blob: 43eafc17c278a6a2b31e4cd26ff4e04b16cd9a3d [file] [log] [blame]
/**
* @file parser_lyb.c
* @author Michal Vasko <mvasko@cesnet.cz>
* @brief LYB data parser for libyang
*
* Copyright (c) 2020 CESNET, z.s.p.o.
*
* This source code is licensed under BSD 3-Clause License (the "License").
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*/
#include "lyb.h"
#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "common.h"
#include "compat.h"
#include "context.h"
#include "dict.h"
#include "hash_table.h"
#include "in.h"
#include "in_internal.h"
#include "log.h"
#include "parser_data.h"
#include "parser_internal.h"
#include "set.h"
#include "tree.h"
#include "tree_data.h"
#include "tree_data_internal.h"
#include "tree_edit.h"
#include "tree_schema.h"
#include "validation.h"
#include "xml.h"
static LY_ERR _lyd_parse_lyb(const struct ly_ctx *ctx, const struct lysc_ext_instance *ext, struct lyd_node *parent,
struct lyd_node **first_p, struct ly_in *in, uint32_t parse_opts, uint32_t val_opts, uint32_t int_opts,
struct ly_set *parsed, struct lyd_ctx **lydctx_p);
static LY_ERR lyb_parse_siblings(struct lyd_lyb_ctx *lybctx, struct lyd_node *parent, struct lyd_node **first_p, struct ly_set *parsed);
void
lylyb_ctx_free(struct lylyb_ctx *ctx)
{
LY_ARRAY_COUNT_TYPE u;
LY_ARRAY_FREE(ctx->siblings);
LY_ARRAY_FREE(ctx->models);
LY_ARRAY_FOR(ctx->sib_hts, u) {
lyht_free(ctx->sib_hts[u].ht);
}
LY_ARRAY_FREE(ctx->sib_hts);
free(ctx);
}
void
lyd_lyb_ctx_free(struct lyd_ctx *lydctx)
{
struct lyd_lyb_ctx *ctx = (struct lyd_lyb_ctx *)lydctx;
lyd_ctx_free(lydctx);
lylyb_ctx_free(ctx->lybctx);
free(ctx);
}
/**
* @brief Read metadata about siblings.
*
* @param[out] sib Structure in which the metadata will be stored.
* @param[in] lybctx LYB context.
*/
static void
lyb_read_sibling_meta(struct lyd_lyb_sibling *sib, struct lylyb_ctx *lybctx)
{
uint8_t meta_buf[LYB_META_BYTES];
uint64_t num = 0;
ly_in_read(lybctx->in, meta_buf, LYB_META_BYTES);
memcpy(&num, meta_buf, LYB_SIZE_BYTES);
sib->written = le64toh(num);
memcpy(&num, meta_buf + LYB_SIZE_BYTES, LYB_INCHUNK_BYTES);
sib->inner_chunks = le64toh(num);
/* remember whether there is a following chunk or not */
sib->position = (sib->written == LYB_SIZE_MAX ? 1 : 0);
}
/**
* @brief Read YANG data from LYB input. Metadata are handled transparently and not returned.
*
* @param[in] buf Destination buffer.
* @param[in] count Number of bytes to read.
* @param[in] lybctx LYB context.
*/
static void
lyb_read(uint8_t *buf, size_t count, struct lylyb_ctx *lybctx)
{
LY_ARRAY_COUNT_TYPE u;
struct lyd_lyb_sibling *empty;
size_t to_read;
assert(lybctx);
while (1) {
/* check for fully-read (empty) data chunks */
to_read = count;
empty = NULL;
LY_ARRAY_FOR(lybctx->siblings, u) {
/* we want the innermost chunks resolved first, so replace previous empty chunks,
* also ignore chunks that are completely finished, there is nothing for us to do */
if ((lybctx->siblings[u].written <= to_read) && lybctx->siblings[u].position) {
/* empty chunk, do not read more */
to_read = lybctx->siblings[u].written;
empty = &lybctx->siblings[u];
}
}
if (!empty && !count) {
break;
}
/* we are actually reading some data, not just finishing another chunk */
if (to_read) {
if (buf) {
ly_in_read(lybctx->in, buf, to_read);
} else {
ly_in_skip(lybctx->in, to_read);
}
LY_ARRAY_FOR(lybctx->siblings, u) {
/* decrease all written counters */
lybctx->siblings[u].written -= to_read;
assert(lybctx->siblings[u].written <= LYB_SIZE_MAX);
}
/* decrease count/buf */
count -= to_read;
if (buf) {
buf += to_read;
}
}
if (empty) {
/* read the next chunk meta information */
lyb_read_sibling_meta(empty, lybctx);
}
}
}
/**
* @brief Read a number.
*
* @param[in] num Destination buffer.
* @param[in] num_size Size of @p num.
* @param[in] bytes Number of bytes to read.
* @param[in] lybctx LYB context.
*/
static void
lyb_read_number(void *num, size_t num_size, size_t bytes, struct lylyb_ctx *lybctx)
{
uint64_t buf = 0;
lyb_read((uint8_t *)&buf, bytes, lybctx);
/* correct byte order */
buf = le64toh(buf);
switch (num_size) {
case sizeof(uint8_t):
*((uint8_t *)num) = buf;
break;
case sizeof(uint16_t):
*((uint16_t *)num) = buf;
break;
case sizeof(uint32_t):
*((uint32_t *)num) = buf;
break;
case sizeof(uint64_t):
*((uint64_t *)num) = buf;
break;
default:
LOGINT(lybctx->ctx);
}
}
/**
* @brief Read a string.
*
* @param[in] str Destination buffer, is allocated.
* @param[in] len_size Number of bytes on which the length of the string is written.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_read_string(char **str, uint8_t len_size, struct lylyb_ctx *lybctx)
{
uint64_t len = 0;
assert((len_size == 1) || (len_size == 2) || (len_size == 4) || (len_size == 8));
*str = NULL;
lyb_read_number(&len, sizeof len, len_size, lybctx);
*str = malloc((len + 1) * sizeof **str);
LY_CHECK_ERR_RET(!*str, LOGMEM(lybctx->ctx), LY_EMEM);
lyb_read((uint8_t *)*str, len, lybctx);
(*str)[len] = '\0';
return LY_SUCCESS;
}
/**
* @brief Skip string.
*
* @param[in] len_size Number of bytes on which the length of the string is written.
* @param[in] lybctx LYB context.
*/
static void
lyb_skip_string(uint8_t len_size, struct lylyb_ctx *lybctx)
{
size_t len = 0;
lyb_read_number(&len, sizeof len, len_size, lybctx);
lyb_read(NULL, len, lybctx);
}
/**
* @brief Read value of term node.
*
* @param[in] term Compiled term node.
* @param[out] term_value Set to term node value in dynamically
* allocated memory. The caller must release it.
* @param[out] term_value_len Value length in bytes. The zero byte is
* always included and is not counted.
* @param[in,out] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_read_term_value(const struct lysc_node_leaf *term, uint8_t **term_value, uint64_t *term_value_len,
struct lylyb_ctx *lybctx)
{
uint32_t allocated_size;
int32_t lyb_data_len;
struct lysc_type_leafref *type_lf;
assert(term && term_value && term_value_len && lybctx);
/* Find out the size from @ref howtoDataLYB. */
if (term->type->basetype == LY_TYPE_LEAFREF) {
/* Leafref itself is ignored, the target is loaded directly. */
type_lf = (struct lysc_type_leafref *)term->type;
lyb_data_len = type_lf->realtype->plugin->lyb_data_len;
} else {
lyb_data_len = term->type->plugin->lyb_data_len;
}
if (lyb_data_len < 0) {
/* Parse value size. */
lyb_read_number(term_value_len, sizeof *term_value_len,
sizeof *term_value_len, lybctx);
} else {
/* Data size is fixed. */
*term_value_len = lyb_data_len;
}
/* Allocate memory. */
allocated_size = *term_value_len + 1;
*term_value = malloc(allocated_size * sizeof **term_value);
LY_CHECK_ERR_RET(!*term_value, LOGMEM(lybctx->ctx), LY_EMEM);
if (*term_value_len > 0) {
/* Parse value. */
lyb_read(*term_value, *term_value_len, lybctx);
}
/* Add extra zero byte regardless of whether it is string or not. */
(*term_value)[allocated_size - 1] = 0;
return LY_SUCCESS;
}
/**
* @brief Stop the current "siblings" - change LYB context state.
*
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_read_stop_siblings(struct lylyb_ctx *lybctx)
{
if (LYB_LAST_SIBLING(lybctx).written) {
LOGINT_RET(lybctx->ctx);
}
LY_ARRAY_DECREMENT(lybctx->siblings);
return LY_SUCCESS;
}
/**
* @brief Start a new "siblings" - change LYB context state but also read the expected metadata.
*
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_read_start_siblings(struct lylyb_ctx *lybctx)
{
LY_ARRAY_COUNT_TYPE u;
u = LY_ARRAY_COUNT(lybctx->siblings);
if (u == lybctx->sibling_size) {
LY_ARRAY_CREATE_RET(lybctx->ctx, lybctx->siblings, u + LYB_SIBLING_STEP, LY_EMEM);
lybctx->sibling_size = u + LYB_SIBLING_STEP;
}
LY_ARRAY_INCREMENT(lybctx->siblings);
lyb_read_sibling_meta(&LYB_LAST_SIBLING(lybctx), lybctx);
return LY_SUCCESS;
}
/**
* @brief Parse YANG model info.
*
* @param[in] lybctx LYB context.
* @param[in] parse_options Flag with options for parsing.
* @param[out] model Parsed module.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_model(struct lylyb_ctx *lybctx, uint32_t parse_options, const struct lys_module **model)
{
LY_ERR ret = LY_SUCCESS;
const struct lys_module *mod = NULL;
char *mod_name = NULL, mod_rev[LY_REV_SIZE];
uint16_t rev, length;
lyb_read_number(&length, 2, 2, lybctx);
if (length) {
mod_name = malloc((length + 1) * sizeof *mod_name);
LY_CHECK_ERR_RET(!mod_name, LOGMEM(lybctx->ctx), LY_EMEM);
lyb_read(((uint8_t *)mod_name), length, lybctx);
mod_name[length] = '\0';
} else {
goto cleanup;
}
/* revision */
lyb_read_number(&rev, sizeof rev, 2, lybctx);
if (rev) {
sprintf(mod_rev, "%04u-%02u-%02u", ((rev & LYB_REV_YEAR_MASK) >> LYB_REV_YEAR_SHIFT) + LYB_REV_YEAR_OFFSET,
(rev & LYB_REV_MONTH_MASK) >> LYB_REV_MONTH_SHIFT, rev & LYB_REV_DAY_MASK);
mod = ly_ctx_get_module(lybctx->ctx, mod_name, mod_rev);
if ((parse_options & LYD_PARSE_LYB_MOD_UPDATE) && !mod) {
/* try to use an updated module */
mod = ly_ctx_get_module_implemented(lybctx->ctx, mod_name);
if (mod && (!mod->revision || (strcmp(mod->revision, mod_rev) < 0))) {
/* not an implemented module in a newer revision */
mod = NULL;
}
}
} else {
mod = ly_ctx_get_module_latest(lybctx->ctx, mod_name);
}
/* TODO data_clb supported?
if (lybctx->ctx->data_clb) {
if (!*mod) {
*mod = lybctx->ctx->data_clb(lybctx->ctx, mod_name, NULL, 0, lybctx->ctx->data_clb_data);
} else if (!(*mod)->implemented) {
*mod = lybctx->ctx->data_clb(lybctx->ctx, mod_name, (*mod)->ns, LY_MODCLB_NOT_IMPLEMENTED, lybctx->ctx->data_clb_data);
}
}*/
if (!mod || !mod->implemented) {
if (parse_options & LYD_PARSE_STRICT) {
if (!mod) {
LOGERR(lybctx->ctx, LY_EINVAL, "Invalid context for LYB data parsing, missing module \"%s%s%s\".",
mod_name, rev ? "@" : "", rev ? mod_rev : "");
} else if (!mod->implemented) {
LOGERR(lybctx->ctx, LY_EINVAL, "Invalid context for LYB data parsing, module \"%s%s%s\" not implemented.",
mod_name, rev ? "@" : "", rev ? mod_rev : "");
}
ret = LY_EINVAL;
goto cleanup;
}
}
if (mod) {
/* fill cached hashes, if not already */
lyb_cache_module_hash(mod);
}
cleanup:
*model = mod;
free(mod_name);
return ret;
}
/**
* @brief Parse YANG node metadata.
*
* @param[in] lybctx LYB context.
* @param[in] sparent Schema parent node of the metadata.
* @param[out] meta Parsed metadata.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_metadata(struct lyd_lyb_ctx *lybctx, const struct lysc_node *sparent, struct lyd_meta **meta)
{
LY_ERR ret = LY_SUCCESS;
ly_bool dynamic;
uint8_t i, count = 0;
char *meta_name = NULL, *meta_value;
const struct lys_module *mod;
/* read number of attributes stored */
lyb_read(&count, 1, lybctx->lybctx);
/* read attributes */
for (i = 0; i < count; ++i) {
/* find model */
ret = lyb_parse_model(lybctx->lybctx, lybctx->parse_opts, &mod);
LY_CHECK_GOTO(ret, cleanup);
if (!mod) {
/* skip meta name */
lyb_skip_string(sizeof(uint16_t), lybctx->lybctx);
/* skip meta value */
lyb_skip_string(sizeof(uint16_t), lybctx->lybctx);
continue;
}
/* meta name */
ret = lyb_read_string(&meta_name, sizeof(uint16_t), lybctx->lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* meta value */
ret = lyb_read_string(&meta_value, sizeof(uint64_t), lybctx->lybctx);
LY_CHECK_GOTO(ret, cleanup);
dynamic = 1;
/* create metadata */
ret = lyd_parser_create_meta((struct lyd_ctx *)lybctx, NULL, meta, mod, meta_name, strlen(meta_name), meta_value,
ly_strlen(meta_value), &dynamic, LY_VALUE_JSON, NULL, LYD_HINT_DATA, sparent);
/* free strings */
free(meta_name);
meta_name = NULL;
if (dynamic) {
free(meta_value);
dynamic = 0;
}
LY_CHECK_GOTO(ret, cleanup);
}
cleanup:
free(meta_name);
if (ret) {
lyd_free_meta_siblings(*meta);
*meta = NULL;
}
return ret;
}
/**
* @brief Parse format-specific prefix data.
*
* @param[in] lybctx LYB context.
* @param[in] format Prefix data format.
* @param[out] prefix_data Parsed prefix data.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_prefix_data(struct lylyb_ctx *lybctx, LY_VALUE_FORMAT format, void **prefix_data)
{
LY_ERR ret = LY_SUCCESS;
uint8_t count, i;
struct ly_set *set = NULL;
struct lyxml_ns *ns = NULL;
switch (format) {
case LY_VALUE_XML:
/* read count */
lyb_read(&count, 1, lybctx);
/* read all NS elements */
LY_CHECK_GOTO(ret = ly_set_new(&set), cleanup);
for (i = 0; i < count; ++i) {
ns = calloc(1, sizeof *ns);
/* prefix */
LY_CHECK_GOTO(ret = lyb_read_string(&ns->prefix, sizeof(uint16_t), lybctx), cleanup);
if (!strlen(ns->prefix)) {
free(ns->prefix);
ns->prefix = NULL;
}
/* namespace */
LY_CHECK_GOTO(ret = lyb_read_string(&ns->uri, sizeof(uint16_t), lybctx), cleanup);
LY_CHECK_GOTO(ret = ly_set_add(set, ns, 1, NULL), cleanup);
ns = NULL;
}
*prefix_data = set;
break;
case LY_VALUE_JSON:
case LY_VALUE_LYB:
/* nothing stored */
break;
default:
LOGINT(lybctx->ctx);
ret = LY_EINT;
break;
}
cleanup:
if (ret) {
ly_free_prefix_data(format, set);
if (ns) {
free(ns->prefix);
free(ns->uri);
free(ns);
}
}
return ret;
}
/**
* @brief Parse opaque attributes.
*
* @param[in] lybctx LYB context.
* @param[out] attr Parsed attributes.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_attributes(struct lylyb_ctx *lybctx, struct lyd_attr **attr)
{
LY_ERR ret = LY_SUCCESS;
uint8_t count, i;
struct lyd_attr *attr2 = NULL;
char *prefix = NULL, *module_name = NULL, *name = NULL, *value = NULL;
ly_bool dynamic = 0;
LY_VALUE_FORMAT format = 0;
void *val_prefix_data = NULL;
/* read count */
lyb_read(&count, 1, lybctx);
/* read attributes */
for (i = 0; i < count; ++i) {
/* prefix, may be empty */
ret = lyb_read_string(&prefix, sizeof(uint16_t), lybctx);
LY_CHECK_GOTO(ret, cleanup);
if (!prefix[0]) {
free(prefix);
prefix = NULL;
}
/* namespace, may be empty */
ret = lyb_read_string(&module_name, sizeof(uint16_t), lybctx);
LY_CHECK_GOTO(ret, cleanup);
if (!module_name[0]) {
free(module_name);
module_name = NULL;
}
/* name */
ret = lyb_read_string(&name, sizeof(uint16_t), lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* format */
lyb_read_number(&format, sizeof format, 1, lybctx);
/* value prefixes */
ret = lyb_parse_prefix_data(lybctx, format, &val_prefix_data);
LY_CHECK_GOTO(ret, cleanup);
/* value */
ret = lyb_read_string(&value, sizeof(uint64_t), lybctx);
LY_CHECK_ERR_GOTO(ret, ly_free_prefix_data(format, val_prefix_data), cleanup);
dynamic = 1;
/* attr2 is always changed to the created attribute */
ret = lyd_create_attr(NULL, &attr2, lybctx->ctx, name, strlen(name), prefix, ly_strlen(prefix), module_name,
ly_strlen(module_name), value, ly_strlen(value), &dynamic, format, val_prefix_data, LYD_HINT_DATA);
LY_CHECK_GOTO(ret, cleanup);
free(prefix);
prefix = NULL;
free(module_name);
module_name = NULL;
free(name);
name = NULL;
assert(!dynamic);
value = NULL;
if (!*attr) {
*attr = attr2;
}
LY_CHECK_GOTO(ret, cleanup);
}
cleanup:
free(prefix);
free(module_name);
free(name);
if (dynamic) {
free(value);
}
if (ret) {
lyd_free_attr_siblings(lybctx->ctx, *attr);
*attr = NULL;
}
return ret;
}
/**
* @brief Fill @p hash with hash values.
*
* @param[in] lybctx LYB context.
* @param[in,out] hash Pointer to the array in which the hash values are to be written.
* @param[out] hash_count Number of hashes in @p hash.
* @return LY_ERR value.
*/
static LY_ERR
lyb_read_hashes(struct lylyb_ctx *lybctx, LYB_HASH *hash, uint8_t *hash_count)
{
uint8_t i = 0, j;
/* read the first hash */
lyb_read(&hash[0], sizeof *hash, lybctx);
if (!hash[0]) {
*hash_count = i + 1;
return LY_SUCCESS;
}
/* based on the first hash read all the other ones, if any */
for (i = 0; !(hash[0] & (LYB_HASH_COLLISION_ID >> i)); ++i) {
if (i > LYB_HASH_BITS) {
LOGINT_RET(lybctx->ctx);
}
}
/* move the first hash on its accurate position */
hash[i] = hash[0];
/* read the rest of hashes */
for (j = i; j; --j) {
lyb_read(&hash[j - 1], sizeof *hash, lybctx);
/* correct collision ID */
assert(hash[j - 1] & (LYB_HASH_COLLISION_ID >> (j - 1)));
/* preceded with zeros */
assert(!(hash[j - 1] & (LYB_HASH_MASK << (LYB_HASH_BITS - (j - 1)))));
}
*hash_count = i + 1;
return LY_SUCCESS;
}
/**
* @brief Check whether a schema node matches a hash(es).
*
* @param[in] sibling Schema node to check.
* @param[in] hash Hash array to check.
* @param[in] hash_count Number of hashes in @p hash.
* @return non-zero if matches,
* @return 0 if not.
*/
static int
lyb_is_schema_hash_match(struct lysc_node *sibling, LYB_HASH *hash, uint8_t hash_count)
{
LYB_HASH sibling_hash;
uint8_t i;
/* compare all the hashes starting from collision ID 0 */
for (i = 0; i < hash_count; ++i) {
sibling_hash = lyb_get_hash(sibling, i);
if (sibling_hash != hash[i]) {
return 0;
}
}
return 1;
}
/**
* @brief Parse schema node hash.
*
* @param[in] lybctx LYB context.
* @param[in] sparent Schema parent, must be set if @p mod is not.
* @param[in] mod Module of the top-level node, must be set if @p sparent is not.
* @param[out] snode Parsed found schema node, may be NULL if opaque.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_schema_hash(struct lyd_lyb_ctx *lybctx, const struct lysc_node *sparent, const struct lys_module *mod,
const struct lysc_node **snode)
{
LY_ERR ret;
const struct lysc_node *sibling;
LYB_HASH hash[LYB_HASH_BITS - 1];
uint32_t getnext_opts;
uint8_t hash_count;
*snode = NULL;
ret = lyb_read_hashes(lybctx->lybctx, hash, &hash_count);
LY_CHECK_RET(ret);
if (!hash[0]) {
/* opaque node */
return LY_SUCCESS;
}
getnext_opts = lybctx->int_opts & LYD_INTOPT_REPLY ? LYS_GETNEXT_OUTPUT : 0;
/* find our node with matching hashes */
sibling = NULL;
while (1) {
if (!sparent && lybctx->ext) {
sibling = lys_getnext_ext(sibling, sparent, lybctx->ext, getnext_opts);
} else {
sibling = lys_getnext(sibling, sparent, mod ? mod->compiled : NULL, getnext_opts);
}
if (!sibling) {
break;
}
/* skip schema nodes from models not present during printing */
if (lyb_has_schema_model(sibling, lybctx->lybctx->models) &&
lyb_is_schema_hash_match((struct lysc_node *)sibling, hash, hash_count)) {
/* match found */
break;
}
}
if (!sibling && (lybctx->parse_opts & LYD_PARSE_STRICT)) {
if (lybctx->ext) {
LOGVAL(lybctx->lybctx->ctx, LYVE_REFERENCE, "Failed to find matching hash for a node from \"%s\" extension instance node.",
lybctx->ext->def->name);
} else if (mod) {
LOGVAL(lybctx->lybctx->ctx, LYVE_REFERENCE, "Failed to find matching hash for a top-level node"
" from \"%s\".", mod->name);
} else {
LOGVAL(lybctx->lybctx->ctx, LYVE_REFERENCE, "Failed to find matching hash for a child node"
" of \"%s\".", sparent->name);
}
return LY_EVALID;
} else if (sibling && (ret = lyd_parser_check_schema((struct lyd_ctx *)lybctx, sibling))) {
return ret;
}
*snode = sibling;
return LY_SUCCESS;
}
/**
* @brief Read until the end of the current siblings.
*
* @param[in] lybctx LYB context.
*/
static void
lyb_skip_siblings(struct lylyb_ctx *lybctx)
{
do {
/* first skip any meta information inside */
ly_in_skip(lybctx->in, LYB_LAST_SIBLING(lybctx).inner_chunks * LYB_META_BYTES);
/* then read data */
lyb_read(NULL, LYB_LAST_SIBLING(lybctx).written, lybctx);
} while (LYB_LAST_SIBLING(lybctx).written);
}
/**
* @brief Parse the context of anydata/anyxml node.
*
* @param[in] ctx libyang context.
* @param[in] data LYB data to parse.
* @param[out] tree Parsed tree.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_any_content(const struct ly_ctx *ctx, const char *data, struct lyd_node **tree)
{
LY_ERR ret;
uint32_t prev_lo;
struct ly_in *in;
struct lyd_ctx *lydctx = NULL;
*tree = NULL;
LY_CHECK_RET(ly_in_new_memory(data, &in));
/* turn logging off */
prev_lo = ly_log_options(0);
ret = _lyd_parse_lyb(ctx, NULL, NULL, tree, in, LYD_PARSE_ONLY | LYD_PARSE_OPAQ | LYD_PARSE_STRICT, 0,
LYD_INTOPT_ANY | LYD_INTOPT_WITH_SIBLINGS, NULL, &lydctx);
/* turn logging on again */
ly_log_options(prev_lo);
ly_in_free(in, 0);
if (lydctx) {
lydctx->free(lydctx);
}
if (ret) {
lyd_free_siblings(*tree);
*tree = NULL;
}
return ret;
}
/**
* @brief Insert new node to @p parsed set.
*
* Also if needed, correct @p first_p.
*
* @param[in] lybctx LYB context.
* @param[in] parent Data parent of the sibling, must be set if @p first_p is not.
* @param[in,out] node Parsed node to insertion.
* @param[in,out] first_p First top-level sibling, must be set if @p parent is not.
* @param[out] parsed Set of all successfully parsed nodes.
* @return LY_ERR value.
*/
static void
lyb_insert_node(struct lyd_lyb_ctx *lybctx, struct lyd_node *parent, struct lyd_node *node, struct lyd_node **first_p,
struct ly_set *parsed)
{
/* insert, keep first pointer correct */
lyd_insert_node(parent, first_p, node, lybctx->parse_opts & LYD_PARSE_ORDERED ? 1 : 0);
while (!parent && (*first_p)->prev->next) {
*first_p = (*first_p)->prev;
}
/* rememeber a successfully parsed node */
if (parsed) {
ly_set_add(parsed, node, 1, NULL);
}
}
/**
* @brief Finish parsing the opaq node.
*
* @param[in] lybctx LYB context.
* @param[in] parent Data parent of the sibling, must be set if @p first_p is not.
* @param[in] flags Node flags to set.
* @param[in,out] attr Attributes to be attached. Finally set to NULL.
* @param[in,out] node Parsed opaq node to finish.
* @param[in,out] first_p First top-level sibling, must be set if @p parent is not.
* @param[out] parsed Set of all successfully parsed nodes.
* @return LY_ERR value.
*/
static void
lyb_finish_opaq(struct lyd_lyb_ctx *lybctx, struct lyd_node *parent, uint32_t flags, struct lyd_attr **attr,
struct lyd_node **node, struct lyd_node **first_p, struct ly_set *parsed)
{
struct lyd_attr *iter;
/* set flags */
(*node)->flags = flags;
/* add attributes */
assert(!(*node)->schema);
LY_LIST_FOR(*attr, iter) {
iter->parent = (struct lyd_node_opaq *)*node;
}
((struct lyd_node_opaq *)*node)->attr = *attr;
*attr = NULL;
lyb_insert_node(lybctx, parent, *node, first_p, parsed);
*node = NULL;
}
/**
* @brief Finish parsing the node.
*
* @param[in] lybctx LYB context.
* @param[in] parent Data parent of the sibling, must be set if @p first_p is not.
* @param[in] flags Node flags to set.
* @param[in,out] meta Metadata to be attached. Finally set to NULL.
* @param[in,out] node Parsed node to finish.
* @param[in,out] first_p First top-level sibling, must be set if @p parent is not.
* @param[out] parsed Set of all successfully parsed nodes.
* @return LY_ERR value.
*/
static void
lyb_finish_node(struct lyd_lyb_ctx *lybctx, struct lyd_node *parent, uint32_t flags, struct lyd_meta **meta,
struct lyd_node **node, struct lyd_node **first_p, struct ly_set *parsed)
{
struct lyd_meta *m;
/* set flags */
(*node)->flags = flags;
/* add metadata */
LY_LIST_FOR(*meta, m) {
m->parent = *node;
}
(*node)->meta = *meta;
*meta = NULL;
lyb_insert_node(lybctx, parent, *node, first_p, parsed);
*node = NULL;
}
/**
* @brief Parse header for non-opaq node.
*
* @param[in] lybctx LYB context.
* @param[in] sparent Schema parent node of the metadata.
* @param[out] flags Parsed node flags.
* @param[out] meta Parsed metadata of the node.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_node_header(struct lyd_lyb_ctx *lybctx, const struct lysc_node *sparent, uint32_t *flags, struct lyd_meta **meta)
{
LY_ERR ret;
/* create and read metadata */
ret = lyb_parse_metadata(lybctx, sparent, meta);
LY_CHECK_RET(ret);
/* read flags */
lyb_read_number(flags, sizeof *flags, sizeof *flags, lybctx->lybctx);
return ret;
}
/**
* @brief Create term node and fill it with value.
*
* @param[in] lybctx LYB context.
* @param[in] snode Schema of the term node.
* @param[out] node Created term node.
* @return LY_ERR value.
*/
static LY_ERR
lyb_create_term(struct lyd_lyb_ctx *lybctx, const struct lysc_node *snode, struct lyd_node **node)
{
LY_ERR ret;
ly_bool dynamic;
uint8_t *term_value;
uint64_t term_value_len;
ret = lyb_read_term_value((struct lysc_node_leaf *)snode, &term_value, &term_value_len, lybctx->lybctx);
LY_CHECK_RET(ret);
dynamic = 1;
/* create node */
ret = lyd_parser_create_term((struct lyd_ctx *)lybctx, snode,
term_value, term_value_len, &dynamic, LY_VALUE_LYB,
NULL, LYD_HINT_DATA, node);
if (dynamic) {
free(term_value);
}
if (ret) {
lyd_free_tree(*node);
*node = NULL;
}
return ret;
}
/**
* @brief Validate inner node, autodelete default values nad create implicit nodes.
*
* @param[in,out] lybctx LYB context.
* @param[in] snode Schema of the inner node.
* @param[in] node Parsed inner node.
* @return LY_ERR value.
*/
static LY_ERR
lyb_validate_node_inner(struct lyd_lyb_ctx *lybctx, const struct lysc_node *snode, struct lyd_node *node)
{
LY_ERR ret = LY_SUCCESS;
uint32_t impl_opts;
if (!(lybctx->parse_opts & LYD_PARSE_ONLY)) {
/* new node validation, autodelete CANNOT occur, all nodes are new */
ret = lyd_validate_new(lyd_node_child_p(node), snode, NULL, NULL);
LY_CHECK_RET(ret);
/* add any missing default children */
impl_opts = (lybctx->val_opts & LYD_VALIDATE_NO_STATE) ? LYD_IMPLICIT_NO_STATE : 0;
ret = lyd_new_implicit_r(node, lyd_node_child_p(node), NULL, NULL, &lybctx->node_when, &lybctx->node_types,
impl_opts, NULL);
LY_CHECK_RET(ret);
}
return ret;
}
/**
* @brief Parse opaq node.
*
* @param[in] lybctx LYB context.
* @param[in] parent Data parent of the sibling.
* @param[in,out] first_p First top-level sibling.
* @param[out] parsed Set of all successfully parsed nodes.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_node_opaq(struct lyd_lyb_ctx *lybctx, struct lyd_node *parent, struct lyd_node **first_p, struct ly_set *parsed)
{
LY_ERR ret;
struct lyd_node *node = NULL;
struct lyd_attr *attr = NULL;
char *value = NULL, *name = NULL, *prefix = NULL, *module_key = NULL;
ly_bool dynamic = 0;
LY_VALUE_FORMAT format = 0;
void *val_prefix_data = NULL;
const struct ly_ctx *ctx = lybctx->lybctx->ctx;
uint32_t flags;
/* parse opaq node attributes */
ret = lyb_parse_attributes(lybctx->lybctx, &attr);
LY_CHECK_GOTO(ret, cleanup);
/* read flags */
lyb_read_number(&flags, sizeof flags, sizeof flags, lybctx->lybctx);
/* parse prefix */
ret = lyb_read_string(&prefix, sizeof(uint16_t), lybctx->lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* parse module key */
ret = lyb_read_string(&module_key, sizeof(uint16_t), lybctx->lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* parse name */
ret = lyb_read_string(&name, sizeof(uint16_t), lybctx->lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* parse value */
ret = lyb_read_string(&value, sizeof(uint64_t), lybctx->lybctx);
LY_CHECK_ERR_GOTO(ret, ly_free_prefix_data(format, val_prefix_data), cleanup);
dynamic = 1;
/* parse format */
lyb_read_number(&format, sizeof format, 1, lybctx->lybctx);
/* parse value prefixes */
ret = lyb_parse_prefix_data(lybctx->lybctx, format, &val_prefix_data);
LY_CHECK_GOTO(ret, cleanup);
if (!(lybctx->parse_opts & LYD_PARSE_OPAQ)) {
/* skip children */
ret = lyb_read_start_siblings(lybctx->lybctx);
LY_CHECK_GOTO(ret, cleanup);
lyb_skip_siblings(lybctx->lybctx);
ret = lyb_read_stop_siblings(lybctx->lybctx);
LY_CHECK_GOTO(ret, cleanup);
goto cleanup;
}
/* create node */
ret = lyd_create_opaq(ctx, name, strlen(name), prefix, ly_strlen(prefix), module_key, ly_strlen(module_key),
value, strlen(value), &dynamic, format, val_prefix_data, 0, &node);
LY_CHECK_GOTO(ret, cleanup);
/* process children */
ret = lyb_parse_siblings(lybctx, node, NULL, NULL);
LY_CHECK_GOTO(ret, cleanup);
/* register parsed opaq node */
lyb_finish_opaq(lybctx, parent, flags, &attr, &node, first_p, parsed);
assert(!attr && !node);
cleanup:
free(prefix);
free(module_key);
free(name);
if (dynamic) {
free(value);
}
lyd_free_attr_siblings(ctx, attr);
lyd_free_tree(node);
return ret;
}
/**
* @brief Parse anydata or anyxml node.
*
* @param[in] lybctx LYB context.
* @param[in] parent Data parent of the sibling.
* @param[in] snode Schema of the node to be parsed.
* @param[in,out] first_p First top-level sibling.
* @param[out] parsed Set of all successfully parsed nodes.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_node_any(struct lyd_lyb_ctx *lybctx, struct lyd_node *parent, const struct lysc_node *snode,
struct lyd_node **first_p, struct ly_set *parsed)
{
LY_ERR ret;
struct lyd_node *node = NULL, *tree;
struct lyd_meta *meta = NULL;
LYD_ANYDATA_VALUETYPE value_type;
char *value = NULL;
uint32_t flags;
const struct ly_ctx *ctx = lybctx->lybctx->ctx;
/* read necessary basic data */
ret = lyb_parse_node_header(lybctx, snode, &flags, &meta);
LY_CHECK_GOTO(ret, error);
/* parse value type */
lyb_read_number(&value_type, sizeof value_type, sizeof value_type, lybctx->lybctx);
if (value_type == LYD_ANYDATA_DATATREE) {
/* invalid situation */
LOGINT(ctx);
ret = LY_EINT;
goto error;
}
/* read anydata content */
ret = lyb_read_string(&value, sizeof(uint64_t), lybctx->lybctx);
LY_CHECK_GOTO(ret, error);
if (value_type == LYD_ANYDATA_LYB) {
/* try to parse LYB into a data tree */
if (!lyb_parse_any_content(ctx, value, &tree)) {
/* successfully parsed */
free(value);
value = (char *)tree;
value_type = LYD_ANYDATA_DATATREE;
}
}
/* create the node */
switch (value_type) {
case LYD_ANYDATA_LYB:
case LYD_ANYDATA_DATATREE:
case LYD_ANYDATA_STRING:
case LYD_ANYDATA_XML:
case LYD_ANYDATA_JSON:
/* use the value directly */
ret = lyd_create_any(snode, value, value_type, 1, &node);
LY_CHECK_GOTO(ret, error);
break;
default:
LOGINT(ctx);
ret = LY_EINT;
goto error;
}
/* register parsed anydata node */
lyb_finish_node(lybctx, parent, flags, &meta, &node, first_p, parsed);
return LY_SUCCESS;
error:
free(value);
lyd_free_meta_siblings(meta);
lyd_free_tree(node);
return ret;
}
/**
* @brief Parse inner node.
*
* @param[in] lybctx LYB context.
* @param[in] parent Data parent of the sibling, must be set if @p first is not.
* @param[in] snode Schema of the node to be parsed.
* @param[in,out] first_p First top-level sibling, must be set if @p parent is not.
* @param[out] parsed Set of all successfully parsed nodes.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_node_inner(struct lyd_lyb_ctx *lybctx, struct lyd_node *parent, const struct lysc_node *snode,
struct lyd_node **first_p, struct ly_set *parsed)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_node *node = NULL;
struct lyd_meta *meta = NULL;
uint32_t flags;
/* read necessary basic data */
ret = lyb_parse_node_header(lybctx, snode, &flags, &meta);
LY_CHECK_GOTO(ret, error);
/* create node */
ret = lyd_create_inner(snode, &node);
LY_CHECK_GOTO(ret, error);
/* process children */
ret = lyb_parse_siblings(lybctx, node, NULL, NULL);
LY_CHECK_GOTO(ret, error);
/* additional procedure for inner node */
ret = lyb_validate_node_inner(lybctx, snode, node);
LY_CHECK_GOTO(ret, error);
if (snode->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)) {
/* rememeber the RPC/action/notification */
lybctx->op_node = node;
}
/* register parsed node */
lyb_finish_node(lybctx, parent, flags, &meta, &node, first_p, parsed);
return LY_SUCCESS;
error:
lyd_free_meta_siblings(meta);
lyd_free_tree(node);
return ret;
}
/**
* @brief Parse leaf node.
*
* @param[in] lybctx LYB context.
* @param[in] parent Data parent of the sibling.
* @param[in] snode Schema of the node to be parsed.
* @param[in,out] first_p First top-level sibling.
* @param[out] parsed Set of all successfully parsed nodes.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_node_leaf(struct lyd_lyb_ctx *lybctx, struct lyd_node *parent, const struct lysc_node *snode,
struct lyd_node **first_p, struct ly_set *parsed)
{
LY_ERR ret;
struct lyd_node *node = NULL;
struct lyd_meta *meta = NULL;
uint32_t flags;
/* read necessary basic data */
ret = lyb_parse_node_header(lybctx, snode, &flags, &meta);
LY_CHECK_GOTO(ret, error);
/* read value of term node and create it */
ret = lyb_create_term(lybctx, snode, &node);
LY_CHECK_GOTO(ret, error);
lyb_finish_node(lybctx, parent, flags, &meta, &node, first_p, parsed);
return LY_SUCCESS;
error:
lyd_free_meta_siblings(meta);
lyd_free_tree(node);
return ret;
}
/**
* @brief Parse all leaflist nodes which belong to same schema.
*
* @param[in] lybctx LYB context.
* @param[in] parent Data parent of the sibling.
* @param[in] snode Schema of the nodes to be parsed.
* @param[in,out] first_p First top-level sibling.
* @param[out] parsed Set of all successfully parsed nodes.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_node_leaflist(struct lyd_lyb_ctx *lybctx, struct lyd_node *parent, const struct lysc_node *snode,
struct lyd_node **first_p, struct ly_set *parsed)
{
LY_ERR ret;
/* register a new sibling */
ret = lyb_read_start_siblings(lybctx->lybctx);
LY_CHECK_RET(ret);
/* process all siblings */
while (LYB_LAST_SIBLING(lybctx->lybctx).written) {
ret = lyb_parse_node_leaf(lybctx, parent, snode, first_p, parsed);
LY_CHECK_RET(ret);
}
/* end the sibling */
ret = lyb_read_stop_siblings(lybctx->lybctx);
LY_CHECK_RET(ret);
return ret;
}
/**
* @brief Parse all list nodes which belong to same schema.
*
* @param[in] lybctx LYB context.
* @param[in] parent Data parent of the sibling.
* @param[in] snode Schema of the nodes to be parsed.
* @param[in,out] first_p First top-level sibling.
* @param[out] parsed Set of all successfully parsed nodes.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_node_list(struct lyd_lyb_ctx *lybctx, struct lyd_node *parent, const struct lysc_node *snode,
struct lyd_node **first_p, struct ly_set *parsed)
{
LY_ERR ret;
struct lyd_node *node = NULL;
struct lyd_meta *meta = NULL;
uint32_t flags;
/* register a new sibling */
ret = lyb_read_start_siblings(lybctx->lybctx);
LY_CHECK_RET(ret);
while (LYB_LAST_SIBLING(lybctx->lybctx).written) {
/* read necessary basic data */
ret = lyb_parse_node_header(lybctx, snode, &flags, &meta);
LY_CHECK_GOTO(ret, error);
/* create list node */
ret = lyd_create_inner(snode, &node);
LY_CHECK_GOTO(ret, error);
/* process children */
ret = lyb_parse_siblings(lybctx, node, NULL, NULL);
LY_CHECK_GOTO(ret, error);
/* additional procedure for inner node */
ret = lyb_validate_node_inner(lybctx, snode, node);
LY_CHECK_GOTO(ret, error);
if (snode->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)) {
/* rememeber the RPC/action/notification */
lybctx->op_node = node;
}
/* register parsed list node */
lyb_finish_node(lybctx, parent, flags, &meta, &node, first_p, parsed);
}
/* end the sibling */
ret = lyb_read_stop_siblings(lybctx->lybctx);
LY_CHECK_RET(ret);
return LY_SUCCESS;
error:
lyd_free_meta_siblings(meta);
lyd_free_tree(node);
return ret;
}
/**
* @brief Parse node.
*
* @param[in] out Out structure.
* @param[in,out] printed_node Current data node to print. Sets to the last printed node.
* @param[in,out] sibling_ht Cached hash table for these siblings, created if NULL.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_node(struct lyd_lyb_ctx *lybctx, struct lyd_node *parent, struct lyd_node **first_p,
struct ly_set *parsed)
{
LY_ERR ret;
const struct lysc_node *snode;
const struct lys_module *mod;
if (!parent || !parent->schema) {
/* top-level or opaque, read module name */
ret = lyb_parse_model(lybctx->lybctx, lybctx->parse_opts, &mod);
LY_CHECK_RET(ret);
/* read hash, find the schema node starting from mod */
ret = lyb_parse_schema_hash(lybctx, NULL, mod, &snode);
} else {
/* read hash, find the schema node starting from parent schema */
ret = lyb_parse_schema_hash(lybctx, parent->schema, NULL, &snode);
}
LY_CHECK_RET(ret);
if (!snode) {
ret = lyb_parse_node_opaq(lybctx, parent, first_p, parsed);
} else if (snode->nodetype & LYS_LEAFLIST) {
ret = lyb_parse_node_leaflist(lybctx, parent, snode, first_p, parsed);
} else if (snode->nodetype == LYS_LIST) {
ret = lyb_parse_node_list(lybctx, parent, snode, first_p, parsed);
} else if (snode->nodetype & LYD_NODE_ANY) {
ret = lyb_parse_node_any(lybctx, parent, snode, first_p, parsed);
} else if (snode->nodetype & LYD_NODE_INNER) {
ret = lyb_parse_node_inner(lybctx, parent, snode, first_p, parsed);
} else {
ret = lyb_parse_node_leaf(lybctx, parent, snode, first_p, parsed);
}
LY_CHECK_RET(ret);
return ret;
}
/**
* @brief Parse siblings (@ref lyb_print_siblings()).
*
* @param[in] lybctx LYB context.
* @param[in] parent Data parent of the sibling, must be set if @p first_p is not.
* @param[in,out] first_p First top-level sibling, must be set if @p parent is not.
* @param[out] parsed Set of all successfully parsed nodes.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_siblings(struct lyd_lyb_ctx *lybctx, struct lyd_node *parent, struct lyd_node **first_p,
struct ly_set *parsed)
{
LY_ERR ret;
ly_bool top_level;
top_level = !LY_ARRAY_COUNT(lybctx->lybctx->siblings);
/* register a new siblings */
ret = lyb_read_start_siblings(lybctx->lybctx);
LY_CHECK_RET(ret);
while (LYB_LAST_SIBLING(lybctx->lybctx).written) {
ret = lyb_parse_node(lybctx, parent, first_p, parsed);
LY_CHECK_RET(ret);
if (top_level && !(lybctx->int_opts & LYD_INTOPT_WITH_SIBLINGS)) {
break;
}
}
/* end the siblings */
ret = lyb_read_stop_siblings(lybctx->lybctx);
LY_CHECK_RET(ret);
return ret;
}
/**
* @brief Parse used YANG data models.
*
* @param[in] lybctx LYB context.
* @param[in] parse_options Flag with options for parsing.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_data_models(struct lylyb_ctx *lybctx, uint32_t parse_options)
{
LY_ERR ret;
uint32_t count;
LY_ARRAY_COUNT_TYPE u;
/* read model count */
lyb_read_number(&count, sizeof count, 2, lybctx);
if (count) {
LY_ARRAY_CREATE_RET(lybctx->ctx, lybctx->models, count, LY_EMEM);
/* read modules */
for (u = 0; u < count; ++u) {
ret = lyb_parse_model(lybctx, parse_options, &lybctx->models[u]);
LY_CHECK_RET(ret);
LY_ARRAY_INCREMENT(lybctx->models);
}
}
return LY_SUCCESS;
}
/**
* @brief Parse LYB magic number.
*
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_magic_number(struct lylyb_ctx *lybctx)
{
char magic_byte = 0;
lyb_read((uint8_t *)&magic_byte, 1, lybctx);
if (magic_byte != 'l') {
LOGERR(lybctx->ctx, LY_EINVAL, "Invalid first magic number byte \"0x%02x\".", magic_byte);
return LY_EINVAL;
}
lyb_read((uint8_t *)&magic_byte, 1, lybctx);
if (magic_byte != 'y') {
LOGERR(lybctx->ctx, LY_EINVAL, "Invalid second magic number byte \"0x%02x\".", magic_byte);
return LY_EINVAL;
}
lyb_read((uint8_t *)&magic_byte, 1, lybctx);
if (magic_byte != 'b') {
LOGERR(lybctx->ctx, LY_EINVAL, "Invalid third magic number byte \"0x%02x\".", magic_byte);
return LY_EINVAL;
}
return LY_SUCCESS;
}
/**
* @brief Parse LYB header.
*
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_header(struct lylyb_ctx *lybctx)
{
uint8_t byte = 0;
/* version, future flags */
lyb_read((uint8_t *)&byte, sizeof byte, lybctx);
if ((byte & LYB_VERSION_MASK) != LYB_VERSION_NUM) {
LOGERR(lybctx->ctx, LY_EINVAL, "Invalid LYB format version \"0x%02x\", expected \"0x%02x\".",
byte & LYB_VERSION_MASK, LYB_VERSION_NUM);
return LY_EINVAL;
}
return LY_SUCCESS;
}
static LY_ERR
_lyd_parse_lyb(const struct ly_ctx *ctx, const struct lysc_ext_instance *ext, struct lyd_node *parent,
struct lyd_node **first_p, struct ly_in *in, uint32_t parse_opts, uint32_t val_opts, uint32_t int_opts,
struct ly_set *parsed, struct lyd_ctx **lydctx_p)
{
LY_ERR rc = LY_SUCCESS;
struct lyd_lyb_ctx *lybctx;
assert(!(parse_opts & ~LYD_PARSE_OPTS_MASK));
assert(!(val_opts & ~LYD_VALIDATE_OPTS_MASK));
lybctx = calloc(1, sizeof *lybctx);
LY_CHECK_ERR_RET(!lybctx, LOGMEM(ctx), LY_EMEM);
lybctx->lybctx = calloc(1, sizeof *lybctx->lybctx);
LY_CHECK_ERR_GOTO(!lybctx->lybctx, LOGMEM(ctx); rc = LY_EMEM, cleanup);
lybctx->lybctx->in = in;
lybctx->lybctx->ctx = ctx;
lybctx->parse_opts = parse_opts;
lybctx->val_opts = val_opts;
lybctx->int_opts = int_opts;
lybctx->free = lyd_lyb_ctx_free;
lybctx->ext = ext;
/* find the operation node if it exists already */
LY_CHECK_GOTO(rc = lyd_parser_find_operation(parent, int_opts, &lybctx->op_node), cleanup);
/* read magic number */
rc = lyb_parse_magic_number(lybctx->lybctx);
LY_CHECK_GOTO(rc, cleanup);
/* read header */
rc = lyb_parse_header(lybctx->lybctx);
LY_CHECK_GOTO(rc, cleanup);
/* read used models */
rc = lyb_parse_data_models(lybctx->lybctx, lybctx->parse_opts);
LY_CHECK_GOTO(rc, cleanup);
/* read sibling(s) */
rc = lyb_parse_siblings(lybctx, parent, first_p, parsed);
LY_CHECK_GOTO(rc, cleanup);
if ((int_opts & LYD_INTOPT_NO_SIBLINGS) && lybctx->lybctx->in->current[0]) {
LOGVAL(ctx, LYVE_SYNTAX, "Unexpected sibling node.");
rc = LY_EVALID;
goto cleanup;
}
if ((int_opts & (LYD_INTOPT_RPC | LYD_INTOPT_ACTION | LYD_INTOPT_NOTIF | LYD_INTOPT_REPLY)) && !lybctx->op_node) {
LOGVAL(ctx, LYVE_DATA, "Missing the operation node.");
rc = LY_EVALID;
goto cleanup;
}
/* read the last zero, parsing finished */
ly_in_skip(lybctx->lybctx->in, 1);
cleanup:
/* there should be no unres stored if validation should be skipped */
assert(!(parse_opts & LYD_PARSE_ONLY) || (!lybctx->node_types.count && !lybctx->meta_types.count &&
!lybctx->node_when.count));
if (rc) {
lyd_lyb_ctx_free((struct lyd_ctx *)lybctx);
} else {
*lydctx_p = (struct lyd_ctx *)lybctx;
}
return rc;
}
LY_ERR
lyd_parse_lyb(const struct ly_ctx *ctx, const struct lysc_ext_instance *ext, struct lyd_node *parent,
struct lyd_node **first_p, struct ly_in *in, uint32_t parse_opts, uint32_t val_opts, enum lyd_type data_type,
struct ly_set *parsed, ly_bool *subtree_sibling, struct lyd_ctx **lydctx_p)
{
uint32_t int_opts;
assert(!(parse_opts & ~LYD_PARSE_OPTS_MASK));
assert(!(val_opts & ~LYD_VALIDATE_OPTS_MASK));
LY_CHECK_ARG_RET(ctx, !(parse_opts & LYD_PARSE_SUBTREE), LY_EINVAL);
switch (data_type) {
case LYD_TYPE_DATA_YANG:
int_opts = LYD_INTOPT_WITH_SIBLINGS;
break;
case LYD_TYPE_RPC_YANG:
int_opts = LYD_INTOPT_RPC | LYD_INTOPT_ACTION | LYD_INTOPT_NO_SIBLINGS;
break;
case LYD_TYPE_NOTIF_YANG:
int_opts = LYD_INTOPT_NOTIF | LYD_INTOPT_NO_SIBLINGS;
break;
case LYD_TYPE_REPLY_YANG:
int_opts = LYD_INTOPT_REPLY | LYD_INTOPT_NO_SIBLINGS;
break;
default:
LOGINT(ctx);
return LY_EINT;
}
if (subtree_sibling) {
*subtree_sibling = 0;
}
return _lyd_parse_lyb(ctx, ext, parent, first_p, in, parse_opts, val_opts, int_opts, parsed, lydctx_p);
}
LIBYANG_API_DEF int
lyd_lyb_data_length(const char *data)
{
LY_ERR ret = LY_SUCCESS;
struct lylyb_ctx *lybctx;
int count, i;
size_t len;
uint8_t buf[LYB_SIZE_MAX];
uint8_t zero[LYB_SIZE_BYTES] = {0};
if (!data) {
return -1;
}
lybctx = calloc(1, sizeof *lybctx);
LY_CHECK_ERR_RET(!lybctx, LOGMEM(NULL), LY_EMEM);
ret = ly_in_new_memory(data, &lybctx->in);
LY_CHECK_GOTO(ret, cleanup);
/* read magic number */
ret = lyb_parse_magic_number(lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* read header */
ret = lyb_parse_header(lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* read model count */
lyb_read_number(&count, sizeof count, 2, lybctx);
/* read all models */
for (i = 0; i < count; ++i) {
/* module name length */
len = 0;
lyb_read_number(&len, sizeof len, 2, lybctx);
/* model name */
lyb_read(buf, len, lybctx);
/* revision */
lyb_read(buf, 2, lybctx);
}
if (memcmp(zero, lybctx->in->current, LYB_SIZE_BYTES)) {
/* register a new sibling */
ret = lyb_read_start_siblings(lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* skip it */
lyb_skip_siblings(lybctx);
/* sibling finished */
ret = lyb_read_stop_siblings(lybctx);
LY_CHECK_GOTO(ret, cleanup);
} else {
lyb_read(NULL, LYB_SIZE_BYTES, lybctx);
}
/* read the last zero, parsing finished */
ly_in_skip(lybctx->in, 1);
cleanup:
count = lybctx->in->current - lybctx->in->start;
ly_in_free(lybctx->in, 0);
lylyb_ctx_free(lybctx);
return ret ? -1 : count;
}