| /** |
| * @file schema_compile.c |
| * @author Radek Krejci <rkrejci@cesnet.cz> |
| * @brief Schema compilation. |
| * |
| * Copyright (c) 2015 - 2020 CESNET, z.s.p.o. |
| * |
| * This source code is licensed under BSD 3-Clause License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * https://opensource.org/licenses/BSD-3-Clause |
| */ |
| |
| #define _GNU_SOURCE |
| |
| #include "schema_compile.h" |
| |
| #include <assert.h> |
| #include <ctype.h> |
| #include <stddef.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "common.h" |
| #include "compat.h" |
| #include "context.h" |
| #include "dict.h" |
| #include "log.h" |
| #include "parser.h" |
| #include "parser_schema.h" |
| #include "path.h" |
| #include "plugins_exts.h" |
| #include "plugins_exts_internal.h" |
| #include "plugins_types.h" |
| #include "schema_compile_amend.h" |
| #include "schema_compile_node.h" |
| #include "set.h" |
| #include "tree.h" |
| #include "tree_data.h" |
| #include "tree_data_internal.h" |
| #include "tree_schema.h" |
| #include "tree_schema_internal.h" |
| #include "xpath.h" |
| |
| #define COMPILE_CHECK_UNIQUENESS_ARRAY(CTX, ARRAY, MEMBER, EXCL, STMT, IDENT) \ |
| if (ARRAY) { \ |
| for (LY_ARRAY_COUNT_TYPE u__ = 0; u__ < LY_ARRAY_COUNT(ARRAY); ++u__) { \ |
| if (&(ARRAY)[u__] != EXCL && (void*)((ARRAY)[u__].MEMBER) == (void*)(IDENT)) { \ |
| LOGVAL((CTX)->ctx, LY_VLOG_STR, (CTX)->path, LY_VCODE_DUPIDENT, IDENT, STMT); \ |
| return LY_EVALID; \ |
| } \ |
| } \ |
| } |
| |
| /** |
| * @brief Fill in the prepared compiled extensions definition structure according to the parsed extension definition. |
| */ |
| static LY_ERR |
| lys_compile_extension(struct lysc_ctx *ctx, const struct lys_module *ext_mod, struct lysp_ext *ext_p, struct lysc_ext **ext) |
| { |
| LY_ERR ret = LY_SUCCESS; |
| |
| if (!ext_p->compiled) { |
| lysc_update_path(ctx, NULL, "{extension}"); |
| lysc_update_path(ctx, NULL, ext_p->name); |
| |
| /* compile the extension definition */ |
| ext_p->compiled = calloc(1, sizeof **ext); |
| ext_p->compiled->refcount = 1; |
| DUP_STRING_GOTO(ctx->ctx, ext_p->name, ext_p->compiled->name, ret, done); |
| DUP_STRING_GOTO(ctx->ctx, ext_p->argument, ext_p->compiled->argument, ret, done); |
| ext_p->compiled->module = (struct lys_module *)ext_mod; |
| COMPILE_EXTS_GOTO(ctx, ext_p->exts, ext_p->compiled->exts, *ext, LYEXT_PAR_EXT, ret, done); |
| |
| lysc_update_path(ctx, NULL, NULL); |
| lysc_update_path(ctx, NULL, NULL); |
| |
| /* find extension definition plugin */ |
| ext_p->compiled->plugin = lyext_get_plugin(ext_p->compiled); |
| } |
| |
| *ext = lysc_ext_dup(ext_p->compiled); |
| |
| done: |
| return ret; |
| } |
| |
| LY_ERR |
| lys_compile_ext(struct lysc_ctx *ctx, struct lysp_ext_instance *ext_p, struct lysc_ext_instance *ext, void *parent, |
| LYEXT_PARENT parent_type, const struct lys_module *ext_mod) |
| { |
| LY_ERR ret = LY_SUCCESS; |
| const char *name; |
| size_t u; |
| LY_ARRAY_COUNT_TYPE v; |
| const char *prefixed_name = NULL; |
| |
| DUP_STRING(ctx->ctx, ext_p->argument, ext->argument, ret); |
| LY_CHECK_RET(ret); |
| |
| ext->insubstmt = ext_p->insubstmt; |
| ext->insubstmt_index = ext_p->insubstmt_index; |
| ext->module = ctx->cur_mod; |
| ext->parent = parent; |
| ext->parent_type = parent_type; |
| |
| lysc_update_path(ctx, ext->parent_type == LYEXT_PAR_NODE ? (struct lysc_node *)ext->parent : NULL, "{extension}"); |
| |
| /* get module where the extension definition should be placed */ |
| for (u = strlen(ext_p->name); u && ext_p->name[u - 1] != ':'; --u) {} |
| if (ext_p->yin) { |
| /* YIN parser has to replace prefixes by the namespace - XML namespace/prefix pairs may differs form the YANG schema's |
| * namespace/prefix pair. YIN parser does not have the imports available, so mapping from XML namespace to the |
| * YANG (import) prefix must be done here. */ |
| if (!ly_strncmp(ctx->pmod->mod->ns, ext_p->name, u - 1)) { |
| LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, &ext_p->name[u], 0, &prefixed_name), cleanup); |
| u = 0; |
| } else { |
| LY_ARRAY_FOR(ctx->pmod->imports, v) { |
| if (!ly_strncmp(ctx->pmod->imports[v].module->ns, ext_p->name, u - 1)) { |
| char *s; |
| LY_CHECK_ERR_GOTO(asprintf(&s, "%s:%s", ctx->pmod->imports[v].prefix, &ext_p->name[u]) == -1, |
| ret = LY_EMEM, cleanup); |
| LY_CHECK_GOTO(ret = lydict_insert_zc(ctx->ctx, s, &prefixed_name), cleanup); |
| u = strlen(ctx->pmod->imports[v].prefix) + 1; /* add semicolon */ |
| break; |
| } |
| } |
| } |
| if (!prefixed_name) { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, |
| "Invalid XML prefix of \"%.*s\" namespace used for extension instance identifier.", u, ext_p->name); |
| ret = LY_EVALID; |
| goto cleanup; |
| } |
| } else { |
| prefixed_name = ext_p->name; |
| } |
| lysc_update_path(ctx, NULL, prefixed_name); |
| |
| if (!ext_mod) { |
| ext_mod = u ? lysp_module_find_prefix(ctx->pmod, prefixed_name, u - 1) : ctx->pmod->mod; |
| if (!ext_mod) { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, |
| "Invalid prefix \"%.*s\" used for extension instance identifier.", u, prefixed_name); |
| ret = LY_EVALID; |
| goto cleanup; |
| } else if (!ext_mod->parsed->extensions) { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, |
| "Extension instance \"%s\" refers \"%s\" module that does not contain extension definitions.", |
| prefixed_name, ext_mod->name); |
| ret = LY_EVALID; |
| goto cleanup; |
| } |
| } |
| name = &prefixed_name[u]; |
| |
| /* find the parsed extension definition there */ |
| LY_ARRAY_FOR(ext_mod->parsed->extensions, v) { |
| if (!strcmp(name, ext_mod->parsed->extensions[v].name)) { |
| /* compile extension definition and assign it */ |
| LY_CHECK_GOTO(ret = lys_compile_extension(ctx, ext_mod, &ext_mod->parsed->extensions[v], &ext->def), cleanup); |
| break; |
| } |
| } |
| if (!ext->def) { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, |
| "Extension definition of extension instance \"%s\" not found.", prefixed_name); |
| ret = LY_EVALID; |
| goto cleanup; |
| } |
| |
| /* unify the parsed extension from YIN and YANG sources. Without extension definition, it is not possible |
| * to get extension's argument from YIN source, so it is stored as one of the substatements. Here we have |
| * to find it, mark it with LYS_YIN_ARGUMENT and store it in the compiled structure. */ |
| if (ext_p->yin && ext->def->argument && !ext->argument) { |
| /* Schema was parsed from YIN and an argument is expected, ... */ |
| struct lysp_stmt *stmt = NULL; |
| |
| if (ext->def->flags & LYS_YINELEM_TRUE) { |
| /* ... argument was the first XML child element */ |
| if (ext_p->child && !(ext_p->child->flags & LYS_YIN_ATTR)) { |
| /* TODO check namespace of the statement */ |
| if (!strcmp(ext_p->child->stmt, ext->def->argument)) { |
| stmt = ext_p->child; |
| } |
| } |
| } else { |
| /* ... argument was one of the XML attributes which are represented as child stmt |
| * with LYS_YIN_ATTR flag */ |
| for (stmt = ext_p->child; stmt && (stmt->flags & LYS_YIN_ATTR); stmt = stmt->next) { |
| if (!strcmp(stmt->stmt, ext->def->argument)) { |
| /* this is the extension's argument */ |
| break; |
| } |
| } |
| } |
| if (!stmt) { |
| /* missing extension's argument */ |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, |
| "Extension instance \"%s\" misses argument \"%s\".", prefixed_name, ext->def->argument); |
| ret = LY_EVALID; |
| goto cleanup; |
| |
| } |
| LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, stmt->arg, 0, &ext->argument), cleanup); |
| stmt->flags |= LYS_YIN_ARGUMENT; |
| } |
| if (prefixed_name != ext_p->name) { |
| lydict_remove(ctx->ctx, ext_p->name); |
| ext_p->name = prefixed_name; |
| if (!ext_p->argument && ext->argument) { |
| LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, ext->argument, 0, &ext_p->argument), cleanup); |
| } |
| } |
| |
| if (ext->def->plugin && ext->def->plugin->compile) { |
| if (ext->argument) { |
| lysc_update_path(ctx, (struct lysc_node *)ext, ext->argument); |
| } |
| LY_CHECK_GOTO(ret = ext->def->plugin->compile(ctx, ext_p, ext), cleanup); |
| if (ext->argument) { |
| lysc_update_path(ctx, NULL, NULL); |
| } |
| } |
| ext_p->compiled = ext; |
| |
| cleanup: |
| if (prefixed_name && (prefixed_name != ext_p->name)) { |
| lydict_remove(ctx->ctx, prefixed_name); |
| } |
| |
| lysc_update_path(ctx, NULL, NULL); |
| lysc_update_path(ctx, NULL, NULL); |
| |
| return ret; |
| } |
| |
| struct lysc_ext * |
| lysc_ext_dup(struct lysc_ext *orig) |
| { |
| ++orig->refcount; |
| return orig; |
| } |
| |
| static void |
| lysc_unres_dflt_free(const struct ly_ctx *ctx, struct lysc_unres_dflt *r) |
| { |
| assert(!r->dflt || !r->dflts); |
| if (r->dflt) { |
| lysp_qname_free((struct ly_ctx *)ctx, r->dflt); |
| free(r->dflt); |
| } else { |
| FREE_ARRAY((struct ly_ctx *)ctx, r->dflts, lysp_qname_free); |
| } |
| free(r); |
| } |
| |
| void |
| lysc_update_path(struct lysc_ctx *ctx, struct lysc_node *parent, const char *name) |
| { |
| int len; |
| uint8_t nextlevel = 0; /* 0 - no starttag, 1 - '/' starttag, 2 - '=' starttag + '}' endtag */ |
| |
| if (!name) { |
| /* removing last path segment */ |
| if (ctx->path[ctx->path_len - 1] == '}') { |
| for ( ; ctx->path[ctx->path_len] != '=' && ctx->path[ctx->path_len] != '{'; --ctx->path_len) {} |
| if (ctx->path[ctx->path_len] == '=') { |
| ctx->path[ctx->path_len++] = '}'; |
| } else { |
| /* not a top-level special tag, remove also preceiding '/' */ |
| goto remove_nodelevel; |
| } |
| } else { |
| remove_nodelevel: |
| for ( ; ctx->path[ctx->path_len] != '/'; --ctx->path_len) {} |
| if (ctx->path_len == 0) { |
| /* top-level (last segment) */ |
| ctx->path_len = 1; |
| } |
| } |
| /* set new terminating NULL-byte */ |
| ctx->path[ctx->path_len] = '\0'; |
| } else { |
| if (ctx->path_len > 1) { |
| if (!parent && (ctx->path[ctx->path_len - 1] == '}') && (ctx->path[ctx->path_len - 2] != '\'')) { |
| /* extension of the special tag */ |
| nextlevel = 2; |
| --ctx->path_len; |
| } else { |
| /* there is already some path, so add next level */ |
| nextlevel = 1; |
| } |
| } /* else the path is just initiated with '/', so do not add additional slash in case of top-level nodes */ |
| |
| if (nextlevel != 2) { |
| if ((parent && (parent->module == ctx->cur_mod)) || (!parent && (ctx->path_len > 1) && (name[0] == '{'))) { |
| /* module not changed, print the name unprefixed */ |
| len = snprintf(&ctx->path[ctx->path_len], LYSC_CTX_BUFSIZE - ctx->path_len, "%s%s", nextlevel ? "/" : "", name); |
| } else { |
| len = snprintf(&ctx->path[ctx->path_len], LYSC_CTX_BUFSIZE - ctx->path_len, "%s%s:%s", nextlevel ? "/" : "", ctx->cur_mod->name, name); |
| } |
| } else { |
| len = snprintf(&ctx->path[ctx->path_len], LYSC_CTX_BUFSIZE - ctx->path_len, "='%s'}", name); |
| } |
| if (len >= LYSC_CTX_BUFSIZE - (int)ctx->path_len) { |
| /* output truncated */ |
| ctx->path_len = LYSC_CTX_BUFSIZE - 1; |
| } else { |
| ctx->path_len += len; |
| } |
| } |
| } |
| |
| /** |
| * @brief Stack for processing if-feature expressions. |
| */ |
| struct iff_stack { |
| size_t size; /**< number of items in the stack */ |
| size_t index; /**< first empty item */ |
| uint8_t *stack; /**< stack - array of @ref ifftokens to create the if-feature expression in prefix format */ |
| }; |
| |
| /** |
| * @brief Add @ref ifftokens into the stack. |
| * @param[in] stack The if-feature stack to use. |
| * @param[in] value One of the @ref ifftokens to store in the stack. |
| * @return LY_EMEM in case of memory allocation error |
| * @return LY_ESUCCESS if the value successfully stored. |
| */ |
| static LY_ERR |
| iff_stack_push(struct iff_stack *stack, uint8_t value) |
| { |
| if (stack->index == stack->size) { |
| stack->size += 4; |
| stack->stack = ly_realloc(stack->stack, stack->size * sizeof *stack->stack); |
| LY_CHECK_ERR_RET(!stack->stack, LOGMEM(NULL); stack->size = 0, LY_EMEM); |
| } |
| stack->stack[stack->index++] = value; |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Get (and remove) the last item form the stack. |
| * @param[in] stack The if-feature stack to use. |
| * @return The value from the top of the stack. |
| */ |
| static uint8_t |
| iff_stack_pop(struct iff_stack *stack) |
| { |
| assert(stack && stack->index); |
| |
| stack->index--; |
| return stack->stack[stack->index]; |
| } |
| |
| /** |
| * @brief Clean up the stack. |
| * @param[in] stack The if-feature stack to use. |
| */ |
| static void |
| iff_stack_clean(struct iff_stack *stack) |
| { |
| stack->size = 0; |
| free(stack->stack); |
| } |
| |
| /** |
| * @brief Store the @ref ifftokens (@p op) on the given position in the 2bits array |
| * (libyang format of the if-feature expression). |
| * @param[in,out] list The 2bits array to modify. |
| * @param[in] op The operand (@ref ifftokens) to store. |
| * @param[in] pos Position (0-based) where to store the given @p op. |
| */ |
| static void |
| iff_setop(uint8_t *list, uint8_t op, size_t pos) |
| { |
| uint8_t *item; |
| uint8_t mask = 3; |
| |
| assert(op <= 3); /* max 2 bits */ |
| |
| item = &list[pos / 4]; |
| mask = mask << 2 * (pos % 4); |
| *item = (*item) & ~mask; |
| *item = (*item) | (op << 2 * (pos % 4)); |
| } |
| |
| #define LYS_IFF_LP 0x04 /**< Additional, temporary, value of @ref ifftokens: ( */ |
| #define LYS_IFF_RP 0x08 /**< Additional, temporary, value of @ref ifftokens: ) */ |
| |
| /** |
| * @brief Find a feature of the given name and referenced in the given module. |
| * |
| * If the compiled schema is available (the schema is implemented), the feature from the compiled schema is |
| * returned. Otherwise, the special array of pre-compiled features is used to search for the feature. Such |
| * features are always disabled (feature from not implemented schema cannot be enabled), but in case the schema |
| * will be made implemented in future (no matter if implicitly via augmenting/deviating it or explicitly via |
| * ly_ctx_module_implement()), the compilation of these feature structure is finished, but the pointers |
| * assigned till that time will be still valid. |
| * |
| * @param[in] pmod Module where the feature was referenced (used to resolve prefix of the feature). |
| * @param[in] name Name of the feature including possible prefix. |
| * @param[in] len Length of the string representing the feature identifier in the name variable (mandatory!). |
| * @return Pointer to the feature structure if found, NULL otherwise. |
| */ |
| static struct lysc_feature * |
| lys_feature_find(const struct lysp_module *pmod, const char *name, size_t len) |
| { |
| LY_ARRAY_COUNT_TYPE u; |
| struct lysc_feature *f; |
| const struct lys_module *mod; |
| const char *ptr; |
| |
| assert(pmod); |
| |
| if ((ptr = ly_strnchr(name, ':', len))) { |
| /* we have a prefixed feature */ |
| mod = lysp_module_find_prefix(pmod, name, ptr - name); |
| LY_CHECK_RET(!mod, NULL); |
| |
| len = len - (ptr - name) - 1; |
| name = ptr + 1; |
| } else { |
| /* local feature */ |
| mod = pmod->mod; |
| } |
| |
| /* we have the correct module, get the feature */ |
| LY_ARRAY_FOR(mod->features, u) { |
| f = &mod->features[u]; |
| if (!ly_strncmp(f->name, name, len)) { |
| return f; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| LY_ERR |
| lys_compile_iffeature(struct lysc_ctx *ctx, struct lysp_qname *qname, struct lysc_iffeature *iff) |
| { |
| LY_ERR rc = LY_SUCCESS; |
| const char *c = qname->str; |
| int64_t i, j; |
| int8_t op_len, last_not = 0, checkversion = 0; |
| LY_ARRAY_COUNT_TYPE f_size = 0, expr_size = 0, f_exp = 1; |
| uint8_t op; |
| struct iff_stack stack = {0, 0, NULL}; |
| struct lysc_feature *f; |
| |
| assert(c); |
| |
| /* pre-parse the expression to get sizes for arrays, also do some syntax checks of the expression */ |
| for (i = j = 0; c[i]; i++) { |
| if (c[i] == '(') { |
| j++; |
| checkversion = 1; |
| continue; |
| } else if (c[i] == ')') { |
| j--; |
| continue; |
| } else if (isspace(c[i])) { |
| checkversion = 1; |
| continue; |
| } |
| |
| if (!strncmp(&c[i], "not", op_len = 3) || !strncmp(&c[i], "and", op_len = 3) || !strncmp(&c[i], "or", op_len = 2)) { |
| uint64_t spaces; |
| for (spaces = 0; c[i + op_len + spaces] && isspace(c[i + op_len + spaces]); spaces++) {} |
| if (c[i + op_len + spaces] == '\0') { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, |
| "Invalid value \"%s\" of if-feature - unexpected end of expression.", qname->str); |
| return LY_EVALID; |
| } else if (!isspace(c[i + op_len])) { |
| /* feature name starting with the not/and/or */ |
| last_not = 0; |
| f_size++; |
| } else if (c[i] == 'n') { /* not operation */ |
| if (last_not) { |
| /* double not */ |
| expr_size = expr_size - 2; |
| last_not = 0; |
| } else { |
| last_not = 1; |
| } |
| } else { /* and, or */ |
| if (f_exp != f_size) { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, |
| "Invalid value \"%s\" of if-feature - missing feature/expression before \"%.*s\" operation.", |
| qname->str, op_len, &c[i]); |
| return LY_EVALID; |
| } |
| f_exp++; |
| |
| /* not a not operation */ |
| last_not = 0; |
| } |
| i += op_len; |
| } else { |
| f_size++; |
| last_not = 0; |
| } |
| expr_size++; |
| |
| while (!isspace(c[i])) { |
| if (!c[i] || (c[i] == ')') || (c[i] == '(')) { |
| i--; |
| break; |
| } |
| i++; |
| } |
| } |
| if (j) { |
| /* not matching count of ( and ) */ |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, |
| "Invalid value \"%s\" of if-feature - non-matching opening and closing parentheses.", qname->str); |
| return LY_EVALID; |
| } |
| if (f_exp != f_size) { |
| /* features do not match the needed arguments for the logical operations */ |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, |
| "Invalid value \"%s\" of if-feature - number of features in expression does not match " |
| "the required number of operands for the operations.", qname->str); |
| return LY_EVALID; |
| } |
| |
| if (checkversion || (expr_size > 1)) { |
| /* check that we have 1.1 module */ |
| if (qname->mod->version != LYS_VERSION_1_1) { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, |
| "Invalid value \"%s\" of if-feature - YANG 1.1 expression in YANG 1.0 module.", qname->str); |
| return LY_EVALID; |
| } |
| } |
| |
| /* allocate the memory */ |
| LY_ARRAY_CREATE_RET(ctx->ctx, iff->features, f_size, LY_EMEM); |
| iff->expr = calloc((j = (expr_size / 4) + ((expr_size % 4) ? 1 : 0)), sizeof *iff->expr); |
| stack.stack = malloc(expr_size * sizeof *stack.stack); |
| LY_CHECK_ERR_GOTO(!stack.stack || !iff->expr, LOGMEM(ctx->ctx); rc = LY_EMEM, error); |
| |
| stack.size = expr_size; |
| f_size--; expr_size--; /* used as indexes from now */ |
| |
| for (i--; i >= 0; i--) { |
| if (c[i] == ')') { |
| /* push it on stack */ |
| iff_stack_push(&stack, LYS_IFF_RP); |
| continue; |
| } else if (c[i] == '(') { |
| /* pop from the stack into result all operators until ) */ |
| while ((op = iff_stack_pop(&stack)) != LYS_IFF_RP) { |
| iff_setop(iff->expr, op, expr_size--); |
| } |
| continue; |
| } else if (isspace(c[i])) { |
| continue; |
| } |
| |
| /* end of operator or operand -> find beginning and get what is it */ |
| j = i + 1; |
| while (i >= 0 && !isspace(c[i]) && c[i] != '(') { |
| i--; |
| } |
| i++; /* go back by one step */ |
| |
| if (!strncmp(&c[i], "not", 3) && isspace(c[i + 3])) { |
| if (stack.index && (stack.stack[stack.index - 1] == LYS_IFF_NOT)) { |
| /* double not */ |
| iff_stack_pop(&stack); |
| } else { |
| /* not has the highest priority, so do not pop from the stack |
| * as in case of AND and OR */ |
| iff_stack_push(&stack, LYS_IFF_NOT); |
| } |
| } else if (!strncmp(&c[i], "and", 3) && isspace(c[i + 3])) { |
| /* as for OR - pop from the stack all operators with the same or higher |
| * priority and store them to the result, then push the AND to the stack */ |
| while (stack.index && stack.stack[stack.index - 1] <= LYS_IFF_AND) { |
| op = iff_stack_pop(&stack); |
| iff_setop(iff->expr, op, expr_size--); |
| } |
| iff_stack_push(&stack, LYS_IFF_AND); |
| } else if (!strncmp(&c[i], "or", 2) && isspace(c[i + 2])) { |
| while (stack.index && stack.stack[stack.index - 1] <= LYS_IFF_OR) { |
| op = iff_stack_pop(&stack); |
| iff_setop(iff->expr, op, expr_size--); |
| } |
| iff_stack_push(&stack, LYS_IFF_OR); |
| } else { |
| /* feature name, length is j - i */ |
| |
| /* add it to the expression */ |
| iff_setop(iff->expr, LYS_IFF_F, expr_size--); |
| |
| /* now get the link to the feature definition */ |
| f = lys_feature_find(qname->mod, &c[i], j - i); |
| LY_CHECK_ERR_GOTO(!f, LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, |
| "Invalid value \"%s\" of if-feature - unable to find feature \"%.*s\".", qname->str, j - i, &c[i]); |
| rc = LY_EVALID, error) |
| iff->features[f_size] = f; |
| LY_ARRAY_INCREMENT(iff->features); |
| f_size--; |
| } |
| } |
| while (stack.index) { |
| op = iff_stack_pop(&stack); |
| iff_setop(iff->expr, op, expr_size--); |
| } |
| |
| if (++expr_size || ++f_size) { |
| /* not all expected operators and operands found */ |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, |
| "Invalid value \"%s\" of if-feature - processing error.", qname->str); |
| rc = LY_EINT; |
| } else { |
| rc = LY_SUCCESS; |
| } |
| |
| error: |
| /* cleanup */ |
| iff_stack_clean(&stack); |
| |
| return rc; |
| } |
| |
| /** |
| * @brief Compile information in the import statement - make sure there is the target module |
| * @param[in] ctx Compile context. |
| * @param[in] imp_p The parsed import statement structure to fill the module to. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lys_compile_import(struct lysc_ctx *ctx, struct lysp_import *imp_p) |
| { |
| const struct lys_module *mod = NULL; |
| LY_ERR ret = LY_SUCCESS; |
| |
| /* make sure that we have the parsed version (lysp_) of the imported module to import groupings or typedefs. |
| * The compiled version is needed only for augments, deviates and leafrefs, so they are checked (and added, |
| * if needed) when these nodes are finally being instantiated and validated at the end of schema compilation. */ |
| if (!imp_p->module->parsed) { |
| /* try to use filepath if present */ |
| if (imp_p->module->filepath) { |
| struct ly_in *in; |
| if (ly_in_new_filepath(imp_p->module->filepath, 0, &in)) { |
| LOGINT(ctx->ctx); |
| } else { |
| LY_CHECK_RET(lys_parse(ctx->ctx, in, !strcmp(&imp_p->module->filepath[strlen(imp_p->module->filepath - 4)], |
| ".yin") ? LYS_IN_YIN : LYS_IN_YANG, &mod)); |
| if (mod != imp_p->module) { |
| LOGERR(ctx->ctx, LY_EINT, "Filepath \"%s\" of the module \"%s\" does not match.", |
| imp_p->module->filepath, imp_p->module->name); |
| mod = NULL; |
| } |
| } |
| ly_in_free(in, 1); |
| } |
| if (!mod) { |
| if (lysp_load_module(ctx->ctx, imp_p->module->name, imp_p->module->revision, 0, 1, (struct lys_module **)&mod)) { |
| LOGERR(ctx->ctx, LY_ENOTFOUND, "Unable to reload \"%s\" module to import it into \"%s\", source data not found.", |
| imp_p->module->name, ctx->cur_mod->name); |
| return LY_ENOTFOUND; |
| } |
| } |
| } |
| |
| return ret; |
| } |
| |
| LY_ERR |
| lys_identity_precompile(struct lysc_ctx *ctx_sc, struct ly_ctx *ctx, struct lysp_module *parsed_mod, |
| struct lysp_ident *identities_p, struct lysc_ident **identities) |
| { |
| LY_ARRAY_COUNT_TYPE offset = 0, u, v; |
| struct lysc_ctx context = {0}; |
| LY_ERR ret = LY_SUCCESS; |
| |
| assert(ctx_sc || ctx); |
| |
| if (!ctx_sc) { |
| context.ctx = ctx; |
| context.cur_mod = parsed_mod->mod; |
| context.pmod = parsed_mod; |
| context.path_len = 1; |
| context.path[0] = '/'; |
| ctx_sc = &context; |
| } |
| |
| if (!identities_p) { |
| return LY_SUCCESS; |
| } |
| if (*identities) { |
| offset = LY_ARRAY_COUNT(*identities); |
| } |
| |
| lysc_update_path(ctx_sc, NULL, "{identity}"); |
| LY_ARRAY_CREATE_RET(ctx_sc->ctx, *identities, LY_ARRAY_COUNT(identities_p), LY_EMEM); |
| LY_ARRAY_FOR(identities_p, u) { |
| lysc_update_path(ctx_sc, NULL, identities_p[u].name); |
| |
| LY_ARRAY_INCREMENT(*identities); |
| COMPILE_CHECK_UNIQUENESS_ARRAY(ctx_sc, *identities, name, &(*identities)[offset + u], "identity", identities_p[u].name); |
| DUP_STRING_GOTO(ctx_sc->ctx, identities_p[u].name, (*identities)[offset + u].name, ret, done); |
| DUP_STRING_GOTO(ctx_sc->ctx, identities_p[u].dsc, (*identities)[offset + u].dsc, ret, done); |
| DUP_STRING_GOTO(ctx_sc->ctx, identities_p[u].ref, (*identities)[offset + u].ref, ret, done); |
| (*identities)[offset + u].module = ctx_sc->cur_mod; |
| COMPILE_ARRAY_GOTO(ctx_sc, identities_p[u].iffeatures, (*identities)[offset + u].iffeatures, v, |
| lys_compile_iffeature, ret, done); |
| /* backlinks (derived) can be added no sooner than when all the identities in the current module are present */ |
| COMPILE_EXTS_GOTO(ctx_sc, identities_p[u].exts, (*identities)[offset + u].exts, &(*identities)[offset + u], |
| LYEXT_PAR_IDENT, ret, done); |
| (*identities)[offset + u].flags = identities_p[u].flags; |
| |
| lysc_update_path(ctx_sc, NULL, NULL); |
| } |
| lysc_update_path(ctx_sc, NULL, NULL); |
| done: |
| return ret; |
| } |
| |
| /** |
| * @brief Check circular dependency of identities - identity MUST NOT reference itself (via their base statement). |
| * |
| * The function works in the same way as lys_compile_feature_circular_check() with different structures and error messages. |
| * |
| * @param[in] ctx Compile context for logging. |
| * @param[in] ident The base identity (its derived list is being extended by the identity being currently processed). |
| * @param[in] derived The list of derived identities of the identity being currently processed (not the one provided as @p ident) |
| * @return LY_SUCCESS if everything is ok. |
| * @return LY_EVALID if the identity is derived from itself. |
| */ |
| static LY_ERR |
| lys_compile_identity_circular_check(struct lysc_ctx *ctx, struct lysc_ident *ident, struct lysc_ident **derived) |
| { |
| LY_ERR ret = LY_SUCCESS; |
| LY_ARRAY_COUNT_TYPE u, v; |
| struct ly_set recursion = {0}; |
| struct lysc_ident *drv; |
| |
| if (!derived) { |
| return LY_SUCCESS; |
| } |
| |
| for (u = 0; u < LY_ARRAY_COUNT(derived); ++u) { |
| if (ident == derived[u]) { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, |
| "Identity \"%s\" is indirectly derived from itself.", ident->name); |
| ret = LY_EVALID; |
| goto cleanup; |
| } |
| ret = ly_set_add(&recursion, derived[u], 0, NULL); |
| LY_CHECK_GOTO(ret, cleanup); |
| } |
| |
| for (v = 0; v < recursion.count; ++v) { |
| drv = recursion.objs[v]; |
| if (!drv->derived) { |
| continue; |
| } |
| for (u = 0; u < LY_ARRAY_COUNT(drv->derived); ++u) { |
| if (ident == drv->derived[u]) { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, |
| "Identity \"%s\" is indirectly derived from itself.", ident->name); |
| ret = LY_EVALID; |
| goto cleanup; |
| } |
| ret = ly_set_add(&recursion, drv->derived[u], 0, NULL); |
| LY_CHECK_GOTO(ret, cleanup); |
| } |
| } |
| |
| cleanup: |
| ly_set_erase(&recursion, NULL); |
| return ret; |
| } |
| |
| LY_ERR |
| lys_compile_identity_bases(struct lysc_ctx *ctx, const struct lysp_module *base_pmod, const char **bases_p, |
| struct lysc_ident *ident, struct lysc_ident ***bases) |
| { |
| LY_ARRAY_COUNT_TYPE u, v; |
| const char *s, *name; |
| const struct lys_module *mod; |
| struct lysc_ident **idref; |
| |
| assert(ident || bases); |
| |
| if ((LY_ARRAY_COUNT(bases_p) > 1) && (ctx->pmod->version < LYS_VERSION_1_1)) { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, |
| "Multiple bases in %s are allowed only in YANG 1.1 modules.", ident ? "identity" : "identityref type"); |
| return LY_EVALID; |
| } |
| |
| LY_ARRAY_FOR(bases_p, u) { |
| s = strchr(bases_p[u], ':'); |
| if (s) { |
| /* prefixed identity */ |
| name = &s[1]; |
| mod = lysp_module_find_prefix(base_pmod, bases_p[u], s - bases_p[u]); |
| } else { |
| name = bases_p[u]; |
| mod = base_pmod->mod; |
| } |
| if (!mod) { |
| if (ident) { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, |
| "Invalid prefix used for base (%s) of identity \"%s\".", bases_p[u], ident->name); |
| } else { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, |
| "Invalid prefix used for base (%s) of identityref.", bases_p[u]); |
| } |
| return LY_EVALID; |
| } |
| |
| idref = NULL; |
| LY_ARRAY_FOR(mod->identities, v) { |
| if (!strcmp(name, mod->identities[v].name)) { |
| if (ident) { |
| if (ident == &mod->identities[v]) { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, |
| "Identity \"%s\" is derived from itself.", ident->name); |
| return LY_EVALID; |
| } |
| LY_CHECK_RET(lys_compile_identity_circular_check(ctx, &mod->identities[v], ident->derived)); |
| /* we have match! store the backlink */ |
| LY_ARRAY_NEW_RET(ctx->ctx, mod->identities[v].derived, idref, LY_EMEM); |
| *idref = ident; |
| } else { |
| /* we have match! store the found identity */ |
| LY_ARRAY_NEW_RET(ctx->ctx, *bases, idref, LY_EMEM); |
| *idref = &mod->identities[v]; |
| } |
| break; |
| } |
| } |
| if (!idref || !(*idref)) { |
| if (ident) { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, |
| "Unable to find base (%s) of identity \"%s\".", bases_p[u], ident->name); |
| } else { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, |
| "Unable to find base (%s) of identityref.", bases_p[u]); |
| } |
| return LY_EVALID; |
| } |
| } |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief For the given array of identities, set the backlinks from all their base identities. |
| * @param[in] ctx Compile context, not only for logging but also to get the current module to resolve prefixes. |
| * @param[in] idents_p Array of identities definitions from the parsed schema structure. |
| * @param[in] idents Array of referencing identities to which the backlinks are supposed to be set. |
| * @return LY_ERR value - LY_SUCCESS or LY_EVALID. |
| */ |
| static LY_ERR |
| lys_compile_identities_derived(struct lysc_ctx *ctx, struct lysp_ident *idents_p, struct lysc_ident *idents) |
| { |
| LY_ARRAY_COUNT_TYPE u; |
| |
| lysc_update_path(ctx, NULL, "{identity}"); |
| for (u = 0; u < LY_ARRAY_COUNT(idents_p); ++u) { |
| if (!idents_p[u].bases) { |
| continue; |
| } |
| lysc_update_path(ctx, NULL, idents[u].name); |
| LY_CHECK_RET(lys_compile_identity_bases(ctx, idents[u].module->parsed, idents_p[u].bases, &idents[u], NULL)); |
| lysc_update_path(ctx, NULL, NULL); |
| } |
| lysc_update_path(ctx, NULL, NULL); |
| return LY_SUCCESS; |
| } |
| |
| LY_ERR |
| lys_feature_precompile(struct lysc_ctx *ctx_sc, struct ly_ctx *ctx, struct lysp_module *parsed_mod, |
| struct lysp_feature *features_p, struct lysc_feature **features) |
| { |
| LY_ERR ret = LY_SUCCESS; |
| LY_ARRAY_COUNT_TYPE offset = 0, u; |
| struct lysc_ctx context = {0}; |
| |
| assert(ctx_sc || ctx); |
| |
| if (!ctx_sc) { |
| context.ctx = ctx; |
| context.cur_mod = parsed_mod->mod; |
| context.pmod = parsed_mod; |
| context.path_len = 1; |
| context.path[0] = '/'; |
| ctx_sc = &context; |
| } |
| |
| if (!features_p) { |
| return LY_SUCCESS; |
| } |
| if (*features) { |
| offset = LY_ARRAY_COUNT(*features); |
| } |
| |
| lysc_update_path(ctx_sc, NULL, "{feature}"); |
| LY_ARRAY_CREATE_RET(ctx_sc->ctx, *features, LY_ARRAY_COUNT(features_p), LY_EMEM); |
| LY_ARRAY_FOR(features_p, u) { |
| lysc_update_path(ctx_sc, NULL, features_p[u].name); |
| |
| LY_ARRAY_INCREMENT(*features); |
| COMPILE_CHECK_UNIQUENESS_ARRAY(ctx_sc, *features, name, &(*features)[offset + u], "feature", features_p[u].name); |
| DUP_STRING_GOTO(ctx_sc->ctx, features_p[u].name, (*features)[offset + u].name, ret, done); |
| DUP_STRING_GOTO(ctx_sc->ctx, features_p[u].dsc, (*features)[offset + u].dsc, ret, done); |
| DUP_STRING_GOTO(ctx_sc->ctx, features_p[u].ref, (*features)[offset + u].ref, ret, done); |
| (*features)[offset + u].flags = features_p[u].flags; |
| (*features)[offset + u].module = ctx_sc->cur_mod; |
| |
| lysc_update_path(ctx_sc, NULL, NULL); |
| } |
| lysc_update_path(ctx_sc, NULL, NULL); |
| |
| done: |
| return ret; |
| } |
| |
| /** |
| * @brief Check circular dependency of features - feature MUST NOT reference itself (via their if-feature statement). |
| * |
| * The function works in the same way as lys_compile_identity_circular_check() with different structures and error messages. |
| * |
| * @param[in] ctx Compile context for logging. |
| * @param[in] feature The feature referenced in if-feature statement (its depfeatures list is being extended by the feature |
| * being currently processed). |
| * @param[in] depfeatures The list of depending features of the feature being currently processed (not the one provided as @p feature) |
| * @return LY_SUCCESS if everything is ok. |
| * @return LY_EVALID if the feature references indirectly itself. |
| */ |
| static LY_ERR |
| lys_compile_feature_circular_check(struct lysc_ctx *ctx, struct lysc_feature *feature, struct lysc_feature **depfeatures) |
| { |
| LY_ERR ret = LY_SUCCESS; |
| LY_ARRAY_COUNT_TYPE u, v; |
| struct ly_set recursion = {0}; |
| struct lysc_feature *drv; |
| |
| if (!depfeatures) { |
| return LY_SUCCESS; |
| } |
| |
| for (u = 0; u < LY_ARRAY_COUNT(depfeatures); ++u) { |
| if (feature == depfeatures[u]) { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, |
| "Feature \"%s\" is indirectly referenced from itself.", feature->name); |
| ret = LY_EVALID; |
| goto cleanup; |
| } |
| ret = ly_set_add(&recursion, depfeatures[u], 0, NULL); |
| LY_CHECK_GOTO(ret, cleanup); |
| } |
| |
| for (v = 0; v < recursion.count; ++v) { |
| drv = recursion.objs[v]; |
| if (!drv->depfeatures) { |
| continue; |
| } |
| for (u = 0; u < LY_ARRAY_COUNT(drv->depfeatures); ++u) { |
| if (feature == drv->depfeatures[u]) { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, |
| "Feature \"%s\" is indirectly referenced from itself.", feature->name); |
| ret = LY_EVALID; |
| goto cleanup; |
| } |
| ly_set_add(&recursion, drv->depfeatures[u], 0, NULL); |
| LY_CHECK_GOTO(ret, cleanup); |
| } |
| } |
| |
| cleanup: |
| ly_set_erase(&recursion, NULL); |
| return ret; |
| } |
| |
| /** |
| * @brief Create pre-compiled features array. |
| * |
| * See lys_feature_precompile() for more details. |
| * |
| * @param[in] ctx Compile context. |
| * @param[in] feature_p Parsed feature definition to compile. |
| * @param[in,out] features List of already (pre)compiled features to find the corresponding precompiled feature structure. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lys_feature_precompile_finish(struct lysc_ctx *ctx, struct lysp_feature *feature_p, struct lysc_feature *features) |
| { |
| LY_ARRAY_COUNT_TYPE u, v, x; |
| struct lysc_feature *feature, **df; |
| LY_ERR ret = LY_SUCCESS; |
| |
| /* find the preprecompiled feature */ |
| LY_ARRAY_FOR(features, x) { |
| if (strcmp(features[x].name, feature_p->name)) { |
| continue; |
| } |
| feature = &features[x]; |
| lysc_update_path(ctx, NULL, "{feature}"); |
| lysc_update_path(ctx, NULL, feature_p->name); |
| |
| /* finish compilation started in lys_feature_precompile() */ |
| COMPILE_EXTS_GOTO(ctx, feature_p->exts, feature->exts, feature, LYEXT_PAR_FEATURE, ret, done); |
| COMPILE_ARRAY_GOTO(ctx, feature_p->iffeatures, feature->iffeatures, u, lys_compile_iffeature, ret, done); |
| if (feature->iffeatures) { |
| for (u = 0; u < LY_ARRAY_COUNT(feature->iffeatures); ++u) { |
| if (feature->iffeatures[u].features) { |
| for (v = 0; v < LY_ARRAY_COUNT(feature->iffeatures[u].features); ++v) { |
| /* check for circular dependency - direct reference first,... */ |
| if (feature == feature->iffeatures[u].features[v]) { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, |
| "Feature \"%s\" is referenced from itself.", feature->name); |
| return LY_EVALID; |
| } |
| /* ... and indirect circular reference */ |
| LY_CHECK_RET(lys_compile_feature_circular_check(ctx, feature->iffeatures[u].features[v], feature->depfeatures)); |
| |
| /* add itself into the dependants list */ |
| LY_ARRAY_NEW_RET(ctx->ctx, feature->iffeatures[u].features[v]->depfeatures, df, LY_EMEM); |
| *df = feature; |
| } |
| } |
| } |
| } |
| lysc_update_path(ctx, NULL, NULL); |
| lysc_update_path(ctx, NULL, NULL); |
| done: |
| return ret; |
| } |
| |
| LOGINT(ctx->ctx); |
| return LY_EINT; |
| } |
| |
| void |
| lys_feature_precompile_revert(struct lysc_ctx *ctx, struct lys_module *mod) |
| { |
| LY_ARRAY_COUNT_TYPE u, v; |
| |
| /* in the dis_features list, remove all the parts (from finished compiling process) |
| * which may points into the data being freed here */ |
| LY_ARRAY_FOR(mod->features, u) { |
| LY_ARRAY_FOR(mod->features[u].iffeatures, v) { |
| lysc_iffeature_free(ctx->ctx, &mod->features[u].iffeatures[v]); |
| } |
| LY_ARRAY_FREE(mod->features[u].iffeatures); |
| mod->features[u].iffeatures = NULL; |
| |
| LY_ARRAY_FOR(mod->features[u].exts, v) { |
| lysc_ext_instance_free(ctx->ctx, &(mod->features[u].exts)[v]); |
| } |
| LY_ARRAY_FREE(mod->features[u].exts); |
| mod->features[u].exts = NULL; |
| } |
| } |
| |
| /** |
| * @brief Check the features used in if-feature statements applicable to the leafref and its target. |
| * |
| * The set of features used for target must be a subset of features used for the leafref. |
| * This is not a perfect, we should compare the truth tables but it could require too much resources |
| * and RFC 7950 does not require it explicitely, so we simplify that. |
| * |
| * @param[in] refnode The leafref node. |
| * @param[in] target Tha target node of the leafref. |
| * @return LY_SUCCESS or LY_EVALID; |
| */ |
| static LY_ERR |
| lys_compile_leafref_features_validate(const struct lysc_node *refnode, const struct lysc_node *target) |
| { |
| LY_ERR ret = LY_EVALID; |
| const struct lysc_node *iter; |
| LY_ARRAY_COUNT_TYPE u, v; |
| struct ly_set features = {0}; |
| |
| for (iter = refnode; iter; iter = iter->parent) { |
| if (iter->iffeatures) { |
| LY_ARRAY_FOR(iter->iffeatures, u) { |
| LY_ARRAY_FOR(iter->iffeatures[u].features, v) { |
| LY_CHECK_GOTO(ly_set_add(&features, iter->iffeatures[u].features[v], 0, NULL), cleanup); |
| } |
| } |
| } |
| } |
| |
| /* we should have, in features set, a superset of features applicable to the target node. |
| * If the feature is not present, we don;t have a subset of features applicable |
| * to the leafref itself. */ |
| for (iter = target; iter; iter = iter->parent) { |
| if (iter->iffeatures) { |
| LY_ARRAY_FOR(iter->iffeatures, u) { |
| LY_ARRAY_FOR(iter->iffeatures[u].features, v) { |
| if (!ly_set_contains(&features, iter->iffeatures[u].features[v], NULL)) { |
| /* feature not present */ |
| goto cleanup; |
| } |
| } |
| } |
| } |
| } |
| ret = LY_SUCCESS; |
| |
| cleanup: |
| ly_set_erase(&features, NULL); |
| return ret; |
| } |
| |
| static void * |
| lys_compile_extension_instance_storage(enum ly_stmt stmt, struct lysc_ext_substmt *substmts) |
| { |
| for (LY_ARRAY_COUNT_TYPE u = 0; substmts[u].stmt; ++u) { |
| if (substmts[u].stmt == stmt) { |
| return substmts[u].storage; |
| } |
| } |
| return NULL; |
| } |
| |
| LY_ERR |
| lys_compile_extension_instance(struct lysc_ctx *ctx, const struct lysp_ext_instance *ext, struct lysc_ext_substmt *substmts) |
| { |
| LY_ERR ret = LY_EVALID, r; |
| LY_ARRAY_COUNT_TYPE u; |
| struct lysp_stmt *stmt; |
| struct lysp_qname qname; |
| void *parsed = NULL, **compiled = NULL; |
| |
| /* check for invalid substatements */ |
| for (stmt = ext->child; stmt; stmt = stmt->next) { |
| if (stmt->flags & (LYS_YIN_ATTR | LYS_YIN_ARGUMENT)) { |
| continue; |
| } |
| for (u = 0; substmts[u].stmt; ++u) { |
| if (substmts[u].stmt == stmt->kw) { |
| break; |
| } |
| } |
| if (!substmts[u].stmt) { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "Invalid keyword \"%s\" as a child of \"%s%s%s\" extension instance.", |
| stmt->stmt, ext->name, ext->argument ? " " : "", ext->argument ? ext->argument : ""); |
| goto cleanup; |
| } |
| } |
| |
| /* TODO store inherited data, e.g. status first, but mark them somehow to allow to overwrite them and not detect duplicity */ |
| |
| /* keep order of the processing the same as the order in the defined substmts, |
| * the order is important for some of the statements depending on others (e.g. type needs status and units) */ |
| for (u = 0; substmts[u].stmt; ++u) { |
| ly_bool stmt_present = 0; |
| |
| for (stmt = ext->child; stmt; stmt = stmt->next) { |
| if (substmts[u].stmt != stmt->kw) { |
| continue; |
| } |
| |
| stmt_present = 1; |
| if (substmts[u].storage) { |
| switch (stmt->kw) { |
| case LY_STMT_STATUS: |
| assert(substmts[u].cardinality < LY_STMT_CARD_SOME); |
| LY_CHECK_ERR_GOTO(r = lysp_stmt_parse(ctx, stmt, stmt->kw, &substmts[u].storage, /* TODO */ NULL), ret = r, cleanup); |
| break; |
| case LY_STMT_UNITS: { |
| const char **units; |
| |
| if (substmts[u].cardinality < LY_STMT_CARD_SOME) { |
| /* single item */ |
| if (*((const char **)substmts[u].storage)) { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DUPSTMT, stmt->stmt); |
| goto cleanup; |
| } |
| units = (const char **)substmts[u].storage; |
| } else { |
| /* sized array */ |
| const char ***units_array = (const char ***)substmts[u].storage; |
| LY_ARRAY_NEW_GOTO(ctx->ctx, *units_array, units, ret, cleanup); |
| } |
| r = lydict_insert(ctx->ctx, stmt->arg, 0, units); |
| LY_CHECK_ERR_GOTO(r, ret = r, cleanup); |
| break; |
| } |
| case LY_STMT_TYPE: { |
| uint16_t *flags = lys_compile_extension_instance_storage(LY_STMT_STATUS, substmts); |
| const char **units = lys_compile_extension_instance_storage(LY_STMT_UNITS, substmts); |
| |
| if (substmts[u].cardinality < LY_STMT_CARD_SOME) { |
| /* single item */ |
| if (*(struct lysc_type **)substmts[u].storage) { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DUPSTMT, stmt->stmt); |
| goto cleanup; |
| } |
| compiled = substmts[u].storage; |
| } else { |
| /* sized array */ |
| struct lysc_type ***types = (struct lysc_type ***)substmts[u].storage, **type = NULL; |
| LY_ARRAY_NEW_GOTO(ctx->ctx, *types, type, ret, cleanup); |
| compiled = (void *)type; |
| } |
| |
| r = lysp_stmt_parse(ctx, stmt, stmt->kw, &parsed, NULL); |
| LY_CHECK_ERR_GOTO(r, ret = r, cleanup); |
| r = lys_compile_type(ctx, ext->parent_type == LYEXT_PAR_NODE ? ((struct lysc_node *)ext->parent)->sp : NULL, |
| flags ? *flags : 0, ctx->pmod, ext->name, parsed, (struct lysc_type **)compiled, |
| units && !*units ? units : NULL, NULL); |
| lysp_type_free(ctx->ctx, parsed); |
| free(parsed); |
| LY_CHECK_ERR_GOTO(r, ret = r, cleanup); |
| break; |
| } |
| case LY_STMT_IF_FEATURE: { |
| struct lysc_iffeature *iff = NULL; |
| |
| if (substmts[u].cardinality < LY_STMT_CARD_SOME) { |
| /* single item */ |
| if (((struct lysc_iffeature *)substmts[u].storage)->features) { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DUPSTMT, stmt->stmt); |
| goto cleanup; |
| } |
| iff = (struct lysc_iffeature *)substmts[u].storage; |
| } else { |
| /* sized array */ |
| struct lysc_iffeature **iffs = (struct lysc_iffeature **)substmts[u].storage; |
| LY_ARRAY_NEW_GOTO(ctx->ctx, *iffs, iff, ret, cleanup); |
| } |
| qname.str = stmt->arg; |
| qname.mod = ctx->pmod; |
| LY_CHECK_ERR_GOTO(r = lys_compile_iffeature(ctx, &qname, iff), ret = r, cleanup); |
| break; |
| } |
| /* TODO support other substatements (parse stmt to lysp and then compile lysp to lysc), |
| * also note that in many statements their extensions are not taken into account */ |
| default: |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "Statement \"%s\" is not supported as an extension (found in \"%s%s%s\") substatement.", |
| stmt->stmt, ext->name, ext->argument ? " " : "", ext->argument ? ext->argument : ""); |
| goto cleanup; |
| } |
| } |
| } |
| |
| if (((substmts[u].cardinality == LY_STMT_CARD_MAND) || (substmts[u].cardinality == LY_STMT_CARD_SOME)) && !stmt_present) { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "Missing mandatory keyword \"%s\" as a child of \"%s%s%s\".", |
| ly_stmt2str(substmts[u].stmt), ext->name, ext->argument ? " " : "", ext->argument ? ext->argument : ""); |
| goto cleanup; |
| } |
| } |
| |
| ret = LY_SUCCESS; |
| |
| cleanup: |
| return ret; |
| } |
| |
| /** |
| * @brief Check when for cyclic dependencies. |
| * |
| * @param[in] set Set with all the referenced nodes. |
| * @param[in] node Node whose "when" referenced nodes are in @p set. |
| * @return LY_ERR value |
| */ |
| static LY_ERR |
| lys_compile_unres_when_cyclic(struct lyxp_set *set, const struct lysc_node *node) |
| { |
| struct lyxp_set tmp_set; |
| struct lyxp_set_scnode *xp_scnode; |
| uint32_t i, j; |
| LY_ARRAY_COUNT_TYPE u; |
| struct lysc_when *when; |
| LY_ERR ret = LY_SUCCESS; |
| |
| memset(&tmp_set, 0, sizeof tmp_set); |
| |
| /* prepare in_ctx of the set */ |
| for (i = 0; i < set->used; ++i) { |
| xp_scnode = &set->val.scnodes[i]; |
| |
| if (xp_scnode->in_ctx != -1) { |
| /* check node when, skip the context node (it was just checked) */ |
| xp_scnode->in_ctx = 1; |
| } |
| } |
| |
| for (i = 0; i < set->used; ++i) { |
| xp_scnode = &set->val.scnodes[i]; |
| if (xp_scnode->in_ctx != 1) { |
| /* already checked */ |
| continue; |
| } |
| |
| if ((xp_scnode->type != LYXP_NODE_ELEM) || (xp_scnode->scnode->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)) || |
| !xp_scnode->scnode->when) { |
| /* no when to check */ |
| xp_scnode->in_ctx = 0; |
| continue; |
| } |
| |
| node = xp_scnode->scnode; |
| do { |
| LY_ARRAY_FOR(node->when, u) { |
| when = node->when[u]; |
| ret = lyxp_atomize(when->cond, node->module, LY_PREF_SCHEMA_RESOLVED, when->prefixes, when->context, |
| &tmp_set, LYXP_SCNODE_SCHEMA); |
| if (ret != LY_SUCCESS) { |
| LOGVAL(set->ctx, LY_VLOG_LYSC, node, LYVE_SEMANTICS, "Invalid when condition \"%s\".", when->cond->expr); |
| goto cleanup; |
| } |
| |
| for (j = 0; j < tmp_set.used; ++j) { |
| /* skip roots'n'stuff */ |
| if (tmp_set.val.scnodes[j].type == LYXP_NODE_ELEM) { |
| /* try to find this node in our set */ |
| uint32_t idx; |
| if (lyxp_set_scnode_contains(set, tmp_set.val.scnodes[j].scnode, LYXP_NODE_ELEM, -1, &idx) && (set->val.scnodes[idx].in_ctx == -1)) { |
| LOGVAL(set->ctx, LY_VLOG_LYSC, node, LY_VCODE_CIRC_WHEN, node->name, set->val.scnodes[idx].scnode->name); |
| ret = LY_EVALID; |
| goto cleanup; |
| } |
| |
| /* needs to be checked, if in both sets, will be ignored */ |
| tmp_set.val.scnodes[j].in_ctx = 1; |
| } else { |
| /* no when, nothing to check */ |
| tmp_set.val.scnodes[j].in_ctx = 0; |
| } |
| } |
| |
| /* merge this set into the global when set */ |
| lyxp_set_scnode_merge(set, &tmp_set); |
| } |
| |
| /* check when of non-data parents as well */ |
| node = node->parent; |
| } while (node && (node->nodetype & (LYS_CASE | LYS_CHOICE))); |
| |
| /* this node when was checked (xp_scnode could have been reallocd) */ |
| set->val.scnodes[i].in_ctx = -1; |
| } |
| |
| cleanup: |
| lyxp_set_free_content(&tmp_set); |
| return ret; |
| } |
| |
| LY_ERR |
| lysc_check_status(struct lysc_ctx *ctx, uint16_t flags1, void *mod1, const char *name1, uint16_t flags2, void *mod2, |
| const char *name2) |
| { |
| uint16_t flg1, flg2; |
| |
| flg1 = (flags1 & LYS_STATUS_MASK) ? (flags1 & LYS_STATUS_MASK) : LYS_STATUS_CURR; |
| flg2 = (flags2 & LYS_STATUS_MASK) ? (flags2 & LYS_STATUS_MASK) : LYS_STATUS_CURR; |
| |
| if ((flg1 < flg2) && (mod1 == mod2)) { |
| if (ctx) { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, |
| "A %s definition \"%s\" is not allowed to reference %s definition \"%s\".", |
| flg1 == LYS_STATUS_CURR ? "current" : "deprecated", name1, |
| flg2 == LYS_STATUS_OBSLT ? "obsolete" : "deprecated", name2); |
| } |
| return LY_EVALID; |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Check parsed expression for any prefixes of unimplemented modules. |
| * |
| * @param[in] ctx libyang context. |
| * @param[in] expr Parsed expression. |
| * @param[in] format Prefix format. |
| * @param[in] prefix_data Format-specific data (see ::ly_resolve_prefix()). |
| * @param[out] mod_p Optional module that is not implemented. |
| * @return Whether all the found modules are implemented or at least one is not. |
| */ |
| static ly_bool |
| lys_compile_expr_target_is_implemented(const struct ly_ctx *ctx, const struct lyxp_expr *expr, LY_PREFIX_FORMAT format, |
| void *prefix_data, const struct lys_module **mod_p) |
| { |
| uint32_t i; |
| const char *ptr, *start; |
| const struct lys_module *mod; |
| |
| for (i = 0; i < expr->used; ++i) { |
| if ((expr->tokens[i] != LYXP_TOKEN_NAMETEST) && (expr->tokens[i] != LYXP_TOKEN_LITERAL)) { |
| /* token cannot have a prefix */ |
| continue; |
| } |
| |
| start = expr->expr + expr->tok_pos[i]; |
| if (!(ptr = ly_strnchr(start, ':', expr->tok_len[i]))) { |
| /* token without a prefix */ |
| continue; |
| } |
| |
| if (!(mod = ly_resolve_prefix(ctx, start, ptr - start, format, prefix_data))) { |
| /* unknown prefix, do not care right now */ |
| continue; |
| } |
| |
| if (!mod->implemented) { |
| /* unimplemented module found */ |
| if (mod_p) { |
| *mod_p = mod; |
| } |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| /** |
| * @brief Check when/must expressions of a node on a complete compiled schema tree. |
| * |
| * @param[in] ctx Compile context. |
| * @param[in] node Node to check. |
| * @return LY_ERR value |
| */ |
| static LY_ERR |
| lys_compile_unres_xpath(struct lysc_ctx *ctx, const struct lysc_node *node) |
| { |
| struct lyxp_set tmp_set; |
| uint32_t i, opts; |
| LY_ARRAY_COUNT_TYPE u; |
| ly_bool input_done = 0; |
| struct lysc_when **when = NULL; |
| struct lysc_must *musts = NULL; |
| LY_ERR ret = LY_SUCCESS; |
| const struct lysc_node *op; |
| const struct lys_module *mod; |
| |
| memset(&tmp_set, 0, sizeof tmp_set); |
| opts = LYXP_SCNODE_SCHEMA; |
| if (node->flags & LYS_CONFIG_R) { |
| for (op = node->parent; op && !(op->nodetype & (LYS_RPC | LYS_ACTION)); op = op->parent) {} |
| if (op) { |
| /* we are actually in output */ |
| opts = LYXP_SCNODE_OUTPUT; |
| } |
| } |
| |
| switch (node->nodetype) { |
| case LYS_CONTAINER: |
| when = ((struct lysc_node_container *)node)->when; |
| musts = ((struct lysc_node_container *)node)->musts; |
| break; |
| case LYS_CHOICE: |
| when = ((struct lysc_node_choice *)node)->when; |
| break; |
| case LYS_LEAF: |
| when = ((struct lysc_node_leaf *)node)->when; |
| musts = ((struct lysc_node_leaf *)node)->musts; |
| break; |
| case LYS_LEAFLIST: |
| when = ((struct lysc_node_leaflist *)node)->when; |
| musts = ((struct lysc_node_leaflist *)node)->musts; |
| break; |
| case LYS_LIST: |
| when = ((struct lysc_node_list *)node)->when; |
| musts = ((struct lysc_node_list *)node)->musts; |
| break; |
| case LYS_ANYXML: |
| case LYS_ANYDATA: |
| when = ((struct lysc_node_anydata *)node)->when; |
| musts = ((struct lysc_node_anydata *)node)->musts; |
| break; |
| case LYS_CASE: |
| when = ((struct lysc_node_case *)node)->when; |
| break; |
| case LYS_NOTIF: |
| when = ((struct lysc_notif *)node)->when; |
| musts = ((struct lysc_notif *)node)->musts; |
| break; |
| case LYS_RPC: |
| case LYS_ACTION: |
| /* first process when and input musts */ |
| when = ((struct lysc_action *)node)->when; |
| musts = ((struct lysc_action *)node)->input.musts; |
| break; |
| default: |
| /* nothing to check */ |
| break; |
| } |
| |
| LY_ARRAY_FOR(when, u) { |
| /* first check whether all the referenced modules are implemented */ |
| if (!lys_compile_expr_target_is_implemented(ctx->ctx, when[u]->cond, LY_PREF_SCHEMA_RESOLVED, |
| when[u]->prefixes, &mod)) { |
| LOGWRN(ctx->ctx, "When condition \"%s\" check skipped because referenced module \"%s\" is not implemented.", |
| when[u]->cond->expr, mod->name); |
| continue; |
| } |
| |
| /* check "when" */ |
| ret = lyxp_atomize(when[u]->cond, node->module, LY_PREF_SCHEMA_RESOLVED, when[u]->prefixes, when[u]->context, |
| &tmp_set, opts); |
| if (ret != LY_SUCCESS) { |
| LOGVAL(ctx->ctx, LY_VLOG_LYSC, node, LYVE_SEMANTICS, "Invalid when condition \"%s\".", when[u]->cond->expr); |
| goto cleanup; |
| } |
| |
| ctx->path[0] = '\0'; |
| lysc_path((struct lysc_node *)node, LYSC_PATH_LOG, ctx->path, LYSC_CTX_BUFSIZE); |
| for (i = 0; i < tmp_set.used; ++i) { |
| /* skip roots'n'stuff */ |
| if ((tmp_set.val.scnodes[i].type == LYXP_NODE_ELEM) && (tmp_set.val.scnodes[i].in_ctx != -1)) { |
| struct lysc_node *schema = tmp_set.val.scnodes[i].scnode; |
| |
| /* XPath expression cannot reference "lower" status than the node that has the definition */ |
| ret = lysc_check_status(ctx, when[u]->flags, node->module, node->name, schema->flags, schema->module, |
| schema->name); |
| LY_CHECK_GOTO(ret, cleanup); |
| |
| /* check dummy node accessing */ |
| if (schema == node) { |
| LOGVAL(ctx->ctx, LY_VLOG_LYSC, node, LY_VCODE_DUMMY_WHEN, node->name); |
| ret = LY_EVALID; |
| goto cleanup; |
| } |
| } |
| } |
| |
| /* check cyclic dependencies */ |
| ret = lys_compile_unres_when_cyclic(&tmp_set, node); |
| LY_CHECK_GOTO(ret, cleanup); |
| |
| lyxp_set_free_content(&tmp_set); |
| } |
| |
| check_musts: |
| LY_ARRAY_FOR(musts, u) { |
| /* first check whether all the referenced modules are implemented */ |
| if (!lys_compile_expr_target_is_implemented(ctx->ctx, musts[u].cond, LY_PREF_SCHEMA_RESOLVED, |
| musts[u].prefixes, &mod)) { |
| LOGWRN(ctx->ctx, "Must condition \"%s\" check skipped because referenced module \"%s\" is not implemented.", |
| musts[u].cond->expr, mod->name); |
| continue; |
| } |
| |
| /* check "must" */ |
| ret = lyxp_atomize(musts[u].cond, node->module, LY_PREF_SCHEMA_RESOLVED, musts[u].prefixes, node, &tmp_set, opts); |
| if (ret != LY_SUCCESS) { |
| LOGVAL(ctx->ctx, LY_VLOG_LYSC, node, LYVE_SEMANTICS, "Invalid must restriction \"%s\".", musts[u].cond->expr); |
| goto cleanup; |
| } |
| |
| ctx->path[0] = '\0'; |
| lysc_path((struct lysc_node *)node, LYSC_PATH_LOG, ctx->path, LYSC_CTX_BUFSIZE); |
| for (i = 0; i < tmp_set.used; ++i) { |
| /* skip roots'n'stuff */ |
| if (tmp_set.val.scnodes[i].type == LYXP_NODE_ELEM) { |
| /* XPath expression cannot reference "lower" status than the node that has the definition */ |
| ret = lysc_check_status(ctx, node->flags, node->module, node->name, tmp_set.val.scnodes[i].scnode->flags, |
| tmp_set.val.scnodes[i].scnode->module, tmp_set.val.scnodes[i].scnode->name); |
| LY_CHECK_GOTO(ret, cleanup); |
| } |
| } |
| |
| lyxp_set_free_content(&tmp_set); |
| } |
| |
| if ((node->nodetype & (LYS_RPC | LYS_ACTION)) && !input_done) { |
| /* now check output musts */ |
| input_done = 1; |
| when = NULL; |
| musts = ((struct lysc_action *)node)->output.musts; |
| opts = LYXP_SCNODE_OUTPUT; |
| goto check_musts; |
| } |
| |
| cleanup: |
| lyxp_set_free_content(&tmp_set); |
| return ret; |
| } |
| |
| /** |
| * @brief Check leafref for its target existence on a complete compiled schema tree. |
| * |
| * @param[in] ctx Compile context. |
| * @param[in] node Context node for the leafref. |
| * @param[in] lref Leafref to check/resolve. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lys_compile_unres_leafref(struct lysc_ctx *ctx, const struct lysc_node *node, struct lysc_type_leafref *lref) |
| { |
| const struct lysc_node *target = NULL, *siter; |
| struct ly_path *p; |
| struct lysc_type *type; |
| |
| assert(node->nodetype & (LYS_LEAF | LYS_LEAFLIST)); |
| |
| /* try to find the target */ |
| LY_CHECK_RET(ly_path_compile(ctx->ctx, node->module, node, lref->path, LY_PATH_LREF_TRUE, lysc_is_output(node) ? |
| LY_PATH_OPER_OUTPUT : LY_PATH_OPER_INPUT, LY_PATH_TARGET_MANY, LY_PREF_SCHEMA_RESOLVED, lref->prefixes, &p)); |
| |
| /* get the target node */ |
| target = p[LY_ARRAY_COUNT(p) - 1].node; |
| ly_path_free(node->module->ctx, p); |
| |
| if (!(target->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { |
| LOGVAL(ctx->ctx, LY_VLOG_LYSC, node, LYVE_REFERENCE, |
| "Invalid leafref path \"%s\" - target node is %s instead of leaf or leaf-list.", |
| lref->path->expr, lys_nodetype2str(target->nodetype)); |
| return LY_EVALID; |
| } |
| |
| /* check status */ |
| ctx->path[0] = '\0'; |
| lysc_path(node, LYSC_PATH_LOG, ctx->path, LYSC_CTX_BUFSIZE); |
| ctx->path_len = strlen(ctx->path); |
| if (lysc_check_status(ctx, node->flags, node->module, node->name, target->flags, target->module, target->name)) { |
| return LY_EVALID; |
| } |
| ctx->path_len = 1; |
| ctx->path[1] = '\0'; |
| |
| /* check config */ |
| if (lref->require_instance) { |
| for (siter = node->parent; siter && !(siter->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)); siter = siter->parent) {} |
| if (!siter && (node->flags & LYS_CONFIG_W) && (target->flags & LYS_CONFIG_R)) { |
| LOGVAL(ctx->ctx, LY_VLOG_LYSC, node, LYVE_REFERENCE, "Invalid leafref path \"%s\" - target is supposed" |
| " to represent configuration data (as the leafref does), but it does not.", lref->path->expr); |
| return LY_EVALID; |
| } |
| } |
| |
| /* store the target's type and check for circular chain of leafrefs */ |
| lref->realtype = ((struct lysc_node_leaf *)target)->type; |
| for (type = lref->realtype; type && type->basetype == LY_TYPE_LEAFREF; type = ((struct lysc_type_leafref *)type)->realtype) { |
| if (type == (struct lysc_type *)lref) { |
| /* circular chain detected */ |
| LOGVAL(ctx->ctx, LY_VLOG_LYSC, node, LYVE_REFERENCE, |
| "Invalid leafref path \"%s\" - circular chain of leafrefs detected.", lref->path->expr); |
| return LY_EVALID; |
| } |
| } |
| |
| /* check if leafref and its target are under common if-features */ |
| if (lys_compile_leafref_features_validate(node, target)) { |
| LOGVAL(ctx->ctx, LY_VLOG_LYSC, node, LYVE_REFERENCE, |
| "Invalid leafref path \"%s\" - set of features applicable to the leafref target is not a subset of" |
| " features applicable to the leafref itself.", lref->path->expr); |
| return LY_EVALID; |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| static LY_ERR |
| lys_compile_ietf_netconf_wd_annotation(struct lysc_ctx *ctx, struct lys_module *mod) |
| { |
| struct lysc_ext_instance *ext; |
| struct lysp_ext_instance *ext_p = NULL; |
| struct lysp_stmt *stmt; |
| const struct lys_module *ext_mod; |
| LY_ERR ret = LY_SUCCESS; |
| |
| /* create the parsed extension instance manually */ |
| ext_p = calloc(1, sizeof *ext_p); |
| LY_CHECK_ERR_GOTO(!ext_p, LOGMEM(ctx->ctx); ret = LY_EMEM, cleanup); |
| LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, "md:annotation", 0, &ext_p->name), cleanup); |
| LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, "default", 0, &ext_p->argument), cleanup); |
| ext_p->insubstmt = LYEXT_SUBSTMT_SELF; |
| ext_p->insubstmt_index = 0; |
| |
| ext_p->child = stmt = calloc(1, sizeof *ext_p->child); |
| LY_CHECK_ERR_GOTO(!stmt, LOGMEM(ctx->ctx); ret = LY_EMEM, cleanup); |
| LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, "type", 0, &stmt->stmt), cleanup); |
| LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, "boolean", 0, &stmt->arg), cleanup); |
| stmt->kw = LY_STMT_TYPE; |
| |
| /* allocate new extension instance */ |
| LY_ARRAY_NEW_GOTO(mod->ctx, mod->compiled->exts, ext, ret, cleanup); |
| |
| /* manually get extension definition module */ |
| ext_mod = ly_ctx_get_module_latest(ctx->ctx, "ietf-yang-metadata"); |
| |
| /* compile the extension instance */ |
| LY_CHECK_GOTO(ret = lys_compile_ext(ctx, ext_p, ext, mod->compiled, LYEXT_PAR_MODULE, ext_mod), cleanup); |
| |
| cleanup: |
| lysp_ext_instance_free(ctx->ctx, ext_p); |
| free(ext_p); |
| return ret; |
| } |
| |
| /** |
| * @brief Compile default value(s) for leaf or leaf-list expecting a complete compiled schema tree. |
| * |
| * @param[in] ctx Compile context. |
| * @param[in] node Leaf or leaf-list to compile the default value(s) for. |
| * @param[in] type Type of the default value. |
| * @param[in] dflt Default value. |
| * @param[in] dflt_pmod Parsed module of the @p dflt to resolve possible prefixes. |
| * @param[in,out] storage Storage for the compiled default value. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lys_compile_unres_dflt(struct lysc_ctx *ctx, struct lysc_node *node, struct lysc_type *type, const char *dflt, |
| const struct lysp_module *dflt_pmod, struct lyd_value *storage) |
| { |
| LY_ERR ret; |
| struct ly_err_item *err = NULL; |
| |
| ret = type->plugin->store(ctx->ctx, type, dflt, strlen(dflt), 0, LY_PREF_SCHEMA, (void *)dflt_pmod, |
| LYD_HINT_SCHEMA, node, storage, &err); |
| if (ret == LY_EINCOMPLETE) { |
| /* we have no data so we will not be resolving it */ |
| ret = LY_SUCCESS; |
| } |
| |
| if (ret) { |
| ctx->path[0] = '\0'; |
| lysc_path(node, LYSC_PATH_LOG, ctx->path, LYSC_CTX_BUFSIZE); |
| if (err) { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS, |
| "Invalid default - value does not fit the type (%s).", err->msg); |
| ly_err_free(err); |
| } else { |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS, |
| "Invalid default - value does not fit the type."); |
| } |
| return ret; |
| } |
| |
| ++((struct lysc_type *)storage->realtype)->refcount; |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Compile default value of a leaf expecting a complete compiled schema tree. |
| * |
| * @param[in] ctx Compile context. |
| * @param[in] leaf Leaf that the default value is for. |
| * @param[in] dflt Default value to compile. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lys_compile_unres_leaf_dlft(struct lysc_ctx *ctx, struct lysc_node_leaf *leaf, struct lysp_qname *dflt) |
| { |
| LY_ERR ret; |
| |
| assert(!leaf->dflt); |
| |
| if (leaf->flags & (LYS_MAND_TRUE | LYS_KEY)) { |
| /* ignore default values for keys and mandatory leaves */ |
| return LY_SUCCESS; |
| } |
| |
| /* allocate the default value */ |
| leaf->dflt = calloc(1, sizeof *leaf->dflt); |
| LY_CHECK_ERR_RET(!leaf->dflt, LOGMEM(ctx->ctx), LY_EMEM); |
| |
| /* store the default value */ |
| ret = lys_compile_unres_dflt(ctx, (struct lysc_node *)leaf, leaf->type, dflt->str, dflt->mod, leaf->dflt); |
| if (ret) { |
| free(leaf->dflt); |
| leaf->dflt = NULL; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * @brief Compile default values of a leaf-list expecting a complete compiled schema tree. |
| * |
| * @param[in] ctx Compile context. |
| * @param[in] llist Leaf-list that the default value(s) are for. |
| * @param[in] dflt Default value to compile, in case of a single value. |
| * @param[in] dflts Sized array of default values, in case of more values. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lys_compile_unres_llist_dflts(struct lysc_ctx *ctx, struct lysc_node_leaflist *llist, struct lysp_qname *dflt, |
| struct lysp_qname *dflts) |
| { |
| LY_ERR ret; |
| LY_ARRAY_COUNT_TYPE orig_count, u, v; |
| |
| assert(dflt || dflts); |
| |
| if (llist->dflts) { |
| /* there were already some defaults and we are adding new by deviations */ |
| assert(dflts); |
| orig_count = LY_ARRAY_COUNT(llist->dflts); |
| } else { |
| orig_count = 0; |
| } |
| |
| /* allocate new items */ |
| if (dflts) { |
| LY_ARRAY_CREATE_RET(ctx->ctx, llist->dflts, orig_count + LY_ARRAY_COUNT(dflts), LY_EMEM); |
| } else { |
| LY_ARRAY_CREATE_RET(ctx->ctx, llist->dflts, orig_count + 1, LY_EMEM); |
| } |
| |
| /* fill each new default value */ |
| if (dflts) { |
| LY_ARRAY_FOR(dflts, u) { |
| llist->dflts[orig_count + u] = calloc(1, sizeof **llist->dflts); |
| ret = lys_compile_unres_dflt(ctx, (struct lysc_node *)llist, llist->type, dflts[u].str, dflts[u].mod, |
| llist->dflts[orig_count + u]); |
| LY_CHECK_ERR_RET(ret, free(llist->dflts[orig_count + u]), ret); |
| LY_ARRAY_INCREMENT(llist->dflts); |
| } |
| } else { |
| llist->dflts[orig_count] = calloc(1, sizeof **llist->dflts); |
| ret = lys_compile_unres_dflt(ctx, (struct lysc_node *)llist, llist->type, dflt->str, dflt->mod, |
| llist->dflts[orig_count]); |
| LY_CHECK_ERR_RET(ret, free(llist->dflts[orig_count]), ret); |
| LY_ARRAY_INCREMENT(llist->dflts); |
| } |
| |
| /* check default value uniqueness */ |
| if (llist->flags & LYS_CONFIG_W) { |
| /* configuration data values must be unique - so check the default values */ |
| for (u = orig_count; u < LY_ARRAY_COUNT(llist->dflts); ++u) { |
| for (v = 0; v < u; ++v) { |
| if (!llist->dflts[u]->realtype->plugin->compare(llist->dflts[u], llist->dflts[v])) { |
| lysc_update_path(ctx, llist->parent, llist->name); |
| LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS, |
| "Configuration leaf-list has multiple defaults of the same value \"%s\".", |
| llist->dflts[u]->canonical); |
| lysc_update_path(ctx, NULL, NULL); |
| return LY_EVALID; |
| } |
| } |
| } |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Finish compilation of all the unres sets of a compile context. |
| * |
| * @param[in] ctx Compile context with unres sets. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lys_compile_unres(struct lysc_ctx *ctx) |
| { |
| struct lysc_node *node; |
| struct lysc_type *type, *typeiter; |
| struct lysc_type_leafref *lref; |
| struct lysc_augment *aug; |
| struct lysc_deviation *dev; |
| LY_ARRAY_COUNT_TYPE v; |
| uint32_t i; |
| |
| /* for leafref, we need 2 rounds - first detects circular chain by storing the first referred type (which |
| * can be also leafref, in case it is already resolved, go through the chain and check that it does not |
| * point to the starting leafref type). The second round stores the first non-leafref type for later data validation. */ |
| for (i = 0; i < ctx->leafrefs.count; ++i) { |
| node = ctx->leafrefs.objs[i]; |
| assert(node->nodetype & (LYS_LEAF | LYS_LEAFLIST)); |
| type = ((struct lysc_node_leaf *)node)->type; |
| if (type->basetype == LY_TYPE_LEAFREF) { |
| LY_CHECK_RET(lys_compile_unres_leafref(ctx, node, (struct lysc_type_leafref *)type)); |
| } else if (type->basetype == LY_TYPE_UNION) { |
| LY_ARRAY_FOR(((struct lysc_type_union *)type)->types, v) { |
| if (((struct lysc_type_union *)type)->types[v]->basetype == LY_TYPE_LEAFREF) { |
| lref = (struct lysc_type_leafref *)((struct lysc_type_union *)type)->types[v]; |
| LY_CHECK_RET(lys_compile_unres_leafref(ctx, node, lref)); |
| } |
| } |
| } |
| } |
| for (i = 0; i < ctx->leafrefs.count; ++i) { |
| /* store pointer to the real type */ |
| type = ((struct lysc_node_leaf *)ctx->leafrefs.objs[i])->type; |
| if (type->basetype == LY_TYPE_LEAFREF) { |
| for (typeiter = ((struct lysc_type_leafref *)type)->realtype; |
| typeiter->basetype == LY_TYPE_LEAFREF; |
| typeiter = ((struct lysc_type_leafref *)typeiter)->realtype) {} |
| ((struct lysc_type_leafref *)type)->realtype = typeiter; |
| } else if (type->basetype == LY_TYPE_UNION) { |
| LY_ARRAY_FOR(((struct lysc_type_union *)type)->types, v) { |
| if (((struct lysc_type_union *)type)->types[v]->basetype == LY_TYPE_LEAFREF) { |
| for (typeiter = ((struct lysc_type_leafref *)((struct lysc_type_union *)type)->types[v])->realtype; |
| typeiter->basetype == LY_TYPE_LEAFREF; |
| typeiter = ((struct lysc_type_leafref *)typeiter)->realtype) {} |
| ((struct lysc_type_leafref *)((struct lysc_type_union *)type)->types[v])->realtype = typeiter; |
| } |
| } |
| } |
| } |
| |
| /* check xpath */ |
| for (i = 0; i < ctx->xpath.count; ++i) { |
| LY_CHECK_RET(lys_compile_unres_xpath(ctx, ctx->xpath.objs[i])); |
| } |
| |
| /* finish incomplete default values compilation */ |
| for (i = 0; i < ctx->dflts.count; ++i) { |
| struct lysc_unres_dflt *r = ctx->dflts.objs[i]; |
| if (r->leaf->nodetype == LYS_LEAF) { |
| LY_CHECK_RET(lys_compile_unres_leaf_dlft(ctx, r->leaf, r->dflt)); |
| } else { |
| LY_CHECK_RET(lys_compile_unres_llist_dflts(ctx, r->llist, r->dflt, r->dflts)); |
| } |
| } |
| |
| /* check that all augments were applied */ |
| for (i = 0; i < ctx->augs.count; ++i) { |
| aug = ctx->augs.objs[i]; |
| LOGVAL(ctx->ctx, LY_VLOG_NONE, NULL, LYVE_REFERENCE, |
| "Augment target node \"%s\" from module \"%s\" was not found.", aug->nodeid->expr, |
| LYSP_MODULE_NAME(aug->nodeid_pmod)); |
| } |
| if (ctx->augs.count) { |
| return LY_ENOTFOUND; |
| } |
| |
| /* check that all deviations were applied */ |
| for (i = 0; i < ctx->devs.count; ++i) { |
| dev = ctx->devs.objs[i]; |
| LOGVAL(ctx->ctx, LY_VLOG_NONE, NULL, LYVE_REFERENCE, |
| "Deviation(s) target node \"%s\" from module \"%s\" was not found.", dev->nodeid->expr, |
| LYSP_MODULE_NAME(dev->dev_pmods[0])); |
| } |
| if (ctx->devs.count) { |
| return LY_ENOTFOUND; |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Compile features in the current module and all its submodules. |
| * |
| * @param[in] ctx Compile context. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lys_compile_features(struct lysc_ctx *ctx) |
| { |
| struct lysp_submodule *submod; |
| LY_ARRAY_COUNT_TYPE u, v; |
| |
| if (!ctx->cur_mod->features) { |
| /* features are compiled directly into the module structure, |
| * but it must be done in two steps to allow forward references (via if-feature) between the features themselves */ |
| LY_CHECK_RET(lys_feature_precompile(ctx, NULL, NULL, ctx->cur_mod->parsed->features, &ctx->cur_mod->features)); |
| LY_ARRAY_FOR(ctx->cur_mod->parsed->includes, v) { |
| submod = ctx->cur_mod->parsed->includes[v].submodule; |
| LY_CHECK_RET(lys_feature_precompile(ctx, NULL, NULL, submod->features, &ctx->cur_mod->features)); |
| } |
| } |
| |
| /* finish feature compilation, not only for the main module, but also for the submodules. |
| * Due to possible forward references, it must be done when all the features (including submodules) |
| * are present. */ |
| LY_ARRAY_FOR(ctx->cur_mod->parsed->features, u) { |
| LY_CHECK_RET(lys_feature_precompile_finish(ctx, &ctx->cur_mod->parsed->features[u], ctx->cur_mod->features)); |
| } |
| |
| lysc_update_path(ctx, NULL, "{submodule}"); |
| LY_ARRAY_FOR(ctx->cur_mod->parsed->includes, v) { |
| submod = ctx->cur_mod->parsed->includes[v].submodule; |
| |
| lysc_update_path(ctx, NULL, submod->name); |
| LY_ARRAY_FOR(submod->features, u) { |
| LY_CHECK_RET(lys_feature_precompile_finish(ctx, &submod->features[u], ctx->cur_mod->features)); |
| } |
| lysc_update_path(ctx, NULL, NULL); |
| } |
| lysc_update_path(ctx, NULL, NULL); |
| |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Compile identites in the current module and all its submodules. |
| * |
| * @param[in] ctx Compile context. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lys_compile_identities(struct lysc_ctx *ctx) |
| { |
| struct lysp_submodule *submod; |
| LY_ARRAY_COUNT_TYPE u; |
| |
| if (!ctx->cur_mod->identities) { |
| LY_CHECK_RET(lys_identity_precompile(ctx, NULL, NULL, ctx->cur_mod->parsed->identities, &ctx->cur_mod->identities)); |
| LY_ARRAY_FOR(ctx->cur_mod->parsed->includes, u) { |
| submod = ctx->cur_mod->parsed->includes[u].submodule; |
| LY_CHECK_RET(lys_identity_precompile(ctx, NULL, NULL, submod->identities, &ctx->cur_mod->identities)); |
| } |
| } |
| |
| if (ctx->cur_mod->parsed->identities) { |
| LY_CHECK_RET(lys_compile_identities_derived(ctx, ctx->cur_mod->parsed->identities, ctx->cur_mod->identities)); |
| } |
| lysc_update_path(ctx, NULL, "{submodule}"); |
| LY_ARRAY_FOR(ctx->cur_mod->parsed->includes, u) { |
| |
| submod = ctx->cur_mod->parsed->includes[u].submodule; |
| if (submod->identities) { |
| lysc_update_path(ctx, NULL, submod->name); |
| LY_CHECK_RET(lys_compile_identities_derived(ctx, submod->identities, ctx->cur_mod->identities)); |
| lysc_update_path(ctx, NULL, NULL); |
| } |
| } |
| lysc_update_path(ctx, NULL, NULL); |
| |
| return LY_SUCCESS; |
| } |
| |
| LY_ERR |
| lys_compile(struct lys_module *mod, uint32_t options) |
| { |
| struct lysc_ctx ctx = {0}; |
| struct lysc_module *mod_c; |
| struct lysp_module *sp; |
| struct lysp_submodule *submod; |
| struct lysp_node *pnode; |
| struct lysp_grp *grps; |
| LY_ARRAY_COUNT_TYPE u, v; |
| uint32_t i; |
| LY_ERR ret = LY_SUCCESS; |
| |
| LY_CHECK_ARG_RET(NULL, mod, mod->parsed, !mod->compiled, mod->ctx, LY_EINVAL); |
| |
| if (!mod->implemented) { |
| /* just imported modules are not compiled */ |
| return LY_SUCCESS; |
| } |
| |
| /* context will be changed */ |
| ++mod->ctx->module_set_id; |
| |
| sp = mod->parsed; |
| |
| ctx.ctx = mod->ctx; |
| ctx.cur_mod = mod; |
| ctx.pmod = sp; |
| ctx.options = options; |
| ctx.path_len = 1; |
| ctx.path[0] = '/'; |
| |
| mod->compiled = mod_c = calloc(1, sizeof *mod_c); |
| LY_CHECK_ERR_RET(!mod_c, LOGMEM(mod->ctx), LY_EMEM); |
| mod_c->mod = mod; |
| |
| /* process imports */ |
| LY_ARRAY_FOR(sp->imports, u) { |
| LY_CHECK_GOTO(ret = lys_compile_import(&ctx, &sp->imports[u]), error); |
| } |
| |
| /* features */ |
| LY_CHECK_GOTO(ret = lys_compile_features(&ctx), error); |
| |
| /* identities, work similarly to features with the precompilation */ |
| LY_CHECK_GOTO(ret = lys_compile_identities(&ctx), error); |
| |
| /* augments and deviations */ |
| LY_CHECK_GOTO(ret = lys_precompile_augments_deviations(&ctx), error); |
| |
| /* compile augments and deviations of our module from other modules so they can be applied during compilation */ |
| LY_CHECK_GOTO(ret = lys_precompile_own_augments(&ctx), error); |
| LY_CHECK_GOTO(ret = lys_precompile_own_deviations(&ctx), error); |
| |
| /* data nodes */ |
| LY_LIST_FOR(sp->data, pnode) { |
| LY_CHECK_GOTO(ret = lys_compile_node(&ctx, pnode, NULL, 0, NULL), error); |
| } |
| |
| /* top-level RPCs and notifications */ |
| COMPILE_OP_ARRAY_GOTO(&ctx, sp->rpcs, mod_c->rpcs, NULL, u, lys_compile_action, 0, ret, error); |
| COMPILE_OP_ARRAY_GOTO(&ctx, sp->notifs, mod_c->notifs, NULL, u, lys_compile_notif, 0, ret, error); |
| |
| /* extension instances */ |
| COMPILE_EXTS_GOTO(&ctx, sp->exts, mod_c->exts, mod_c, LYEXT_PAR_MODULE, ret, error); |
| |
| /* the same for submodules */ |
| LY_ARRAY_FOR(sp->includes, u) { |
| submod = sp->includes[u].submodule; |
| ctx.pmod = (struct lysp_module *)submod; |
| |
| LY_LIST_FOR(submod->data, pnode) { |
| ret = lys_compile_node(&ctx, pnode, NULL, 0, NULL); |
| LY_CHECK_GOTO(ret, error); |
| } |
| |
| COMPILE_OP_ARRAY_GOTO(&ctx, submod->rpcs, mod_c->rpcs, NULL, v, lys_compile_action, 0, ret, error); |
| COMPILE_OP_ARRAY_GOTO(&ctx, submod->notifs, mod_c->notifs, NULL, v, lys_compile_notif, 0, ret, error); |
| |
| COMPILE_EXTS_GOTO(&ctx, submod->exts, mod_c->exts, mod_c, LYEXT_PAR_MODULE, ret, error); |
| } |
| |
| /* finish compilation for all unresolved items in the context */ |
| LY_CHECK_GOTO(ret = lys_compile_unres(&ctx), error); |
| |
| /* validate non-instantiated groupings from the parsed schema, |
| * without it we would accept even the schemas with invalid grouping specification */ |
| ctx.pmod = sp; |
| ctx.options |= LYS_COMPILE_GROUPING; |
| LY_ARRAY_FOR(sp->groupings, u) { |
| if (!(sp->groupings[u].flags & LYS_USED_GRP)) { |
| LY_CHECK_GOTO(ret = lys_compile_grouping(&ctx, NULL, &sp->groupings[u]), error); |
| } |
| } |
| LY_LIST_FOR(sp->data, pnode) { |
| grps = (struct lysp_grp *)lysp_node_groupings(pnode); |
| LY_ARRAY_FOR(grps, u) { |
| if (!(grps[u].flags & LYS_USED_GRP)) { |
| LY_CHECK_GOTO(ret = lys_compile_grouping(&ctx, pnode, &grps[u]), error); |
| } |
| } |
| } |
| LY_ARRAY_FOR(sp->includes, u) { |
| submod = sp->includes[u].submodule; |
| ctx.pmod = (struct lysp_module *)submod; |
| |
| LY_ARRAY_FOR(submod->groupings, u) { |
| if (!(submod->groupings[u].flags & LYS_USED_GRP)) { |
| LY_CHECK_GOTO(ret = lys_compile_grouping(&ctx, NULL, &submod->groupings[u]), error); |
| } |
| } |
| LY_LIST_FOR(submod->data, pnode) { |
| grps = (struct lysp_grp *)lysp_node_groupings(pnode); |
| LY_ARRAY_FOR(grps, u) { |
| if (!(grps[u].flags & LYS_USED_GRP)) { |
| LY_CHECK_GOTO(ret = lys_compile_grouping(&ctx, pnode, &grps[u]), error); |
| } |
| } |
| } |
| } |
| ctx.pmod = sp; |
| |
| #if 0 |
| /* hack for NETCONF's edit-config's operation attribute. It is not defined in the schema, but since libyang |
| * implements YANG metadata (annotations), we need its definition. Because the ietf-netconf schema is not the |
| * internal part of libyang, we cannot add the annotation into the schema source, but we do it here to have |
| * the anotation definitions available in the internal schema structure. */ |
| if (ly_strequal(mod->name, "ietf-netconf", 0)) { |
| if (lyp_add_ietf_netconf_annotations(mod)) { |
| lys_free(mod, NULL, 1, 1); |
| return NULL; |
| } |
| } |
| #endif |
| |
| /* add ietf-netconf-with-defaults "default" metadata to the compiled module */ |
| if (!strcmp(mod->name, "ietf-netconf-with-defaults")) { |
| LY_CHECK_GOTO(ret = lys_compile_ietf_netconf_wd_annotation(&ctx, mod), error); |
| } |
| |
| /* there can be no leftover deviations */ |
| LY_CHECK_ERR_GOTO(ctx.devs.count, LOGINT(ctx.ctx); ret = LY_EINT, error); |
| |
| for (i = 0; i < ctx.dflts.count; ++i) { |
| lysc_unres_dflt_free(ctx.ctx, ctx.dflts.objs[i]); |
| } |
| ly_set_erase(&ctx.dflts, NULL); |
| ly_set_erase(&ctx.xpath, NULL); |
| ly_set_erase(&ctx.leafrefs, NULL); |
| ly_set_erase(&ctx.groupings, NULL); |
| ly_set_erase(&ctx.tpdf_chain, NULL); |
| ly_set_erase(&ctx.augs, NULL); |
| ly_set_erase(&ctx.devs, NULL); |
| ly_set_erase(&ctx.uses_augs, NULL); |
| ly_set_erase(&ctx.uses_rfns, NULL); |
| |
| return LY_SUCCESS; |
| |
| error: |
| lys_precompile_augments_deviations_revert(ctx.ctx, mod); |
| lys_feature_precompile_revert(&ctx, mod); |
| for (i = 0; i < ctx.dflts.count; ++i) { |
| lysc_unres_dflt_free(ctx.ctx, ctx.dflts.objs[i]); |
| } |
| ly_set_erase(&ctx.dflts, NULL); |
| ly_set_erase(&ctx.xpath, NULL); |
| ly_set_erase(&ctx.leafrefs, NULL); |
| ly_set_erase(&ctx.groupings, NULL); |
| ly_set_erase(&ctx.tpdf_chain, NULL); |
| for (i = 0; i < ctx.augs.count; ++i) { |
| lysc_augment_free(ctx.ctx, ctx.augs.objs[i]); |
| } |
| ly_set_erase(&ctx.augs, NULL); |
| for (i = 0; i < ctx.devs.count; ++i) { |
| lysc_deviation_free(ctx.ctx, ctx.devs.objs[i]); |
| } |
| ly_set_erase(&ctx.devs, NULL); |
| for (i = 0; i < ctx.uses_augs.count; ++i) { |
| lysc_augment_free(ctx.ctx, ctx.uses_augs.objs[i]); |
| } |
| ly_set_erase(&ctx.uses_augs, NULL); |
| for (i = 0; i < ctx.uses_rfns.count; ++i) { |
| lysc_refine_free(ctx.ctx, ctx.uses_rfns.objs[i]); |
| } |
| ly_set_erase(&ctx.uses_rfns, NULL); |
| lysc_module_free(mod_c, NULL); |
| mod->compiled = NULL; |
| |
| return ret; |
| } |