), a); |
| } else if (dup) { |
| *dup = a; |
| } |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Find @p schema equivalent in @p trg_ctx. |
| * |
| * @param[in] schema Schema node to find. |
| * @param[in] trg_ctx Target context to search in. |
| * @param[in] parent Data parent of @p schema, if any. |
| * @param[in] log Whether to log directly. |
| * @param[out] trg_schema Found schema from @p trg_ctx to use. |
| * @return LY_RRR value. |
| */ |
| static LY_ERR |
| lyd_find_schema_ctx(const struct lysc_node *schema, const struct ly_ctx *trg_ctx, const struct lyd_node *parent, |
| ly_bool log, const struct lysc_node **trg_schema) |
| { |
| const struct lysc_node *src_parent = NULL, *trg_parent = NULL, *sp, *tp; |
| const struct lys_module *trg_mod = NULL; |
| char *path; |
| |
| if (!schema) { |
| /* opaque node */ |
| *trg_schema = NULL; |
| return LY_SUCCESS; |
| } |
| |
| if (lysc_data_parent(schema) && parent && parent->schema) { |
| /* start from schema parent */ |
| trg_parent = parent->schema; |
| src_parent = lysc_data_parent(schema); |
| } |
| |
| do { |
| /* find the next parent */ |
| sp = schema; |
| while (lysc_data_parent(sp) != src_parent) { |
| sp = lysc_data_parent(sp); |
| } |
| src_parent = sp; |
| |
| if (!src_parent->parent) { |
| /* find the module first */ |
| trg_mod = ly_ctx_get_module_implemented(trg_ctx, src_parent->module->name); |
| if (!trg_mod) { |
| if (log) { |
| LOGERR(trg_ctx, LY_ENOTFOUND, "Module \"%s\" not present/implemented in the target context.", |
| src_parent->module->name); |
| } |
| return LY_ENOTFOUND; |
| } |
| } |
| |
| /* find the next parent */ |
| assert(trg_parent || trg_mod); |
| tp = NULL; |
| while ((tp = lys_getnext(tp, trg_parent, trg_mod ? trg_mod->compiled : NULL, 0))) { |
| if (!strcmp(tp->name, src_parent->name) && !strcmp(tp->module->name, src_parent->module->name)) { |
| break; |
| } |
| } |
| if (!tp) { |
| /* schema node not found */ |
| if (log) { |
| path = lysc_path(src_parent, LYSC_PATH_LOG, NULL, 0); |
| LOGERR(trg_ctx, LY_ENOTFOUND, "Schema node \"%s\" not found in the target context.", path); |
| free(path); |
| } |
| return LY_ENOTFOUND; |
| } |
| |
| trg_parent = tp; |
| } while (schema != src_parent); |
| |
| /* success */ |
| *trg_schema = trg_parent; |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Duplicate a single node and connect it into @p parent (if present) or last of @p first siblings. |
| * |
| * Ignores ::LYD_DUP_WITH_PARENTS which is supposed to be handled by lyd_dup(). |
| * |
| * @param[in] node Node to duplicate. |
| * @param[in] trg_ctx Target context for duplicated nodes. |
| * @param[in] parent Parent to insert into, NULL for top-level sibling. |
| * @param[in] insert_order Options for inserting (sorting) duplicated node, @ref insertorder. |
| * @param[in,out] first First sibling, NULL if no top-level sibling exist yet. Can be also NULL if @p parent is set. |
| * @param[in] options Bitmask of options flags, see @ref dupoptions. |
| * @param[out] dup_p Pointer where the created duplicated node is placed (besides connecting it to @p parent / @p first). |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyd_dup_r(const struct lyd_node *node, const struct ly_ctx *trg_ctx, struct lyd_node *parent, uint32_t insert_order, |
| struct lyd_node **first, uint32_t options, struct lyd_node **dup_p) |
| { |
| LY_ERR ret; |
| struct lyd_node *dup = NULL; |
| struct lyd_meta *meta; |
| struct lyd_attr *attr; |
| struct lyd_node_any *any; |
| const struct lysc_type *type; |
| const char *val_can; |
| |
| LY_CHECK_ARG_RET(NULL, node, LY_EINVAL); |
| |
| if (node->flags & LYD_EXT) { |
| if (options & LYD_DUP_NO_EXT) { |
| /* no not duplicate this subtree */ |
| return LY_SUCCESS; |
| } |
| |
| /* we need to use the same context */ |
| trg_ctx = LYD_CTX(node); |
| } |
| |
| if (!node->schema) { |
| dup = calloc(1, sizeof(struct lyd_node_opaq)); |
| ((struct lyd_node_opaq *)dup)->ctx = trg_ctx; |
| } else { |
| switch (node->schema->nodetype) { |
| case LYS_RPC: |
| case LYS_ACTION: |
| case LYS_NOTIF: |
| case LYS_CONTAINER: |
| case LYS_LIST: |
| dup = calloc(1, sizeof(struct lyd_node_inner)); |
| break; |
| case LYS_LEAF: |
| case LYS_LEAFLIST: |
| dup = calloc(1, sizeof(struct lyd_node_term)); |
| break; |
| case LYS_ANYDATA: |
| case LYS_ANYXML: |
| dup = calloc(1, sizeof(struct lyd_node_any)); |
| break; |
| default: |
| LOGINT(trg_ctx); |
| ret = LY_EINT; |
| goto error; |
| } |
| } |
| LY_CHECK_ERR_GOTO(!dup, LOGMEM(trg_ctx); ret = LY_EMEM, error); |
| |
| if (options & LYD_DUP_WITH_FLAGS) { |
| dup->flags = node->flags; |
| } else { |
| dup->flags = (node->flags & (LYD_DEFAULT | LYD_EXT)) | LYD_NEW; |
| } |
| if (options & LYD_DUP_WITH_PRIV) { |
| dup->priv = node->priv; |
| } |
| if (trg_ctx == LYD_CTX(node)) { |
| dup->schema = node->schema; |
| } else { |
| ret = lyd_find_schema_ctx(node->schema, trg_ctx, parent, 1, &dup->schema); |
| if (ret) { |
| /* has no schema but is not an opaque node */ |
| free(dup); |
| dup = NULL; |
| goto error; |
| } |
| } |
| dup->prev = dup; |
| |
| /* duplicate metadata/attributes */ |
| if (!(options & LYD_DUP_NO_META)) { |
| if (!node->schema) { |
| LY_LIST_FOR(((struct lyd_node_opaq *)node)->attr, attr) { |
| LY_CHECK_GOTO(ret = lyd_dup_attr_single(attr, dup, NULL), error); |
| } |
| } else { |
| LY_LIST_FOR(node->meta, meta) { |
| LY_CHECK_GOTO(ret = lyd_dup_meta_single_to_ctx(trg_ctx, meta, dup, NULL), error); |
| } |
| } |
| } |
| |
| /* nodetype-specific work */ |
| if (!dup->schema) { |
| struct lyd_node_opaq *opaq = (struct lyd_node_opaq *)dup; |
| struct lyd_node_opaq *orig = (struct lyd_node_opaq *)node; |
| struct lyd_node *child; |
| |
| if (options & LYD_DUP_RECURSIVE) { |
| /* duplicate all the children */ |
| LY_LIST_FOR(orig->child, child) { |
| LY_CHECK_GOTO(ret = lyd_dup_r(child, trg_ctx, dup, LYD_INSERT_NODE_LAST, NULL, options, NULL), error); |
| } |
| } |
| LY_CHECK_GOTO(ret = lydict_insert(trg_ctx, orig->name.name, 0, &opaq->name.name), error); |
| LY_CHECK_GOTO(ret = lydict_insert(trg_ctx, orig->name.prefix, 0, &opaq->name.prefix), error); |
| LY_CHECK_GOTO(ret = lydict_insert(trg_ctx, orig->name.module_ns, 0, &opaq->name.module_ns), error); |
| LY_CHECK_GOTO(ret = lydict_insert(trg_ctx, orig->value, 0, &opaq->value), error); |
| opaq->hints = orig->hints; |
| opaq->format = orig->format; |
| if (orig->val_prefix_data) { |
| ret = ly_dup_prefix_data(trg_ctx, opaq->format, orig->val_prefix_data, &opaq->val_prefix_data); |
| LY_CHECK_GOTO(ret, error); |
| } |
| } else if (dup->schema->nodetype & LYD_NODE_TERM) { |
| struct lyd_node_term *term = (struct lyd_node_term *)dup; |
| struct lyd_node_term *orig = (struct lyd_node_term *)node; |
| |
| term->hash = orig->hash; |
| if (trg_ctx == LYD_CTX(node)) { |
| ret = orig->value.realtype->plugin->duplicate(trg_ctx, &orig->value, &term->value); |
| LY_CHECK_ERR_GOTO(ret, LOGERR(trg_ctx, ret, "Value duplication failed."), error); |
| } else { |
| /* store canonical value in the target context */ |
| val_can = lyd_get_value(node); |
| type = ((struct lysc_node_leaf *)term->schema)->type; |
| ret = lyd_value_store(trg_ctx, &term->value, type, val_can, strlen(val_can), 1, 1, NULL, LY_VALUE_CANON, NULL, |
| LYD_HINT_DATA, term->schema, NULL); |
| LY_CHECK_GOTO(ret, error); |
| } |
| } else if (dup->schema->nodetype & LYD_NODE_INNER) { |
| struct lyd_node_inner *orig = (struct lyd_node_inner *)node; |
| struct lyd_node *child; |
| |
| if (options & LYD_DUP_RECURSIVE) { |
| /* create a hash table with the size of the previous hash table (duplicate) */ |
| if (orig->children_ht) { |
| ((struct lyd_node_inner *)dup)->children_ht = lyht_new(orig->children_ht->size, sizeof(struct lyd_node *), lyd_hash_table_val_equal, NULL, 1); |
| } |
| |
| /* duplicate all the children */ |
| LY_LIST_FOR(orig->child, child) { |
| LY_CHECK_GOTO(ret = lyd_dup_r(child, trg_ctx, dup, LYD_INSERT_NODE_LAST, NULL, options, NULL), error); |
| } |
| } else if ((dup->schema->nodetype == LYS_LIST) && !(dup->schema->flags & LYS_KEYLESS)) { |
| /* always duplicate keys of a list */ |
| for (child = orig->child; child && lysc_is_key(child->schema); child = child->next) { |
| LY_CHECK_GOTO(ret = lyd_dup_r(child, trg_ctx, dup, LYD_INSERT_NODE_LAST, NULL, options, NULL), error); |
| } |
| } |
| lyd_hash(dup); |
| } else if (dup->schema->nodetype & LYD_NODE_ANY) { |
| dup->hash = node->hash; |
| any = (struct lyd_node_any *)node; |
| LY_CHECK_GOTO(ret = lyd_any_copy_value(dup, &any->value, any->value_type), error); |
| } |
| |
| /* insert */ |
| lyd_insert_node(parent, first, dup, insert_order); |
| |
| if (dup_p) { |
| *dup_p = dup; |
| } |
| return LY_SUCCESS; |
| |
| error: |
| lyd_free_tree(dup); |
| return ret; |
| } |
| |
| /** |
| * @brief Get a parent node to connect duplicated subtree to. |
| * |
| * @param[in] node Node (subtree) to duplicate. |
| * @param[in] trg_ctx Target context for duplicated nodes. |
| * @param[in] parent Initial parent to connect to. |
| * @param[in] options Bitmask of options flags, see @ref dupoptions. |
| * @param[out] dup_parent First duplicated parent node, if any. |
| * @param[out] local_parent Correct parent to directly connect duplicated @p node to. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyd_dup_get_local_parent(const struct lyd_node *node, const struct ly_ctx *trg_ctx, struct lyd_node *parent, |
| uint32_t options, struct lyd_node **dup_parent, struct lyd_node **local_parent) |
| { |
| const struct lyd_node *orig_parent; |
| struct lyd_node *iter = NULL; |
| ly_bool repeat = 1, ext_parent = 0; |
| |
| *dup_parent = NULL; |
| *local_parent = NULL; |
| |
| if (node->flags & LYD_EXT) { |
| ext_parent = 1; |
| } |
| for (orig_parent = lyd_parent(node); repeat && orig_parent; orig_parent = lyd_parent(orig_parent)) { |
| if (ext_parent) { |
| /* use the standard context */ |
| trg_ctx = LYD_CTX(orig_parent); |
| } |
| if (parent && (LYD_CTX(parent) == LYD_CTX(orig_parent)) && (parent->schema == orig_parent->schema)) { |
| /* stop creating parents, connect what we have into the provided parent */ |
| iter = parent; |
| repeat = 0; |
| } else if (parent && (LYD_CTX(parent) != LYD_CTX(orig_parent)) && |
| lyd_compare_schema_equal(parent->schema, orig_parent->schema) && |
| lyd_compare_schema_parents_equal(parent, orig_parent)) { |
| iter = parent; |
| repeat = 0; |
| } else { |
| iter = NULL; |
| LY_CHECK_RET(lyd_dup_r(orig_parent, trg_ctx, NULL, LYD_INSERT_NODE_DEFAULT, &iter, options, &iter)); |
| |
| /* insert into the previous duplicated parent */ |
| if (*dup_parent) { |
| lyd_insert_node(iter, NULL, *dup_parent, LYD_INSERT_NODE_DEFAULT); |
| } |
| |
| /* update the last duplicated parent */ |
| *dup_parent = iter; |
| } |
| |
| /* set the first parent */ |
| if (!*local_parent) { |
| *local_parent = iter; |
| } |
| |
| if (orig_parent->flags & LYD_EXT) { |
| ext_parent = 1; |
| } |
| } |
| |
| if (repeat && parent) { |
| /* given parent and created parents chain actually do not interconnect */ |
| LOGERR(trg_ctx, LY_EINVAL, "None of the duplicated node \"%s\" schema parents match the provided parent \"%s\".", |
| LYD_NAME(node), LYD_NAME(parent)); |
| return LY_EINVAL; |
| } |
| |
| if (*dup_parent && parent) { |
| /* last insert into a prevously-existing parent */ |
| lyd_insert_node(parent, NULL, *dup_parent, LYD_INSERT_NODE_DEFAULT); |
| } |
| return LY_SUCCESS; |
| } |
| |
| static LY_ERR |
| lyd_dup(const struct lyd_node *node, const struct ly_ctx *trg_ctx, struct lyd_node *parent, uint32_t options, |
| ly_bool nosiblings, struct lyd_node **dup_p) |
| { |
| LY_ERR rc; |
| const struct lyd_node *orig; /* original node to be duplicated */ |
| struct lyd_node *first_dup = NULL; /* the first duplicated node, this is returned */ |
| struct lyd_node *top = NULL; /* the most higher created node */ |
| struct lyd_node *local_parent = NULL; /* the direct parent node for the duplicated node(s) */ |
| struct lyd_node *dup = NULL; /* duplicate node */ |
| struct lyd_node *first_sibling = NULL; /* first sibling node */ |
| const struct lyd_node *first_llist = NULL; /* first duplicated (leaf-)list node, if any */ |
| uint32_t insert_order; |
| |
| assert(node && trg_ctx); |
| |
| if (options & LYD_DUP_WITH_PARENTS) { |
| LY_CHECK_GOTO(rc = lyd_dup_get_local_parent(node, trg_ctx, parent, options & (LYD_DUP_WITH_FLAGS | LYD_DUP_NO_META), |
| &top, &local_parent), error); |
| } else { |
| local_parent = parent; |
| } |
| |
| LY_LIST_FOR(node, orig) { |
| if (lysc_is_key(orig->schema)) { |
| if (local_parent) { |
| /* the key must already exist in the parent */ |
| rc = lyd_find_sibling_schema(lyd_child(local_parent), orig->schema, &dup); |
| LY_CHECK_ERR_GOTO(rc, LOGINT(trg_ctx), error); |
| } else { |
| assert(!(options & LYD_DUP_WITH_PARENTS)); |
| /* duplicating a single key, okay, I suppose... */ |
| rc = lyd_dup_r(orig, trg_ctx, NULL, LYD_INSERT_NODE_DEFAULT, &first_sibling, options, &dup); |
| LY_CHECK_GOTO(rc, error); |
| } |
| } else { |
| /* decide insert order */ |
| insert_order = (options & LYD_DUP_NO_LYDS) ? LYD_INSERT_NODE_LAST_BY_SCHEMA : LYD_INSERT_NODE_DEFAULT; |
| if (first_llist) { |
| if (orig->schema != first_llist->schema) { |
| /* all the (leaf-)list instances duplicated */ |
| first_llist = NULL; |
| } else { |
| /* duplicating all the instances of a (leaf-)list, no need to change their order */ |
| insert_order = LYD_INSERT_NODE_LAST; |
| } |
| } else if (orig->schema && (orig->schema->nodetype & (LYS_LIST | LYS_LEAFLIST))) { |
| /* duplicating the first (leaf-)list instance, duplicate the rest more efficiently */ |
| first_llist = orig; |
| } |
| |
| /* duplicate the node */ |
| rc = lyd_dup_r(orig, trg_ctx, local_parent, insert_order, &first_sibling, options, &dup); |
| LY_CHECK_GOTO(rc, error); |
| |
| if (first_llist && dup->next) { |
| /* orig was not the last node (because we are inserting into a parent with some previous instances), |
| * we must check find the order */ |
| first_llist = NULL; |
| } |
| } |
| first_dup = first_dup ? first_dup : dup; |
| |
| if (nosiblings) { |
| break; |
| } |
| } |
| |
| if (dup_p) { |
| *dup_p = first_dup; |
| } |
| return LY_SUCCESS; |
| |
| error: |
| if (top) { |
| lyd_free_tree(top); |
| } else if (first_dup) { |
| lyd_free_siblings(first_dup); |
| } else { |
| lyd_free_siblings(dup); |
| } |
| return rc; |
| } |
| |
| /** |
| * @brief Check the context of node and parent when duplicating nodes. |
| * |
| * @param[in] node Node to duplicate. |
| * @param[in] parent Parent of the duplicated node(s). |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyd_dup_ctx_check(const struct lyd_node *node, const struct lyd_node_inner *parent) |
| { |
| const struct lyd_node *iter; |
| |
| if (!node || !parent) { |
| return LY_SUCCESS; |
| } |
| |
| if ((LYD_CTX(node) != LYD_CTX(parent))) { |
| /* try to find top-level ext data parent */ |
| for (iter = node; iter && !(iter->flags & LYD_EXT); iter = lyd_parent(iter)) {} |
| |
| if (!iter || !lyd_parent(iter) || (LYD_CTX(lyd_parent(iter)) != LYD_CTX(parent))) { |
| LOGERR(LYD_CTX(node), LY_EINVAL, "Different contexts used in node duplication."); |
| return LY_EINVAL; |
| } |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_dup_single(const struct lyd_node *node, struct lyd_node_inner *parent, uint32_t options, struct lyd_node **dup) |
| { |
| LY_CHECK_ARG_RET(NULL, node, LY_EINVAL); |
| LY_CHECK_RET(lyd_dup_ctx_check(node, parent)); |
| |
| return lyd_dup(node, LYD_CTX(node), (struct lyd_node *)parent, options, 1, dup); |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_dup_single_to_ctx(const struct lyd_node *node, const struct ly_ctx *trg_ctx, struct lyd_node_inner *parent, |
| uint32_t options, struct lyd_node **dup) |
| { |
| LY_CHECK_ARG_RET(trg_ctx, node, trg_ctx, LY_EINVAL); |
| |
| return lyd_dup(node, trg_ctx, (struct lyd_node *)parent, options, 1, dup); |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_dup_siblings(const struct lyd_node *node, struct lyd_node_inner *parent, uint32_t options, struct lyd_node **dup) |
| { |
| LY_CHECK_ARG_RET(NULL, node, LY_EINVAL); |
| LY_CHECK_RET(lyd_dup_ctx_check(node, parent)); |
| |
| return lyd_dup(node, LYD_CTX(node), (struct lyd_node *)parent, options, 0, dup); |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_dup_siblings_to_ctx(const struct lyd_node *node, const struct ly_ctx *trg_ctx, struct lyd_node_inner *parent, |
| uint32_t options, struct lyd_node **dup) |
| { |
| LY_CHECK_ARG_RET(trg_ctx, node, trg_ctx, LY_EINVAL); |
| |
| return lyd_dup(node, trg_ctx, (struct lyd_node *)parent, options, 0, dup); |
| } |
| |
| LY_ERR |
| lyd_dup_meta_single_to_ctx(const struct ly_ctx *parent_ctx, const struct lyd_meta *meta, struct lyd_node *parent, |
| struct lyd_meta **dup) |
| { |
| LY_ERR ret = LY_SUCCESS; |
| struct lyd_meta *mt, *last; |
| const struct lysc_type *ant_type; |
| struct lys_module *mod; |
| const char *val_can; |
| |
| LY_CHECK_ARG_RET(NULL, meta, parent, LY_EINVAL); |
| |
| /* create a copy */ |
| mt = calloc(1, sizeof *mt); |
| LY_CHECK_ERR_RET(!mt, LOGMEM(LYD_CTX(parent)), LY_EMEM); |
| |
| if (parent_ctx != meta->annotation->module->ctx) { |
| /* different contexts */ |
| mod = ly_ctx_get_module(parent_ctx, meta->annotation->module->name, meta->annotation->module->revision); |
| |
| /* annotation */ |
| mt->annotation = lyd_get_meta_annotation(mod, meta->name, strlen(meta->name)); |
| lyplg_ext_get_storage(mt->annotation, LY_STMT_TYPE, sizeof ant_type, (const void **)&ant_type); |
| LY_CHECK_ERR_GOTO((ret = mt->annotation ? LY_SUCCESS : LY_EINVAL), LOGERR(parent_ctx, LY_EINVAL, |
| "Annotation for metadata %s not found, value duplication failed.", meta->name), finish); |
| |
| /* duplicate callback expect only the same contexts, so use the store callback */ |
| val_can = lyd_value_get_canonical(meta->annotation->module->ctx, &meta->value); |
| ret = lyd_value_store(parent_ctx, &mt->value, ant_type, val_can, strlen(val_can), 1, 1, NULL, |
| LY_VALUE_CANON, NULL, LYD_HINT_DATA, parent->schema, NULL); |
| } else { |
| /* annotation */ |
| mt->annotation = meta->annotation; |
| /* duplication of value */ |
| ret = meta->value.realtype->plugin->duplicate(parent_ctx, &meta->value, &mt->value); |
| } |
| LY_CHECK_ERR_GOTO(ret, LOGERR(LYD_CTX(parent), LY_EINT, "Value duplication failed."), finish); |
| LY_CHECK_GOTO(ret = lydict_insert(parent_ctx, meta->name, 0, &mt->name), finish); |
| |
| /* insert as the last attribute */ |
| mt->parent = parent; |
| if (parent->meta) { |
| for (last = parent->meta; last->next; last = last->next) {} |
| last->next = mt; |
| } else { |
| parent->meta = mt; |
| } |
| |
| finish: |
| if (ret) { |
| lyd_free_meta_single(mt); |
| } else if (dup) { |
| *dup = mt; |
| } |
| return LY_SUCCESS; |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_dup_meta_single(const struct lyd_meta *meta, struct lyd_node *node, struct lyd_meta **dup) |
| { |
| LY_CHECK_ARG_RET(NULL, meta, LY_EINVAL); |
| |
| /* log to node context but value must always use the annotation context */ |
| return lyd_dup_meta_single_to_ctx(meta->annotation->module->ctx, meta, node, dup); |
| } |
| |
| /** |
| * @brief Merge a source sibling into target siblings. |
| * |
| * @param[in,out] first_trg First target sibling, is updated if top-level. |
| * @param[in] parent_trg Target parent. |
| * @param[in,out] sibling_src_p Source sibling to merge, set to NULL if spent. |
| * @param[in] merge_cb Optional merge callback. |
| * @param[in] cb_data Arbitrary callback data. |
| * @param[in] options Merge options. |
| * @param[in] lyds Pool of lyds data which can be reused. |
| * @param[in,out] leader_p Cached first instance of target (leaf-)list. |
| * @param[in,out] dup_inst Duplicate instance cache for all @p first_trg siblings. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyd_merge_sibling_r(struct lyd_node **first_trg, struct lyd_node *parent_trg, |
| const struct lyd_node **sibling_src_p, lyd_merge_cb merge_cb, void *cb_data, uint16_t options, |
| struct lyds_pool *lyds, struct lyd_node **leader_p, struct ly_ht **dup_inst) |
| { |
| const struct lyd_node *child_src, *tmp, *sibling_src; |
| struct lyd_node *match_trg, *dup_src, *elem, *leader; |
| struct lyd_node_opaq *opaq_trg, *opaq_src; |
| const struct lysc_node *schema; |
| struct ly_ht *child_dup_inst = NULL; |
| LY_ERR r; |
| ly_bool first_inst = 0; |
| |
| sibling_src = *sibling_src_p; |
| if (!sibling_src->schema) { |
| /* try to find the same opaque node */ |
| r = lyd_find_sibling_opaq_next(*first_trg, LYD_NAME(sibling_src), &match_trg); |
| } else if (sibling_src->schema->nodetype & (LYS_LIST | LYS_LEAFLIST)) { |
| /* try to find the exact instance */ |
| r = lyd_find_sibling_first(*first_trg, sibling_src, &match_trg); |
| } else { |
| /* try to simply find the node, there cannot be more instances */ |
| r = lyd_find_sibling_val(*first_trg, sibling_src->schema, NULL, 0, &match_trg); |
| } |
| LY_CHECK_RET(r && (r != LY_ENOTFOUND), r); |
| |
| if (match_trg) { |
| /* update match as needed */ |
| LY_CHECK_RET(lyd_dup_inst_next(&match_trg, *first_trg, dup_inst)); |
| } else { |
| /* first instance of this node */ |
| first_inst = 1; |
| } |
| |
| if (match_trg) { |
| /* call callback */ |
| if (merge_cb) { |
| LY_CHECK_RET(merge_cb(match_trg, sibling_src, cb_data)); |
| } |
| |
| /* node found, make sure even value matches for all node types */ |
| if (!match_trg->schema) { |
| if (lyd_compare_single(sibling_src, match_trg, 0)) { |
| /* update value */ |
| opaq_trg = (struct lyd_node_opaq *)match_trg; |
| opaq_src = (struct lyd_node_opaq *)sibling_src; |
| |
| lydict_remove(LYD_CTX(opaq_trg), opaq_trg->value); |
| lydict_insert(LYD_CTX(opaq_trg), opaq_src->value, 0, &opaq_trg->value); |
| opaq_trg->hints = opaq_src->hints; |
| |
| ly_free_prefix_data(opaq_trg->format, opaq_trg->val_prefix_data); |
| opaq_trg->format = opaq_src->format; |
| ly_dup_prefix_data(LYD_CTX(opaq_trg), opaq_src->format, opaq_src->val_prefix_data, |
| &opaq_trg->val_prefix_data); |
| } |
| } else if ((match_trg->schema->nodetype == LYS_LEAF) && |
| ((options & LYD_MERGE_DEFAULTS) || !(sibling_src->flags & LYD_DEFAULT))) { |
| /* update value */ |
| r = lyd_change_term_val(match_trg, &((struct lyd_node_term *)sibling_src)->value, 0, |
| sibling_src->flags & LYD_DEFAULT); |
| LY_CHECK_RET(r && (r != LY_EEXIST) && (r != LY_ENOT), r); |
| |
| if (options & LYD_MERGE_WITH_FLAGS) { |
| /* keep the exact same flags */ |
| match_trg->flags = sibling_src->flags; |
| } |
| } else if ((match_trg->schema->nodetype & LYS_ANYDATA) && lyd_compare_single(sibling_src, match_trg, 0)) { |
| /* update value */ |
| LY_CHECK_RET(lyd_any_copy_value(match_trg, &((struct lyd_node_any *)sibling_src)->value, |
| ((struct lyd_node_any *)sibling_src)->value_type)); |
| |
| /* copy flags and add LYD_NEW */ |
| match_trg->flags = sibling_src->flags | ((options & LYD_MERGE_WITH_FLAGS) ? 0 : LYD_NEW); |
| } |
| |
| /* check descendants, recursively */ |
| r = LY_SUCCESS; |
| leader = NULL; |
| schema = NULL; |
| LY_LIST_FOR_SAFE(lyd_child_no_keys(sibling_src), tmp, child_src) { |
| if ((options & LYD_MERGE_DESTRUCT) && (schema != child_src->schema) && LYDS_NODE_IS_LEADER(child_src)) { |
| schema = child_src->schema; |
| /* unlink lyds data and add them to the pool */ |
| lyds_pool_add((struct lyd_node *)child_src, lyds); |
| } |
| |
| r = lyd_merge_sibling_r(lyd_node_child_p(match_trg), match_trg, &child_src, |
| merge_cb, cb_data, options, lyds, &leader, &child_dup_inst); |
| if (r) { |
| break; |
| } |
| } |
| |
| lyd_dup_inst_free(child_dup_inst); |
| LY_CHECK_RET(r); |
| } else { |
| /* node not found, merge it */ |
| if (options & LYD_MERGE_DESTRUCT) { |
| dup_src = (struct lyd_node *)sibling_src; |
| lyd_unlink_ignore_lyds(NULL, dup_src); |
| /* spend it */ |
| *sibling_src_p = NULL; |
| } else { |
| LY_CHECK_RET(lyd_dup_single(sibling_src, NULL, LYD_DUP_RECURSIVE | LYD_DUP_WITH_FLAGS, &dup_src)); |
| } |
| |
| if (!(options & LYD_MERGE_WITH_FLAGS)) { |
| /* set LYD_NEW for all the new nodes, required for validation */ |
| LYD_TREE_DFS_BEGIN(dup_src, elem) { |
| elem->flags |= LYD_NEW; |
| LYD_TREE_DFS_END(dup_src, elem); |
| } |
| } |
| |
| if (lyds->rbn) { |
| /* insert node and try to reuse free lyds data */ |
| lyds_insert2(parent_trg, first_trg, leader_p, dup_src, lyds); |
| } else { |
| /* generic insert node */ |
| lyd_insert_node(parent_trg, first_trg, dup_src, LYD_INSERT_NODE_DEFAULT); |
| } |
| |
| if (first_inst) { |
| /* remember not to find this instance next time */ |
| LY_CHECK_RET(lyd_dup_inst_next(&dup_src, *first_trg, dup_inst)); |
| } |
| |
| /* call callback, no source node */ |
| if (merge_cb) { |
| LY_CHECK_RET(merge_cb(dup_src, NULL, cb_data)); |
| } |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| static LY_ERR |
| lyd_merge(struct lyd_node **target, const struct lyd_node *source, const struct lys_module *mod, |
| lyd_merge_cb merge_cb, void *cb_data, uint16_t options, ly_bool nosiblings) |
| { |
| const struct lyd_node *sibling_src, *tmp; |
| const struct lysc_node *schema; |
| struct lyd_node *leader; |
| struct ly_ht *dup_inst = NULL; |
| ly_bool first; |
| LY_ERR ret = LY_SUCCESS; |
| struct lyds_pool lyds = {0}; |
| |
| LY_CHECK_ARG_RET(NULL, target, LY_EINVAL); |
| LY_CHECK_CTX_EQUAL_RET(*target ? LYD_CTX(*target) : NULL, source ? LYD_CTX(source) : NULL, mod ? mod->ctx : NULL, |
| LY_EINVAL); |
| |
| if (!source) { |
| /* nothing to merge */ |
| return LY_SUCCESS; |
| } |
| |
| if ((*target && lysc_data_parent((*target)->schema)) || lysc_data_parent(source->schema)) { |
| LOGERR(LYD_CTX(source), LY_EINVAL, "Invalid arguments - can merge only 2 top-level subtrees (%s()).", __func__); |
| return LY_EINVAL; |
| } |
| |
| leader = NULL; |
| schema = NULL; |
| LY_LIST_FOR_SAFE(source, tmp, sibling_src) { |
| if (mod && (lyd_owner_module(sibling_src) != mod)) { |
| /* skip data nodes from different modules */ |
| continue; |
| } |
| |
| if ((options & LYD_MERGE_DESTRUCT) && (schema != sibling_src->schema) && LYDS_NODE_IS_LEADER(sibling_src)) { |
| schema = sibling_src->schema; |
| /* unlink lyds data and add them to the pool */ |
| lyds_pool_add((struct lyd_node *)sibling_src, &lyds); |
| } |
| |
| first = (sibling_src == source) ? 1 : 0; |
| ret = lyd_merge_sibling_r(target, NULL, &sibling_src, merge_cb, cb_data, options, |
| &lyds, &leader, &dup_inst); |
| if (ret) { |
| break; |
| } |
| if (first && !sibling_src) { |
| /* source was spent (unlinked), move to the next node */ |
| source = tmp; |
| } |
| |
| if (nosiblings) { |
| break; |
| } |
| } |
| lyds_pool_clean(&lyds); |
| |
| if (options & LYD_MERGE_DESTRUCT) { |
| /* free any leftover source data that were not merged */ |
| lyd_free_siblings((struct lyd_node *)source); |
| } |
| |
| lyd_dup_inst_free(dup_inst); |
| return ret; |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_merge_tree(struct lyd_node **target, const struct lyd_node *source, uint16_t options) |
| { |
| return lyd_merge(target, source, NULL, NULL, NULL, options, 1); |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_merge_siblings(struct lyd_node **target, const struct lyd_node *source, uint16_t options) |
| { |
| return lyd_merge(target, source, NULL, NULL, NULL, options, 0); |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_merge_module(struct lyd_node **target, const struct lyd_node *source, const struct lys_module *mod, |
| lyd_merge_cb merge_cb, void *cb_data, uint16_t options) |
| { |
| return lyd_merge(target, source, mod, merge_cb, cb_data, options, 0); |
| } |
| |
| static LY_ERR |
| lyd_path_str_enlarge(char **buffer, size_t *buflen, size_t reqlen, ly_bool is_static) |
| { |
| /* ending \0 */ |
| ++reqlen; |
| |
| if (reqlen > *buflen) { |
| if (is_static) { |
| return LY_EINCOMPLETE; |
| } |
| |
| *buffer = ly_realloc(*buffer, reqlen * sizeof **buffer); |
| if (!*buffer) { |
| return LY_EMEM; |
| } |
| |
| *buflen = reqlen; |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| LY_ERR |
| lyd_path_list_predicate(const struct lyd_node *node, char **buffer, size_t *buflen, size_t *bufused, ly_bool is_static) |
| { |
| const struct lyd_node *key; |
| size_t len; |
| const char *val; |
| char quot; |
| |
| for (key = lyd_child(node); key && key->schema && (key->schema->flags & LYS_KEY); key = key->next) { |
| val = lyd_get_value(key); |
| len = 1 + strlen(key->schema->name) + 2 + strlen(val) + 2; |
| LY_CHECK_RET(lyd_path_str_enlarge(buffer, buflen, *bufused + len, is_static)); |
| |
| quot = '\''; |
| if (strchr(val, '\'')) { |
| quot = '"'; |
| } |
| *bufused += sprintf(*buffer + *bufused, "[%s=%c%s%c]", key->schema->name, quot, val, quot); |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Append leaf-list value predicate to path. |
| * |
| * @param[in] node Node to print. |
| * @param[in,out] buffer Buffer to print to. |
| * @param[in,out] buflen Current buffer length. |
| * @param[in,out] bufused Current number of characters used in @p buffer. |
| * @param[in] is_static Whether buffer is static or can be reallocated. |
| * @return LY_ERR |
| */ |
| static LY_ERR |
| lyd_path_leaflist_predicate(const struct lyd_node *node, char **buffer, size_t *buflen, size_t *bufused, ly_bool is_static) |
| { |
| size_t len; |
| const char *val; |
| char quot; |
| |
| val = lyd_get_value(node); |
| len = 4 + strlen(val) + 2; /* "[.='" + val + "']" */ |
| LY_CHECK_RET(lyd_path_str_enlarge(buffer, buflen, *bufused + len, is_static)); |
| |
| quot = '\''; |
| if (strchr(val, '\'')) { |
| quot = '"'; |
| } |
| *bufused += sprintf(*buffer + *bufused, "[.=%c%s%c]", quot, val, quot); |
| |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Append node position (relative to its other instances) predicate to path. |
| * |
| * @param[in] node Node to print. |
| * @param[in,out] buffer Buffer to print to. |
| * @param[in,out] buflen Current buffer length. |
| * @param[in,out] bufused Current number of characters used in @p buffer. |
| * @param[in] is_static Whether buffer is static or can be reallocated. |
| * @return LY_ERR |
| */ |
| static LY_ERR |
| lyd_path_position_predicate(const struct lyd_node *node, char **buffer, size_t *buflen, size_t *bufused, ly_bool is_static) |
| { |
| size_t len; |
| uint32_t pos; |
| char *val = NULL; |
| LY_ERR rc; |
| |
| pos = lyd_list_pos(node); |
| if (asprintf(&val, "%" PRIu32, pos) == -1) { |
| return LY_EMEM; |
| } |
| |
| len = 1 + strlen(val) + 1; |
| rc = lyd_path_str_enlarge(buffer, buflen, *bufused + len, is_static); |
| if (rc != LY_SUCCESS) { |
| goto cleanup; |
| } |
| |
| *bufused += sprintf(*buffer + *bufused, "[%s]", val); |
| |
| cleanup: |
| free(val); |
| return rc; |
| } |
| |
| LIBYANG_API_DEF char * |
| lyd_path(const struct lyd_node *node, LYD_PATH_TYPE pathtype, char *buffer, size_t buflen) |
| { |
| ly_bool is_static = 0; |
| uint32_t i, depth; |
| size_t bufused = 0, len; |
| const struct lyd_node *iter, *parent; |
| const struct lys_module *mod, *prev_mod; |
| LY_ERR rc = LY_SUCCESS; |
| |
| LY_CHECK_ARG_RET(NULL, node, NULL); |
| if (buffer) { |
| LY_CHECK_ARG_RET(LYD_CTX(node), buflen > 1, NULL); |
| is_static = 1; |
| } else { |
| buflen = 0; |
| } |
| |
| switch (pathtype) { |
| case LYD_PATH_STD: |
| case LYD_PATH_STD_NO_LAST_PRED: |
| depth = 1; |
| for (iter = node; iter->parent; iter = lyd_parent(iter)) { |
| ++depth; |
| } |
| |
| goto iter_print; |
| while (depth) { |
| /* find the right node */ |
| for (iter = node, i = 1; i < depth; iter = lyd_parent(iter), ++i) {} |
| iter_print: |
| /* get the module */ |
| mod = lyd_node_module(iter); |
| parent = lyd_parent(iter); |
| prev_mod = lyd_node_module(parent); |
| if (prev_mod == mod) { |
| mod = NULL; |
| } |
| |
| /* realloc string */ |
| len = 1 + (mod ? strlen(mod->name) + 1 : 0) + (iter->schema ? strlen(iter->schema->name) : |
| strlen(((struct lyd_node_opaq *)iter)->name.name)); |
| rc = lyd_path_str_enlarge(&buffer, &buflen, bufused + len, is_static); |
| if (rc != LY_SUCCESS) { |
| break; |
| } |
| |
| /* print next node */ |
| bufused += sprintf(buffer + bufused, "/%s%s%s", mod ? mod->name : "", mod ? ":" : "", LYD_NAME(iter)); |
| |
| /* do not always print the last (first) predicate */ |
| if (iter->schema && ((depth > 1) || (pathtype == LYD_PATH_STD))) { |
| switch (iter->schema->nodetype) { |
| case LYS_LIST: |
| if (iter->schema->flags & LYS_KEYLESS) { |
| /* print its position */ |
| rc = lyd_path_position_predicate(iter, &buffer, &buflen, &bufused, is_static); |
| } else { |
| /* print all list keys in predicates */ |
| rc = lyd_path_list_predicate(iter, &buffer, &buflen, &bufused, is_static); |
| } |
| break; |
| case LYS_LEAFLIST: |
| if (iter->schema->flags & LYS_CONFIG_W) { |
| /* print leaf-list value */ |
| rc = lyd_path_leaflist_predicate(iter, &buffer, &buflen, &bufused, is_static); |
| } else { |
| /* print its position */ |
| rc = lyd_path_position_predicate(iter, &buffer, &buflen, &bufused, is_static); |
| } |
| break; |
| default: |
| /* nothing to print more */ |
| break; |
| } |
| } |
| if (rc != LY_SUCCESS) { |
| break; |
| } |
| |
| --depth; |
| } |
| break; |
| } |
| |
| return buffer; |
| } |
| |
| char * |
| lyd_path_set(const struct ly_set *dnodes, LYD_PATH_TYPE pathtype) |
| { |
| uint32_t depth; |
| size_t bufused = 0, buflen = 0, len; |
| char *buffer = NULL; |
| const struct lyd_node *iter, *parent; |
| const struct lys_module *mod, *prev_mod; |
| LY_ERR rc = LY_SUCCESS; |
| |
| switch (pathtype) { |
| case LYD_PATH_STD: |
| case LYD_PATH_STD_NO_LAST_PRED: |
| for (depth = 1; depth <= dnodes->count; ++depth) { |
| /* current node */ |
| iter = dnodes->dnodes[depth - 1]; |
| mod = lyd_node_module(iter); |
| |
| /* parent */ |
| parent = (depth > 1) ? dnodes->dnodes[depth - 2] : NULL; |
| assert(!parent || !iter->schema || !parent->schema || (parent->schema->nodetype & LYD_NODE_ANY) || |
| (lysc_data_parent(iter->schema) == parent->schema) || |
| (!lysc_data_parent(iter->schema) && (LYD_CTX(iter) != LYD_CTX(parent))) || |
| (parent->schema->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF))); |
| |
| /* get module to print, if any */ |
| prev_mod = lyd_node_module(parent); |
| if (prev_mod == mod) { |
| mod = NULL; |
| } |
| |
| /* realloc string */ |
| len = 1 + (mod ? strlen(mod->name) + 1 : 0) + (iter->schema ? strlen(iter->schema->name) : |
| strlen(((struct lyd_node_opaq *)iter)->name.name)); |
| if ((rc = lyd_path_str_enlarge(&buffer, &buflen, bufused + len, 0))) { |
| break; |
| } |
| |
| /* print next node */ |
| bufused += sprintf(buffer + bufused, "/%s%s%s", mod ? mod->name : "", mod ? ":" : "", LYD_NAME(iter)); |
| |
| /* do not always print the last (first) predicate */ |
| if (iter->schema && ((depth > 1) || (pathtype == LYD_PATH_STD))) { |
| switch (iter->schema->nodetype) { |
| case LYS_LIST: |
| if (iter->schema->flags & LYS_KEYLESS) { |
| /* print its position */ |
| rc = lyd_path_position_predicate(iter, &buffer, &buflen, &bufused, 0); |
| } else { |
| /* print all list keys in predicates */ |
| rc = lyd_path_list_predicate(iter, &buffer, &buflen, &bufused, 0); |
| } |
| break; |
| case LYS_LEAFLIST: |
| if (iter->schema->flags & LYS_CONFIG_W) { |
| /* print leaf-list value */ |
| rc = lyd_path_leaflist_predicate(iter, &buffer, &buflen, &bufused, 0); |
| } else { |
| /* print its position */ |
| rc = lyd_path_position_predicate(iter, &buffer, &buflen, &bufused, 0); |
| } |
| break; |
| default: |
| /* nothing to print more */ |
| break; |
| } |
| } |
| if (rc) { |
| break; |
| } |
| } |
| break; |
| } |
| |
| return buffer; |
| } |
| |
| LIBYANG_API_DEF struct lyd_meta * |
| lyd_find_meta(const struct lyd_meta *first, const struct lys_module *module, const char *name) |
| { |
| struct lyd_meta *ret = NULL; |
| const struct ly_ctx *ctx; |
| const char *prefix, *tmp; |
| char *str; |
| size_t pref_len, name_len; |
| |
| LY_CHECK_ARG_RET(NULL, module || strchr(name, ':'), name, NULL); |
| LY_CHECK_CTX_EQUAL_RET(first ? first->annotation->module->ctx : NULL, module ? module->ctx : NULL, NULL); |
| |
| if (!first) { |
| return NULL; |
| } |
| |
| ctx = first->annotation->module->ctx; |
| |
| /* parse the name */ |
| tmp = name; |
| if (ly_parse_nodeid(&tmp, &prefix, &pref_len, &name, &name_len) || tmp[0]) { |
| LOGERR(ctx, LY_EINVAL, "Metadata name \"%s\" is not valid.", name); |
| return NULL; |
| } |
| |
| /* find the module */ |
| if (prefix) { |
| str = strndup(prefix, pref_len); |
| module = ly_ctx_get_module_latest(ctx, str); |
| free(str); |
| LY_CHECK_ERR_RET(!module, LOGERR(ctx, LY_EINVAL, "Module \"%.*s\" not found.", (int)pref_len, prefix), NULL); |
| } |
| |
| /* find the metadata */ |
| LY_LIST_FOR(first, first) { |
| if ((first->annotation->module == module) && !strcmp(first->name, name)) { |
| ret = (struct lyd_meta *)first; |
| break; |
| } |
| } |
| |
| return ret; |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_find_sibling_first(const struct lyd_node *siblings, const struct lyd_node *target, struct lyd_node **match) |
| { |
| struct lyd_node **match_p, *iter, *dup = NULL; |
| struct lyd_node_inner *parent; |
| ly_bool found; |
| |
| LY_CHECK_ARG_RET(NULL, target, LY_EINVAL); |
| if (!siblings) { |
| /* no data */ |
| if (match) { |
| *match = NULL; |
| } |
| return LY_ENOTFOUND; |
| } |
| |
| if (LYD_CTX(siblings) != LYD_CTX(target)) { |
| /* create a duplicate in this context */ |
| LY_CHECK_RET(lyd_dup_single_to_ctx(target, LYD_CTX(siblings), NULL, 0, &dup)); |
| target = dup; |
| } |
| |
| if ((siblings->schema && target->schema && (lysc_data_parent(siblings->schema) != lysc_data_parent(target->schema)))) { |
| /* schema mismatch */ |
| lyd_free_tree(dup); |
| if (match) { |
| *match = NULL; |
| } |
| return LY_ENOTFOUND; |
| } |
| |
| /* get first sibling */ |
| siblings = lyd_first_sibling(siblings); |
| |
| parent = siblings->parent; |
| if (target->schema && parent && parent->schema && parent->children_ht) { |
| assert(target->hash); |
| |
| if (lysc_is_dup_inst_list(target->schema)) { |
| /* we must search the instances from beginning to find the first matching one */ |
| found = 0; |
| LYD_LIST_FOR_INST(siblings, target->schema, iter) { |
| if (!lyd_compare_single(target, iter, LYD_COMPARE_FULL_RECURSION)) { |
| found = 1; |
| break; |
| } |
| } |
| if (found) { |
| siblings = iter; |
| } else { |
| siblings = NULL; |
| } |
| } else { |
| /* find by hash */ |
| if (!lyht_find(parent->children_ht, &target, target->hash, (void **)&match_p)) { |
| siblings = *match_p; |
| } else { |
| /* not found */ |
| siblings = NULL; |
| } |
| } |
| } else { |
| /* no children hash table or cannot be used */ |
| for ( ; siblings; siblings = siblings->next) { |
| if (lysc_is_dup_inst_list(target->schema)) { |
| if (!lyd_compare_single(siblings, target, LYD_COMPARE_FULL_RECURSION)) { |
| break; |
| } |
| } else { |
| if (!lyd_compare_single(siblings, target, 0)) { |
| break; |
| } |
| } |
| } |
| } |
| |
| lyd_free_tree(dup); |
| if (!siblings) { |
| if (match) { |
| *match = NULL; |
| } |
| return LY_ENOTFOUND; |
| } |
| |
| if (match) { |
| *match = (struct lyd_node *)siblings; |
| } |
| return LY_SUCCESS; |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_find_sibling_val(const struct lyd_node *siblings, const struct lysc_node *schema, const char *key_or_value, |
| size_t val_len, struct lyd_node **match) |
| { |
| LY_ERR rc; |
| struct lyd_node *target = NULL; |
| const struct lyd_node *parent; |
| |
| LY_CHECK_ARG_RET(NULL, schema, !(schema->nodetype & (LYS_CHOICE | LYS_CASE)), LY_EINVAL); |
| if (!siblings) { |
| /* no data */ |
| if (match) { |
| *match = NULL; |
| } |
| return LY_ENOTFOUND; |
| } |
| |
| if ((LYD_CTX(siblings) != schema->module->ctx)) { |
| /* parent of ext nodes is useless */ |
| parent = (siblings->flags & LYD_EXT) ? NULL : lyd_parent(siblings); |
| if (lyd_find_schema_ctx(schema, LYD_CTX(siblings), parent, 0, &schema)) { |
| /* no schema node in siblings so certainly no data node either */ |
| if (match) { |
| *match = NULL; |
| } |
| return LY_ENOTFOUND; |
| } |
| } |
| |
| if (siblings->schema && (lysc_data_parent(siblings->schema) != lysc_data_parent(schema))) { |
| /* schema mismatch */ |
| if (match) { |
| *match = NULL; |
| } |
| return LY_ENOTFOUND; |
| } |
| |
| if (key_or_value && !val_len) { |
| val_len = strlen(key_or_value); |
| } |
| |
| if ((schema->nodetype & (LYS_LIST | LYS_LEAFLIST)) && key_or_value) { |
| /* create a data node and find the instance */ |
| if (schema->nodetype == LYS_LEAFLIST) { |
| /* target used attributes: schema, hash, value */ |
| rc = lyd_create_term(schema, key_or_value, val_len, 0, 1, NULL, LY_VALUE_JSON, NULL, LYD_HINT_DATA, NULL, &target); |
| LY_CHECK_RET(rc); |
| } else { |
| /* target used attributes: schema, hash, child (all keys) */ |
| LY_CHECK_RET(lyd_create_list2(schema, key_or_value, val_len, 1, &target)); |
| } |
| |
| /* find it */ |
| rc = lyd_find_sibling_first(siblings, target, match); |
| } else { |
| /* find the first schema node instance */ |
| rc = lyd_find_sibling_schema(siblings, schema, match); |
| } |
| |
| lyd_free_tree(target); |
| return rc; |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_find_sibling_dup_inst_set(const struct lyd_node *siblings, const struct lyd_node *target, struct ly_set **set) |
| { |
| struct lyd_node **match_p, *first, *iter; |
| struct lyd_node_inner *parent; |
| uint32_t comp_opts; |
| |
| LY_CHECK_ARG_RET(NULL, target, set, LY_EINVAL); |
| LY_CHECK_CTX_EQUAL_RET(siblings ? LYD_CTX(siblings) : NULL, LYD_CTX(target), LY_EINVAL); |
| |
| LY_CHECK_RET(ly_set_new(set)); |
| |
| if (!siblings || (siblings->schema && (lysc_data_parent(siblings->schema) != lysc_data_parent(target->schema)))) { |
| /* no data or schema mismatch */ |
| return LY_ENOTFOUND; |
| } |
| |
| /* set options */ |
| comp_opts = (lysc_is_dup_inst_list(target->schema) ? LYD_COMPARE_FULL_RECURSION : 0); |
| |
| /* get first sibling */ |
| siblings = lyd_first_sibling(siblings); |
| |
| parent = siblings->parent; |
| if (parent && parent->schema && parent->children_ht) { |
| assert(target->hash); |
| |
| /* find the first instance */ |
| lyd_find_sibling_first(siblings, target, &first); |
| if (first) { |
| /* add it so that it is the first in the set */ |
| if (ly_set_add(*set, first, 1, NULL)) { |
| goto error; |
| } |
| |
| /* find by hash */ |
| if (!lyht_find(parent->children_ht, &target, target->hash, (void **)&match_p)) { |
| iter = *match_p; |
| } else { |
| /* not found */ |
| iter = NULL; |
| } |
| while (iter) { |
| /* add all found nodes into the set */ |
| if ((iter != first) && !lyd_compare_single(iter, target, comp_opts) && ly_set_add(*set, iter, 1, NULL)) { |
| goto error; |
| } |
| |
| /* find next instance */ |
| if (lyht_find_next(parent->children_ht, &iter, iter->hash, (void **)&match_p)) { |
| iter = NULL; |
| } else { |
| iter = *match_p; |
| } |
| } |
| } |
| } else { |
| /* no children hash table */ |
| LY_LIST_FOR(siblings, siblings) { |
| if (!lyd_compare_single(target, siblings, comp_opts)) { |
| ly_set_add(*set, (void *)siblings, 1, NULL); |
| } |
| } |
| } |
| |
| if (!(*set)->count) { |
| return LY_ENOTFOUND; |
| } |
| return LY_SUCCESS; |
| |
| error: |
| ly_set_free(*set, NULL); |
| *set = NULL; |
| return LY_EMEM; |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_find_sibling_opaq_next(const struct lyd_node *first, const char *name, struct lyd_node **match) |
| { |
| LY_CHECK_ARG_RET(NULL, name, LY_EINVAL); |
| |
| if (first && first->schema) { |
| first = first->prev; |
| if (first->schema) { |
| /* no opaque nodes */ |
| first = NULL; |
| } else { |
| /* opaque nodes are at the end, find quickly the first */ |
| while (!first->prev->schema) { |
| first = first->prev; |
| } |
| } |
| } |
| |
| for ( ; first; first = first->next) { |
| assert(!first->schema); |
| if (!strcmp(LYD_NAME(first), name)) { |
| break; |
| } |
| } |
| |
| if (match) { |
| *match = (struct lyd_node *)first; |
| } |
| return first ? LY_SUCCESS : LY_ENOTFOUND; |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_find_xpath(const struct lyd_node *ctx_node, const char *xpath, struct ly_set **set) |
| { |
| LY_CHECK_ARG_RET(NULL, ctx_node, xpath, set, LY_EINVAL); |
| |
| return lyd_find_xpath3(ctx_node, ctx_node, xpath, LY_VALUE_JSON, NULL, NULL, set); |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_find_xpath2(const struct lyd_node *ctx_node, const char *xpath, const struct lyxp_var *vars, struct ly_set **set) |
| { |
| LY_CHECK_ARG_RET(NULL, ctx_node, xpath, set, LY_EINVAL); |
| |
| return lyd_find_xpath3(ctx_node, ctx_node, xpath, LY_VALUE_JSON, NULL, vars, set); |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_find_xpath3(const struct lyd_node *ctx_node, const struct lyd_node *tree, const char *xpath, LY_VALUE_FORMAT format, |
| void *prefix_data, const struct lyxp_var *vars, struct ly_set **set) |
| { |
| LY_CHECK_ARG_RET(NULL, tree, xpath, set, LY_EINVAL); |
| |
| *set = NULL; |
| |
| return lyd_eval_xpath4(ctx_node, tree, NULL, xpath, format, prefix_data, vars, NULL, set, NULL, NULL, NULL); |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_eval_xpath(const struct lyd_node *ctx_node, const char *xpath, ly_bool *result) |
| { |
| return lyd_eval_xpath3(ctx_node, NULL, xpath, LY_VALUE_JSON, NULL, NULL, result); |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_eval_xpath2(const struct lyd_node *ctx_node, const char *xpath, const struct lyxp_var *vars, ly_bool *result) |
| { |
| return lyd_eval_xpath3(ctx_node, NULL, xpath, LY_VALUE_JSON, NULL, vars, result); |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_eval_xpath3(const struct lyd_node *ctx_node, const struct lys_module *cur_mod, const char *xpath, |
| LY_VALUE_FORMAT format, void *prefix_data, const struct lyxp_var *vars, ly_bool *result) |
| { |
| return lyd_eval_xpath4(ctx_node, ctx_node, cur_mod, xpath, format, prefix_data, vars, NULL, NULL, NULL, NULL, result); |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_eval_xpath4(const struct lyd_node *ctx_node, const struct lyd_node *tree, const struct lys_module *cur_mod, |
| const char *xpath, LY_VALUE_FORMAT format, void *prefix_data, const struct lyxp_var *vars, LY_XPATH_TYPE *ret_type, |
| struct ly_set **node_set, char **string, long double *number, ly_bool *boolean) |
| { |
| LY_ERR ret = LY_SUCCESS; |
| struct lyxp_set xp_set = {0}; |
| struct lyxp_expr *exp = NULL; |
| uint32_t i; |
| |
| LY_CHECK_ARG_RET(NULL, tree, xpath, ((ret_type && node_set && string && number && boolean) || |
| (node_set && !string && !number && !boolean) || (!node_set && string && !number && !boolean) || |
| (!node_set && !string && number && !boolean) || (!node_set && !string && !number && boolean)), LY_EINVAL); |
| |
| /* parse expression */ |
| ret = lyxp_expr_parse((struct ly_ctx *)LYD_CTX(tree), xpath, 0, 1, &exp); |
| LY_CHECK_GOTO(ret, cleanup); |
| |
| /* evaluate expression */ |
| ret = lyxp_eval(LYD_CTX(tree), exp, cur_mod, format, prefix_data, ctx_node, ctx_node, tree, vars, &xp_set, |
| LYXP_IGNORE_WHEN); |
| LY_CHECK_GOTO(ret, cleanup); |
| |
| /* return expected result type without or with casting */ |
| if (node_set) { |
| /* node set */ |
| if (xp_set.type == LYXP_SET_NODE_SET) { |
| /* transform into a set */ |
| LY_CHECK_GOTO(ret = ly_set_new(node_set), cleanup); |
| (*node_set)->objs = malloc(xp_set.used * sizeof *(*node_set)->objs); |
| LY_CHECK_ERR_GOTO(!(*node_set)->objs, LOGMEM(LYD_CTX(tree)); ret = LY_EMEM, cleanup); |
| (*node_set)->size = xp_set.used; |
| for (i = 0; i < xp_set.used; ++i) { |
| if (xp_set.val.nodes[i].type == LYXP_NODE_ELEM) { |
| ret = ly_set_add(*node_set, xp_set.val.nodes[i].node, 1, NULL); |
| LY_CHECK_GOTO(ret, cleanup); |
| } |
| } |
| if (ret_type) { |
| *ret_type = LY_XPATH_NODE_SET; |
| } |
| } else if (!string && !number && !boolean) { |
| LOGERR(LYD_CTX(tree), LY_EINVAL, "XPath \"%s\" result is not a node set.", xpath); |
| ret = LY_EINVAL; |
| goto cleanup; |
| } |
| } |
| |
| if (string) { |
| if ((xp_set.type != LYXP_SET_STRING) && !node_set) { |
| /* cast into string */ |
| LY_CHECK_GOTO(ret = lyxp_set_cast(&xp_set, LYXP_SET_STRING), cleanup); |
| } |
| if (xp_set.type == LYXP_SET_STRING) { |
| /* string */ |
| *string = xp_set.val.str; |
| xp_set.val.str = NULL; |
| if (ret_type) { |
| *ret_type = LY_XPATH_STRING; |
| } |
| } |
| } |
| |
| if (number) { |
| if ((xp_set.type != LYXP_SET_NUMBER) && !node_set) { |
| /* cast into number */ |
| LY_CHECK_GOTO(ret = lyxp_set_cast(&xp_set, LYXP_SET_NUMBER), cleanup); |
| } |
| if (xp_set.type == LYXP_SET_NUMBER) { |
| /* number */ |
| *number = xp_set.val.num; |
| if (ret_type) { |
| *ret_type = LY_XPATH_NUMBER; |
| } |
| } |
| } |
| |
| if (boolean) { |
| if ((xp_set.type != LYXP_SET_BOOLEAN) && !node_set) { |
| /* cast into boolean */ |
| LY_CHECK_GOTO(ret = lyxp_set_cast(&xp_set, LYXP_SET_BOOLEAN), cleanup); |
| } |
| if (xp_set.type == LYXP_SET_BOOLEAN) { |
| /* boolean */ |
| *boolean = xp_set.val.bln; |
| if (ret_type) { |
| *ret_type = LY_XPATH_BOOLEAN; |
| } |
| } |
| } |
| |
| cleanup: |
| lyxp_set_free_content(&xp_set); |
| lyxp_expr_free((struct ly_ctx *)LYD_CTX(tree), exp); |
| return ret; |
| } |
| |
| /** |
| * @brief Hash table node equal callback. |
| */ |
| static ly_bool |
| lyd_trim_equal_cb(void *val1_p, void *val2_p, ly_bool UNUSED(mod), void *UNUSED(cb_data)) |
| { |
| struct lyd_node *node1, *node2; |
| |
| node1 = *(struct lyd_node **)val1_p; |
| node2 = *(struct lyd_node **)val2_p; |
| |
| return node1 == node2; |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_trim_xpath(struct lyd_node **tree, const char *xpath, const struct lyxp_var *vars) |
| { |
| LY_ERR ret = LY_SUCCESS; |
| struct ly_ctx *ctx = NULL; |
| struct lyxp_set xp_set = {0}; |
| struct lyxp_expr *exp = NULL; |
| struct lyd_node *node, *parent; |
| struct lyxp_set_hash_node hnode; |
| struct ly_ht *parent_ht = NULL; |
| struct ly_set free_set = {0}; |
| uint32_t i, hash; |
| ly_bool is_result; |
| |
| LY_CHECK_ARG_RET(NULL, tree, xpath, LY_EINVAL); |
| |
| if (!*tree) { |
| /* nothing to do */ |
| goto cleanup; |
| } |
| |
| *tree = lyd_first_sibling(*tree); |
| ctx = (struct ly_ctx *)LYD_CTX(*tree); |
| |
| /* parse expression */ |
| ret = lyxp_expr_parse(ctx, xpath, 0, 1, &exp); |
| LY_CHECK_GOTO(ret, cleanup); |
| |
| /* evaluate expression */ |
| ret = lyxp_eval(ctx, exp, NULL, LY_VALUE_JSON, NULL, *tree, *tree, *tree, vars, &xp_set, LYXP_IGNORE_WHEN); |
| LY_CHECK_GOTO(ret, cleanup); |
| |
| /* create hash table for all the parents of results */ |
| parent_ht = lyht_new(32, sizeof node, lyd_trim_equal_cb, NULL, 1); |
| LY_CHECK_GOTO(!parent_ht, cleanup); |
| |
| for (i = 0; i < xp_set.used; ++i) { |
| if (xp_set.val.nodes[i].type != LYXP_NODE_ELEM) { |
| /* ignore */ |
| continue; |
| } |
| |
| for (parent = lyd_parent(xp_set.val.nodes[i].node); parent; parent = lyd_parent(parent)) { |
| /* add the parent into parent_ht */ |
| ret = lyht_insert(parent_ht, &parent, parent->hash, NULL); |
| if (ret == LY_EEXIST) { |
| /* shared parent, we are done */ |
| break; |
| } |
| LY_CHECK_GOTO(ret, cleanup); |
| } |
| } |
| |
| hnode.type = LYXP_NODE_ELEM; |
| LY_LIST_FOR(*tree, parent) { |
| LYD_TREE_DFS_BEGIN(parent, node) { |
| if (lysc_is_key(node->schema)) { |
| /* ignore */ |
| goto next_iter; |
| } |
| |
| /* check the results */ |
| is_result = 0; |
| if (xp_set.ht) { |
| hnode.node = node; |
| hash = lyht_hash_multi(0, (const char *)&hnode.node, sizeof hnode.node); |
| hash = lyht_hash_multi(hash, (const char *)&hnode.type, sizeof hnode.type); |
| hash = lyht_hash_multi(hash, NULL, 0); |
| |
| if (!lyht_find(xp_set.ht, &hnode, hash, NULL)) { |
| is_result = 1; |
| } |
| } else { |
| /* not enough elements for a hash table */ |
| for (i = 0; i < xp_set.used; ++i) { |
| if (xp_set.val.nodes[i].type != LYXP_NODE_ELEM) { |
| /* ignore */ |
| continue; |
| } |
| |
| if (xp_set.val.nodes[i].node == node) { |
| is_result = 1; |
| break; |
| } |
| } |
| } |
| |
| if (is_result) { |
| /* keep the whole subtree if the node is in the results */ |
| LYD_TREE_DFS_continue = 1; |
| } else if (lyht_find(parent_ht, &node, node->hash, NULL)) { |
| /* free the whole subtree if the node is not even among the selected parents */ |
| ret = ly_set_add(&free_set, node, 1, NULL); |
| LY_CHECK_GOTO(ret, cleanup); |
| LYD_TREE_DFS_continue = 1; |
| } /* else keep the parent node because a subtree is in the results */ |
| |
| next_iter: |
| LYD_TREE_DFS_END(parent, node); |
| } |
| } |
| |
| /* free */ |
| for (i = 0; i < free_set.count; ++i) { |
| node = free_set.dnodes[i]; |
| if (*tree == node) { |
| *tree = (*tree)->next; |
| } |
| lyd_free_tree(node); |
| } |
| |
| cleanup: |
| lyxp_set_free_content(&xp_set); |
| lyxp_expr_free(ctx, exp); |
| lyht_free(parent_ht, NULL); |
| ly_set_erase(&free_set, NULL); |
| return ret; |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_find_path(const struct lyd_node *ctx_node, const char *path, ly_bool output, struct lyd_node **match) |
| { |
| LY_ERR ret = LY_SUCCESS; |
| struct lyxp_expr *expr = NULL; |
| struct ly_path *lypath = NULL; |
| |
| LY_CHECK_ARG_RET(NULL, ctx_node, ctx_node->schema, path, LY_EINVAL); |
| |
| /* parse the path */ |
| ret = ly_path_parse(LYD_CTX(ctx_node), ctx_node->schema, path, strlen(path), 0, LY_PATH_BEGIN_EITHER, |
| LY_PATH_PREFIX_FIRST, LY_PATH_PRED_SIMPLE, &expr); |
| LY_CHECK_GOTO(ret, cleanup); |
| |
| /* compile the path */ |
| ret = ly_path_compile(LYD_CTX(ctx_node), NULL, ctx_node->schema, NULL, expr, |
| output ? LY_PATH_OPER_OUTPUT : LY_PATH_OPER_INPUT, LY_PATH_TARGET_SINGLE, 0, LY_VALUE_JSON, NULL, &lypath); |
| LY_CHECK_GOTO(ret, cleanup); |
| |
| /* evaluate the path */ |
| ret = ly_path_eval_partial(lypath, ctx_node, NULL, 0, NULL, match); |
| |
| cleanup: |
| lyxp_expr_free(LYD_CTX(ctx_node), expr); |
| ly_path_free(lypath); |
| return ret; |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_find_target(const struct ly_path *path, const struct lyd_node *tree, struct lyd_node **match) |
| { |
| LY_ERR ret; |
| struct lyd_node *m; |
| |
| LY_CHECK_ARG_RET(NULL, path, LY_EINVAL); |
| |
| ret = ly_path_eval(path, tree, NULL, &m); |
| if (ret) { |
| if (match) { |
| *match = NULL; |
| } |
| return LY_ENOTFOUND; |
| } |
| |
| if (match) { |
| *match = m; |
| } |
| return LY_SUCCESS; |
| } |
| |
| LY_ERR |
| lyd_get_or_create_leafref_links_record(const struct lyd_node_term *node, struct lyd_leafref_links_rec **record, ly_bool create) |
| { |
| struct ly_ht *ht; |
| uint32_t hash; |
| struct lyd_leafref_links_rec rec = {0}; |
| |
| assert(node); |
| assert(record); |
| |
| *record = NULL; |
| |
| if (!(ly_ctx_get_options(LYD_CTX(node)) & LY_CTX_LEAFREF_LINKING)) { |
| return LY_EDENIED; |
| } |
| |
| rec.node = node; |
| ht = LYD_CTX(node)->leafref_links_ht; |
| hash = lyht_hash((const char *)&node, sizeof node); |
| |
| if (lyht_find(ht, &rec, hash, (void **)record) == LY_ENOTFOUND) { |
| if (create) { |
| LY_CHECK_RET(lyht_insert_no_check(ht, &rec, hash, (void **)record)); |
| } else { |
| return LY_ENOTFOUND; |
| } |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_leafref_get_links(const struct lyd_node_term *node, const struct lyd_leafref_links_rec **record) |
| { |
| LY_CHECK_ARG_RET(NULL, node, record, LY_EINVAL); |
| |
| return lyd_get_or_create_leafref_links_record(node, (struct lyd_leafref_links_rec **)record, 0); |
| } |
| |
| LY_ERR |
| lyd_link_leafref_node(const struct lyd_node_term *node, const struct lyd_node_term *leafref_node) |
| { |
| const struct lyd_node_term **item = NULL; |
| struct lyd_leafref_links_rec *rec; |
| LY_ARRAY_COUNT_TYPE u; |
| |
| assert(node); |
| assert(leafref_node); |
| |
| if (!(ly_ctx_get_options(LYD_CTX(node)) & LY_CTX_LEAFREF_LINKING)) { |
| return LY_EDENIED; |
| } |
| |
| /* add leafref node into the list of target node */ |
| LY_CHECK_RET(lyd_get_or_create_leafref_links_record(node, &rec, 1)); |
| LY_ARRAY_FOR(rec->leafref_nodes, u) { |
| if (rec->leafref_nodes[u] == leafref_node) { |
| return LY_SUCCESS; |
| } |
| } |
| |
| LY_ARRAY_NEW_RET(LYD_CTX(node), rec->leafref_nodes, item, LY_EMEM); |
| *item = leafref_node; |
| |
| /* add target node into the list of leafref node*/ |
| LY_CHECK_RET(lyd_get_or_create_leafref_links_record(leafref_node, &rec, 1)); |
| LY_ARRAY_FOR(rec->target_nodes, u) { |
| if (rec->target_nodes[u] == node) { |
| return LY_SUCCESS; |
| } |
| } |
| |
| LY_ARRAY_NEW_RET(LYD_CTX(node), rec->target_nodes, item, LY_EMEM); |
| *item = node; |
| |
| return LY_SUCCESS; |
| } |
| |
| LIBYANG_API_DEF LY_ERR |
| lyd_leafref_link_node_tree(const struct lyd_node *tree) |
| { |
| const struct lyd_node *sibling, *elem; |
| struct ly_set *targets = NULL; |
| char *errmsg; |
| struct lyd_node_term *leafref_node; |
| struct lysc_node_leaf *leaf_schema; |
| struct lysc_type_leafref *lref; |
| LY_ERR ret = LY_SUCCESS; |
| uint32_t i; |
| |
| LY_CHECK_ARG_RET(NULL, tree, LY_EINVAL); |
| |
| if (!(ly_ctx_get_options(LYD_CTX(tree)) & LY_CTX_LEAFREF_LINKING)) { |
| return LY_EDENIED; |
| } |
| |
| LY_LIST_FOR(tree, sibling) { |
| LYD_TREE_DFS_BEGIN(sibling, elem) { |
| if (elem->schema && (elem->schema->nodetype & LYD_NODE_TERM)) { |
| leafref_node = (struct lyd_node_term *)elem; |
| leaf_schema = (struct lysc_node_leaf *)elem->schema; |
| |
| if (leaf_schema->type->basetype == LY_TYPE_LEAFREF) { |
| lref = (struct lysc_type_leafref *)leaf_schema->type; |
| ly_set_free(targets, NULL); |
| if (lyplg_type_resolve_leafref(lref, elem, &leafref_node->value, tree, &targets, &errmsg)) { |
| /* leafref target not found */ |
| free(errmsg); |
| } else { |
| /* leafref target found, link it */ |
| for (i = 0; i < targets->count; ++i) { |
| if (targets->dnodes[i]->schema->nodetype & LYD_NODE_TERM) { |
| ret = lyd_link_leafref_node((struct lyd_node_term *)targets->dnodes[i], leafref_node); |
| LY_CHECK_GOTO(ret, cleanup); |
| } |
| } |
| } |
| } |
| } |
| LYD_TREE_DFS_END(sibling, elem); |
| } |
| } |
| |
| cleanup: |
| ly_set_free(targets, NULL); |
| return ret; |
| } |
| |
| LY_ERR |
| lyd_unlink_leafref_node(const struct lyd_node_term *node, const struct lyd_node_term *leafref_node) |
| { |
| LY_ERR ret; |
| struct lyd_leafref_links_rec *rec; |
| |
| assert(node); |
| assert(leafref_node); |
| |
| if (!(ly_ctx_get_options(LYD_CTX(node)) & LY_CTX_LEAFREF_LINKING)) { |
| return LY_EDENIED; |
| } |
| |
| /* remove link from target node to leafref node */ |
| ret = lyd_get_or_create_leafref_links_record(node, &rec, 0); |
| if (ret == LY_SUCCESS) { |
| LY_ARRAY_REMOVE_VALUE(rec->leafref_nodes, leafref_node); |
| if ((LY_ARRAY_COUNT(rec->leafref_nodes) == 0) && (LY_ARRAY_COUNT(rec->target_nodes) == 0)) { |
| lyd_free_leafref_nodes(node); |
| } |
| } else if (ret != LY_ENOTFOUND) { |
| return ret; |
| } |
| |
| /* remove link from leafref node to target node */ |
| ret = lyd_get_or_create_leafref_links_record(leafref_node, &rec, 0); |
| if (ret == LY_SUCCESS) { |
| LY_ARRAY_REMOVE_VALUE(rec->target_nodes, node); |
| if ((LY_ARRAY_COUNT(rec->leafref_nodes) == 0) && (LY_ARRAY_COUNT(rec->target_nodes) == 0)) { |
| lyd_free_leafref_nodes(leafref_node); |
| } |
| } else if (ret != LY_ENOTFOUND) { |
| return ret; |
| } |
| |
| return LY_SUCCESS; |
| } |