blob: 3ec4574bda59b68d8764b3afec57a242956c4f78 [file] [log] [blame]
/**
* @file tree_schema.c
* @author Radek Krejci <rkrejci@cesnet.cz>
* @brief Schema tree implementation
*
* Copyright (c) 2015 - 2018 CESNET, z.s.p.o.
*
* This source code is licensed under BSD 3-Clause License (the "License").
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*/
#define _GNU_SOURCE /* asprintf, strdup */
#include "tree_schema.h"
#include <assert.h>
#include <ctype.h>
#include <dirent.h>
#include <errno.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <unistd.h>
#include "common.h"
#include "compat.h"
#include "context.h"
#include "dict.h"
#include "in.h"
#include "in_internal.h"
#include "log.h"
#include "parser_internal.h"
#include "parser_schema.h"
#include "path.h"
#include "plugins_exts.h"
#include "plugins_internal.h"
#include "schema_compile.h"
#include "schema_compile_amend.h"
#include "schema_features.h"
#include "set.h"
#include "tree.h"
#include "tree_edit.h"
#include "tree_schema_free.h"
#include "tree_schema_internal.h"
#include "xpath.h"
const char * const ly_devmod_list[] = {
[LYS_DEV_NOT_SUPPORTED] = "not-supported",
[LYS_DEV_ADD] = "add",
[LYS_DEV_DELETE] = "delete",
[LYS_DEV_REPLACE] = "replace",
};
LIBYANG_API_DEF LY_ERR
lysc_tree_dfs_full(const struct lysc_node *root, lysc_dfs_clb dfs_clb, void *data)
{
struct lysc_node *elem, *elem2;
const struct lysc_node_action *action;
const struct lysc_node_notif *notif;
LY_CHECK_ARG_RET(NULL, root, dfs_clb, LY_EINVAL);
LYSC_TREE_DFS_BEGIN(root, elem) {
/* schema node */
LY_CHECK_RET(dfs_clb(elem, data, &LYSC_TREE_DFS_continue));
LY_LIST_FOR(lysc_node_actions(elem), action) {
LYSC_TREE_DFS_BEGIN(action, elem2) {
/* action subtree */
LY_CHECK_RET(dfs_clb(elem2, data, &LYSC_TREE_DFS_continue));
LYSC_TREE_DFS_END(action, elem2);
}
}
LY_LIST_FOR(lysc_node_notifs(elem), notif) {
LYSC_TREE_DFS_BEGIN(notif, elem2) {
/* notification subtree */
LY_CHECK_RET(dfs_clb(elem2, data, &LYSC_TREE_DFS_continue));
LYSC_TREE_DFS_END(notif, elem2);
}
}
LYSC_TREE_DFS_END(root, elem);
}
return LY_SUCCESS;
}
LIBYANG_API_DEF LY_ERR
lysc_module_dfs_full(const struct lys_module *mod, lysc_dfs_clb dfs_clb, void *data)
{
const struct lysc_node *root;
LY_CHECK_ARG_RET(NULL, mod, mod->compiled, dfs_clb, LY_EINVAL);
/* schema nodes */
LY_LIST_FOR(mod->compiled->data, root) {
LY_CHECK_RET(lysc_tree_dfs_full(root, dfs_clb, data));
}
/* RPCs */
LY_LIST_FOR((const struct lysc_node *)mod->compiled->rpcs, root) {
LY_CHECK_RET(lysc_tree_dfs_full(root, dfs_clb, data));
}
/* notifications */
LY_LIST_FOR((const struct lysc_node *)mod->compiled->notifs, root) {
LY_CHECK_RET(lysc_tree_dfs_full(root, dfs_clb, data));
}
return LY_SUCCESS;
}
static void
lys_getnext_into_case(const struct lysc_node_case *first_case, const struct lysc_node **last, const struct lysc_node **next)
{
for ( ; first_case; first_case = (const struct lysc_node_case *)first_case->next) {
if (first_case->child) {
/* there is something to return */
(*next) = first_case->child;
return;
}
}
/* no children in choice's cases, so go to the choice's sibling instead of into it */
(*last) = (*next);
(*next) = (*next)->next;
}
/**
* @brief Generic getnext function for ::lys_getnext() and ::lys_getnext_ext().
*
* Gets next schema tree (sibling) node element that can be instantiated in a data tree. Returned node can
* be from an augment. If the @p ext is provided, the function is locked inside the schema tree defined in the
* extension instance.
*
* ::lys_getnext_() is supposed to be called sequentially. In the first call, the @p last parameter is usually NULL
* and function starts returning i) the first @p parent's child or ii) the first top level element specified in the
* given extension (if provided) or iii) the first top level element of the @p module.
* Consequent calls suppose to provide the previously returned node as the @p last parameter and still the same
* @p parent and @p module parameters.
*
* Without options, the function is used to traverse only the schema nodes that can be paired with corresponding
* data nodes in a data tree. By setting some @p options the behavior can be modified to the extent that
* all the schema nodes are iteratively returned.
*
* @param[in] last Previously returned schema tree node, or NULL in case of the first call.
* @param[in] parent Parent of the subtree where the function starts processing.
* @param[in] module In case of iterating on top level elements, the @p parent is NULL and
* module must be specified.
* @param[in] ext The extension instance to provide a separate schema tree. To consider the top level elements in the tree,
* the @p parent must be NULL. Anyway, at least one of @p parent, @p module and @p ext parameters must be specified.
* @param[in] options [ORed options](@ref sgetnextflags).
* @return Next schema tree node that can be instantiated in a data tree, NULL in case there is no such element.
*/
static const struct lysc_node *
lys_getnext_(const struct lysc_node *last, const struct lysc_node *parent, const struct lysc_module *module,
const struct lysc_ext_instance *ext, uint32_t options)
{
const struct lysc_node *next = NULL;
ly_bool action_flag = 0, notif_flag = 0, sm_flag = options & LYS_GETNEXT_WITHSCHEMAMOUNT ? 0 : 1;
LY_ARRAY_COUNT_TYPE u;
struct ly_ctx *sm_ctx = NULL;
const struct lys_module *mod;
uint32_t idx;
LY_CHECK_ARG_RET(NULL, parent || module || ext, NULL);
next:
if (!last) {
/* first call */
/* learn where to start */
if (parent) {
/* schema subtree */
next = last = lysc_node_child(parent);
} else {
/* top level data */
if (ext) {
lyplg_ext_get_storage(ext, LY_STMT_DATA_NODE_MASK, sizeof last, (const void **)&last);
next = last;
} else {
next = last = module->data;
}
}
if (!next) {
/* try to get action or notification */
goto repeat;
}
/* test if the next can be returned */
goto check;
} else if (last->nodetype & (LYS_RPC | LYS_ACTION)) {
action_flag = 1;
next = last->next;
} else if (last->nodetype == LYS_NOTIF) {
action_flag = notif_flag = 1;
next = last->next;
} else {
next = last->next;
}
repeat:
if (!next) {
if (last && !sm_flag && parent && (last->module->ctx != parent->module->ctx)) {
sm_flag = 1;
/* find the module of last */
sm_ctx = last->module->ctx;
idx = 0;
while ((mod = ly_ctx_get_module_iter(sm_ctx, &idx))) {
if (mod == last->module) {
break;
}
}
assert(mod);
/* get node from the next mounted module */
while (!next && (mod = ly_ctx_get_module_iter(sm_ctx, &idx))) {
if (!mod->implemented) {
continue;
}
next = lys_getnext(NULL, NULL, mod->compiled, options & ~LYS_GETNEXT_WITHSCHEMAMOUNT);
}
} else if (last && (last->parent != parent)) {
/* go back to parent */
last = last->parent;
goto next;
} else if (!action_flag) {
action_flag = 1;
if (ext) {
lyplg_ext_get_storage(ext, LY_STMT_OP_MASK, sizeof next, (const void **)&next);
} else if (parent) {
next = (struct lysc_node *)lysc_node_actions(parent);
} else {
next = (struct lysc_node *)module->rpcs;
}
} else if (!notif_flag) {
notif_flag = 1;
if (ext) {
lyplg_ext_get_storage(ext, LY_STMT_NOTIFICATION, sizeof next, (const void **)&next);
} else if (parent) {
next = (struct lysc_node *)lysc_node_notifs(parent);
} else {
next = (struct lysc_node *)module->notifs;
}
} else if (!sm_flag) {
sm_flag = 1;
if (parent) {
LY_ARRAY_FOR(parent->exts, u) {
if (!strcmp(parent->exts[u].def->name, "mount-point") &&
!strcmp(parent->exts[u].def->module->name, "ietf-yang-schema-mount")) {
lyplg_ext_schema_mount_create_context(&parent->exts[u], &sm_ctx);
if (sm_ctx) {
/* some usable context created */
break;
}
}
}
if (sm_ctx) {
/* get the first node from the first usable module */
idx = 0;
while (!next && (mod = ly_ctx_get_module_iter(sm_ctx, &idx))) {
if (!mod->implemented) {
continue;
}
next = lys_getnext(NULL, NULL, mod->compiled, options & ~LYS_GETNEXT_WITHSCHEMAMOUNT);
}
if (!next) {
/* no nodes found */
ly_ctx_destroy(sm_ctx);
}
}
}
} else {
return NULL;
}
goto repeat;
}
check:
switch (next->nodetype) {
case LYS_RPC:
case LYS_ACTION:
case LYS_NOTIF:
case LYS_LEAF:
case LYS_ANYXML:
case LYS_ANYDATA:
case LYS_LIST:
case LYS_LEAFLIST:
break;
case LYS_CASE:
if (options & LYS_GETNEXT_WITHCASE) {
break;
} else {
/* go into */
lys_getnext_into_case((const struct lysc_node_case *)next, &last, &next);
}
goto repeat;
case LYS_CONTAINER:
if (!(next->flags & LYS_PRESENCE) && (options & LYS_GETNEXT_INTONPCONT)) {
if (lysc_node_child(next)) {
/* go into */
next = lysc_node_child(next);
} else {
last = next;
next = next->next;
}
goto repeat;
}
break;
case LYS_CHOICE:
if (options & LYS_GETNEXT_WITHCHOICE) {
break;
} else if ((options & LYS_GETNEXT_NOCHOICE) || !lysc_node_child(next)) {
next = next->next;
} else {
if (options & LYS_GETNEXT_WITHCASE) {
next = lysc_node_child(next);
} else {
/* go into */
lys_getnext_into_case(((struct lysc_node_choice *)next)->cases, &last, &next);
}
}
goto repeat;
case LYS_INPUT:
if (options & LYS_GETNEXT_OUTPUT) {
/* skip */
next = next->next;
} else {
/* go into */
next = lysc_node_child(next);
}
goto repeat;
case LYS_OUTPUT:
if (!(options & LYS_GETNEXT_OUTPUT)) {
/* skip */
next = next->next;
} else {
/* go into */
next = lysc_node_child(next);
}
goto repeat;
default:
/* we should not be here */
LOGINT(module ? module->mod->ctx : parent ? parent->module->ctx : ext->module->ctx);
return NULL;
}
return next;
}
LIBYANG_API_DEF const struct lysc_node *
lys_getnext(const struct lysc_node *last, const struct lysc_node *parent, const struct lysc_module *module, uint32_t options)
{
return lys_getnext_(last, parent, module, NULL, options);
}
LIBYANG_API_DEF const struct lysc_node *
lys_getnext_ext(const struct lysc_node *last, const struct lysc_node *parent, const struct lysc_ext_instance *ext, uint32_t options)
{
return lys_getnext_(last, parent, NULL, ext, options);
}
const struct lysc_node *
lysc_ext_find_node(const struct lysc_ext_instance *ext, const struct lys_module *module, const char *name, size_t name_len,
uint16_t nodetype, uint32_t options)
{
const struct lysc_node *node = NULL;
LY_CHECK_ARG_RET(NULL, ext, name, NULL);
if (!nodetype) {
nodetype = LYS_NODETYPE_MASK;
}
if (module && (module != ext->module)) {
return NULL;
}
while ((node = lys_getnext_ext(node, NULL, ext, options))) {
if (!(node->nodetype & nodetype)) {
continue;
}
if (name_len) {
if (!ly_strncmp(node->name, name, name_len)) {
return node;
}
} else {
if (!strcmp(node->name, name)) {
return node;
}
}
}
return NULL;
}
LIBYANG_API_DEF const struct lysc_node *
lys_find_child(const struct lysc_node *parent, const struct lys_module *module, const char *name, size_t name_len,
uint16_t nodetype, uint32_t options)
{
const struct lysc_node *node = NULL;
LY_CHECK_ARG_RET(NULL, module, name, NULL);
LY_CHECK_CTX_EQUAL_RET(parent ? parent->module->ctx : NULL, module->ctx, NULL);
if (!nodetype) {
nodetype = LYS_NODETYPE_MASK;
}
while ((node = lys_getnext(node, parent, module->compiled, options))) {
if (!(node->nodetype & nodetype)) {
continue;
}
if (node->module != module) {
continue;
}
if (name_len) {
if (!ly_strncmp(node->name, name, name_len)) {
return node;
}
} else {
if (!strcmp(node->name, name)) {
return node;
}
}
}
return NULL;
}
LIBYANG_API_DEF LY_ERR
lys_find_xpath_atoms(const struct ly_ctx *ctx, const struct lysc_node *ctx_node, const char *xpath, uint32_t options,
struct ly_set **set)
{
LY_ERR ret = LY_SUCCESS;
struct lyxp_set xp_set;
struct lyxp_expr *exp = NULL;
uint32_t i;
LY_CHECK_ARG_RET(NULL, ctx || ctx_node, xpath, set, LY_EINVAL);
LY_CHECK_CTX_EQUAL_RET(ctx, ctx_node ? ctx_node->module->ctx : NULL, LY_EINVAL);
if (!(options & LYXP_SCNODE_ALL)) {
options |= LYXP_SCNODE;
}
if (!ctx) {
ctx = ctx_node->module->ctx;
}
memset(&xp_set, 0, sizeof xp_set);
/* compile expression */
ret = lyxp_expr_parse(ctx, xpath, 0, 1, &exp);
LY_CHECK_GOTO(ret, cleanup);
/* atomize expression */
ret = lyxp_atomize(ctx, exp, NULL, LY_VALUE_JSON, NULL, ctx_node, ctx_node, &xp_set, options);
LY_CHECK_GOTO(ret, cleanup);
/* allocate return set */
ret = ly_set_new(set);
LY_CHECK_GOTO(ret, cleanup);
/* transform into ly_set */
(*set)->objs = malloc(xp_set.used * sizeof *(*set)->objs);
LY_CHECK_ERR_GOTO(!(*set)->objs, LOGMEM(ctx); ret = LY_EMEM, cleanup);
(*set)->size = xp_set.used;
for (i = 0; i < xp_set.used; ++i) {
if (xp_set.val.scnodes[i].type == LYXP_NODE_ELEM) {
ret = ly_set_add(*set, xp_set.val.scnodes[i].scnode, 1, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
}
cleanup:
lyxp_set_free_content(&xp_set);
lyxp_expr_free(ctx, exp);
return ret;
}
LIBYANG_API_DEF LY_ERR
lys_find_expr_atoms(const struct lysc_node *ctx_node, const struct lys_module *cur_mod, const struct lyxp_expr *expr,
const struct lysc_prefix *prefixes, uint32_t options, struct ly_set **set)
{
LY_ERR ret = LY_SUCCESS;
struct lyxp_set xp_set = {0};
uint32_t i;
LY_CHECK_ARG_RET(NULL, cur_mod, expr, prefixes, set, LY_EINVAL);
LY_CHECK_CTX_EQUAL_RET(ctx_node ? ctx_node->module->ctx : NULL, cur_mod->ctx, LY_EINVAL);
if (!(options & LYXP_SCNODE_ALL)) {
options = LYXP_SCNODE;
}
/* atomize expression */
ret = lyxp_atomize(cur_mod->ctx, expr, cur_mod, LY_VALUE_SCHEMA_RESOLVED, (void *)prefixes, ctx_node, ctx_node,
&xp_set, options);
LY_CHECK_GOTO(ret, cleanup);
/* allocate return set */
ret = ly_set_new(set);
LY_CHECK_GOTO(ret, cleanup);
/* transform into ly_set */
(*set)->objs = malloc(xp_set.used * sizeof *(*set)->objs);
LY_CHECK_ERR_GOTO(!(*set)->objs, LOGMEM(cur_mod->ctx); ret = LY_EMEM, cleanup);
(*set)->size = xp_set.used;
for (i = 0; i < xp_set.used; ++i) {
if ((xp_set.val.scnodes[i].type == LYXP_NODE_ELEM) && (xp_set.val.scnodes[i].in_ctx >= LYXP_SET_SCNODE_ATOM_NODE)) {
assert((xp_set.val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_NODE) ||
(xp_set.val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_VAL) ||
(xp_set.val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_CTX));
ret = ly_set_add(*set, xp_set.val.scnodes[i].scnode, 1, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
}
cleanup:
lyxp_set_free_content(&xp_set);
if (ret) {
ly_set_free(*set, NULL);
*set = NULL;
}
return ret;
}
LIBYANG_API_DEF LY_ERR
lys_find_xpath(const struct ly_ctx *ctx, const struct lysc_node *ctx_node, const char *xpath, uint32_t options,
struct ly_set **set)
{
LY_ERR ret = LY_SUCCESS;
struct lyxp_set xp_set = {0};
struct lyxp_expr *exp = NULL;
uint32_t i;
LY_CHECK_ARG_RET(NULL, ctx || ctx_node, xpath, set, LY_EINVAL);
LY_CHECK_CTX_EQUAL_RET(ctx, ctx_node ? ctx_node->module->ctx : NULL, LY_EINVAL);
if (!(options & LYXP_SCNODE_ALL)) {
options = LYXP_SCNODE;
}
if (!ctx) {
ctx = ctx_node->module->ctx;
}
/* compile expression */
ret = lyxp_expr_parse(ctx, xpath, 0, 1, &exp);
LY_CHECK_GOTO(ret, cleanup);
/* atomize expression */
ret = lyxp_atomize(ctx, exp, NULL, LY_VALUE_JSON, NULL, ctx_node, ctx_node, &xp_set, options);
LY_CHECK_GOTO(ret, cleanup);
/* allocate return set */
ret = ly_set_new(set);
LY_CHECK_GOTO(ret, cleanup);
/* transform into ly_set */
(*set)->objs = malloc(xp_set.used * sizeof *(*set)->objs);
LY_CHECK_ERR_GOTO(!(*set)->objs, LOGMEM(ctx); ret = LY_EMEM, cleanup);
(*set)->size = xp_set.used;
for (i = 0; i < xp_set.used; ++i) {
if ((xp_set.val.scnodes[i].type == LYXP_NODE_ELEM) && (xp_set.val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_CTX)) {
ret = ly_set_add(*set, xp_set.val.scnodes[i].scnode, 1, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
}
cleanup:
lyxp_set_free_content(&xp_set);
lyxp_expr_free(ctx, exp);
if (ret) {
ly_set_free(*set, NULL);
*set = NULL;
}
return ret;
}
LIBYANG_API_DEF LY_ERR
lys_find_lypath_atoms(const struct ly_path *path, struct ly_set **set)
{
LY_ERR ret = LY_SUCCESS;
LY_ARRAY_COUNT_TYPE u, v;
LY_CHECK_ARG_RET(NULL, path, set, LY_EINVAL);
/* allocate return set */
LY_CHECK_RET(ly_set_new(set));
LY_ARRAY_FOR(path, u) {
/* add nodes from the path */
LY_CHECK_GOTO(ret = ly_set_add(*set, (void *)path[u].node, 0, NULL), cleanup);
if (path[u].pred_type == LY_PATH_PREDTYPE_LIST) {
LY_ARRAY_FOR(path[u].predicates, v) {
/* add all the keys in a predicate */
LY_CHECK_GOTO(ret = ly_set_add(*set, (void *)path[u].predicates[v].key, 0, NULL), cleanup);
}
}
}
cleanup:
if (ret) {
ly_set_free(*set, NULL);
*set = NULL;
}
return ret;
}
LIBYANG_API_DEF LY_ERR
lys_find_path_atoms(const struct ly_ctx *ctx, const struct lysc_node *ctx_node, const char *path, ly_bool output,
struct ly_set **set)
{
LY_ERR ret = LY_SUCCESS;
uint8_t oper;
struct lyxp_expr *expr = NULL;
struct ly_path *p = NULL;
LY_CHECK_ARG_RET(ctx, ctx || ctx_node, path, set, LY_EINVAL);
LY_CHECK_CTX_EQUAL_RET(ctx, ctx_node ? ctx_node->module->ctx : NULL, LY_EINVAL);
if (!ctx) {
ctx = ctx_node->module->ctx;
}
/* parse */
ret = lyxp_expr_parse(ctx, path, strlen(path), 0, &expr);
LY_CHECK_GOTO(ret, cleanup);
/* compile */
oper = output ? LY_PATH_OPER_OUTPUT : LY_PATH_OPER_INPUT;
ret = ly_path_compile(ctx, NULL, ctx_node, NULL, expr, oper, LY_PATH_TARGET_MANY, 0, LY_VALUE_JSON, NULL, &p);
LY_CHECK_GOTO(ret, cleanup);
/* resolve */
ret = lys_find_lypath_atoms(p, set);
cleanup:
ly_path_free(ctx, p);
lyxp_expr_free(ctx, expr);
return ret;
}
LIBYANG_API_DEF const struct lysc_node *
lys_find_path(const struct ly_ctx *ctx, const struct lysc_node *ctx_node, const char *path, ly_bool output)
{
const struct lysc_node *snode = NULL;
struct lyxp_expr *exp = NULL;
struct ly_path *p = NULL;
LY_ERR ret;
uint8_t oper;
LY_CHECK_ARG_RET(ctx, ctx || ctx_node, NULL);
LY_CHECK_CTX_EQUAL_RET(ctx, ctx_node ? ctx_node->module->ctx : NULL, NULL);
if (!ctx) {
ctx = ctx_node->module->ctx;
}
/* parse */
ret = lyxp_expr_parse(ctx, path, strlen(path), 0, &exp);
LY_CHECK_GOTO(ret, cleanup);
/* compile */
oper = output ? LY_PATH_OPER_OUTPUT : LY_PATH_OPER_INPUT;
ret = ly_path_compile(ctx, NULL, ctx_node, NULL, exp, oper, LY_PATH_TARGET_MANY, 0, LY_VALUE_JSON, NULL, &p);
LY_CHECK_GOTO(ret, cleanup);
/* get last node */
snode = p[LY_ARRAY_COUNT(p) - 1].node;
cleanup:
ly_path_free(ctx, p);
lyxp_expr_free(ctx, exp);
return snode;
}
char *
lysc_path_until(const struct lysc_node *node, const struct lysc_node *parent, LYSC_PATH_TYPE pathtype, char *buffer,
size_t buflen)
{
const struct lysc_node *iter, *par, *key;
char *path = NULL;
int len = 0;
ly_bool skip_schema;
if (buffer) {
LY_CHECK_ARG_RET(node->module->ctx, buflen > 1, NULL);
buffer[0] = '\0';
}
if ((pathtype == LYSC_PATH_DATA) || (pathtype == LYSC_PATH_DATA_PATTERN)) {
/* skip schema-only nodes */
skip_schema = 1;
} else {
skip_schema = 0;
}
for (iter = node; iter && (iter != parent) && (len >= 0); iter = iter->parent) {
char *s;
const char *slash;
if (skip_schema && (iter->nodetype & (LYS_CHOICE | LYS_CASE | LYS_INPUT | LYS_OUTPUT))) {
/* schema-only node */
continue;
}
if ((pathtype == LYSC_PATH_DATA_PATTERN) && (iter->nodetype == LYS_LIST)) {
key = NULL;
while ((key = lys_getnext(key, iter, NULL, 0)) && lysc_is_key(key)) {
s = buffer ? strdup(buffer) : path;
/* print key predicate */
if (buffer) {
len = snprintf(buffer, buflen, "[%s='%%s']%s", key->name, s ? s : "");
} else {
len = asprintf(&path, "[%s='%%s']%s", key->name, s ? s : "");
}
free(s);
if (buffer && (buflen <= (size_t)len)) {
/* not enough space in buffer */
break;
}
}
}
s = buffer ? strdup(buffer) : path;
if (parent && (iter->parent == parent)) {
slash = "";
} else {
slash = "/";
}
if (skip_schema) {
par = lysc_data_parent(iter);
} else {
par = iter->parent;
}
if (!par || (par->module != iter->module)) {
/* print prefix */
if (buffer) {
len = snprintf(buffer, buflen, "%s%s:%s%s", slash, iter->module->name, iter->name, s ? s : "");
} else {
len = asprintf(&path, "%s%s:%s%s", slash, iter->module->name, iter->name, s ? s : "");
}
} else {
/* prefix is the same as in parent */
if (buffer) {
len = snprintf(buffer, buflen, "%s%s%s", slash, iter->name, s ? s : "");
} else {
len = asprintf(&path, "%s%s%s", slash, iter->name, s ? s : "");
}
}
free(s);
if (buffer && (buflen <= (size_t)len)) {
/* not enough space in buffer */
break;
}
}
if (len < 0) {
free(path);
path = NULL;
} else if (len == 0) {
if (buffer) {
strcpy(buffer, "/");
} else {
path = strdup("/");
}
}
if (buffer) {
return buffer;
} else {
return path;
}
}
LIBYANG_API_DEF char *
lysc_path(const struct lysc_node *node, LYSC_PATH_TYPE pathtype, char *buffer, size_t buflen)
{
return lysc_path_until(node, NULL, pathtype, buffer, buflen);
}
LY_ERR
_lys_set_implemented(struct lys_module *mod, const char **features, struct lys_glob_unres *unres)
{
LY_ERR ret = LY_SUCCESS, r;
struct lys_module *mod_iter;
const char **imp_f, *all_f[] = {"*", NULL};
uint32_t i;
if (mod->implemented) {
/* mod is already implemented, set the features */
r = lys_set_features(mod->parsed, features);
if (r == LY_EEXIST) {
/* no changes */
return LY_SUCCESS;
} else if (!r) {
/* mark the module as changed */
mod->to_compile = 1;
}
return r;
}
/* implement, ignore recompilation because it must always take place later */
r = lys_implement(mod, features, unres);
LY_CHECK_ERR_GOTO(r && (r != LY_ERECOMPILE), ret = r, cleanup);
if (mod->ctx->flags & LY_CTX_ALL_IMPLEMENTED) {
/* implement all the imports as well */
for (i = 0; i < unres->creating.count; ++i) {
mod = unres->creating.objs[i];
if (mod->implemented) {
continue;
}
imp_f = (mod->ctx->flags & LY_CTX_ENABLE_IMP_FEATURES) ? all_f : NULL;
r = lys_implement(mod, imp_f, unres);
LY_CHECK_ERR_GOTO(r && (r != LY_ERECOMPILE), ret = r, cleanup);
}
}
/* Try to find module with LYS_MOD_IMPORTED_REV flag. */
i = 0;
while ((mod_iter = ly_ctx_get_module_iter(mod->ctx, &i))) {
if (!strcmp(mod_iter->name, mod->name) && (mod_iter != mod) && (mod_iter->latest_revision & LYS_MOD_IMPORTED_REV)) {
LOGVRB("Implemented module \"%s@%s\" was not and will not be imported if the revision-date is missing"
" in the import statement. Instead, the revision \"%s\" is imported.", mod->name, mod->revision,
mod_iter->revision);
break;
}
}
cleanup:
return ret;
}
/**
* @brief Check whether it may be needed to (re)compile a module from a particular dependency set
* and if so, add it into its dep set.
*
* Dependency set includes all modules that need to be (re)compiled in case any of the module(s)
* in the dep set are (re)compiled.
*
* The reason for recompilation is possible disabled nodes and updating
* leafref targets to point to the newly compiled modules. Using the import relation, the
* dependency is reflexive because of possible foreign augments and deviations, which are compiled
* during the target module compilation.
*
* - every module must belong to exactly one dep set
* - implement flag must be ignored because it can be changed during dep set compilation
*
* @param[in] mod Module to process.
* @param[in,out] ctx_set Set with all not-yet-processed modules.
* @param[in,out] dep_set Current dependency set to update.
* @param[in] aux_set Set of traversed non-compiled modules, should be empty on first call.
* @return LY_ERR value.
*/
static LY_ERR
lys_unres_dep_sets_create_mod_r(struct lys_module *mod, struct ly_set *ctx_set, struct ly_set *dep_set,
struct ly_set *aux_set)
{
struct lys_module *mod2;
struct lysp_import *imports;
uint32_t i;
LY_ARRAY_COUNT_TYPE u, v;
ly_bool found;
if (LYS_IS_SINGLE_DEP_SET(mod)) {
/* is already in a separate dep set */
if (!lys_has_dep_mods(mod)) {
/* break the dep set here, no modules depend on this one */
return LY_SUCCESS;
}
if (ly_set_contains(aux_set, mod, NULL)) {
/* it was traversed */
return LY_SUCCESS;
}
/* add a new auxiliary module */
LY_CHECK_RET(ly_set_add(aux_set, mod, 1, NULL));
} else {
if (!ly_set_contains(ctx_set, mod, &i)) {
/* it was already processed */
return LY_SUCCESS;
}
/* remove it from the set, we are processing it now */
ly_set_rm_index(ctx_set, i, NULL);
/* add a new dependent module into the dep set */
LY_CHECK_RET(ly_set_add(dep_set, mod, 1, NULL));
}
/* process imports of the module and submodules */
imports = mod->parsed->imports;
LY_ARRAY_FOR(imports, u) {
mod2 = imports[u].module;
LY_CHECK_RET(lys_unres_dep_sets_create_mod_r(mod2, ctx_set, dep_set, aux_set));
}
LY_ARRAY_FOR(mod->parsed->includes, v) {
imports = mod->parsed->includes[v].submodule->imports;
LY_ARRAY_FOR(imports, u) {
mod2 = imports[u].module;
if (LYS_IS_SINGLE_DEP_SET(mod2) && !lys_has_dep_mods(mod2)) {
/* break the dep set here, no modules depend on this one */
continue;
}
LY_CHECK_RET(lys_unres_dep_sets_create_mod_r(imports[u].module, ctx_set, dep_set, aux_set));
}
}
/* process modules and submodules importing this module */
for (i = 0; i < mod->ctx->list.count; ++i) {
mod2 = mod->ctx->list.objs[i];
found = 0;
imports = mod2->parsed->imports;
LY_ARRAY_FOR(imports, u) {
if (imports[u].module == mod) {
found = 1;
break;
}
}
if (!found) {
LY_ARRAY_FOR(mod2->parsed->includes, v) {
imports = mod2->parsed->includes[v].submodule->imports;
LY_ARRAY_FOR(imports, u) {
if (imports[u].module == mod) {
found = 1;
break;
}
}
if (found) {
break;
}
}
}
if (found) {
LY_CHECK_RET(lys_unres_dep_sets_create_mod_r(mod2, ctx_set, dep_set, aux_set));
}
}
return LY_SUCCESS;
}
/**
* @brief Add all simple modules (that have nothing to (re)compile) into separate dep sets.
*
* @param[in,out] ctx_set Set with all not-yet-processed modules.
* @param[in,out] main_set Set of dependency module sets.
* @return LY_ERR value.
*/
static LY_ERR
lys_unres_dep_sets_create_single(struct ly_set *ctx_set, struct ly_set *main_set)
{
LY_ERR ret = LY_SUCCESS;
struct lys_module *m;
uint32_t i = 0;
struct ly_set *dep_set = NULL;
while (i < ctx_set->count) {
m = ctx_set->objs[i];
if (LYS_IS_SINGLE_DEP_SET(m)) {
/* remove it from the set, we are processing it now */
ly_set_rm_index(ctx_set, i, NULL);
/* this module can be in a separate dep set (but there still may be modules importing this one
* that depend on imports of this one in case it defines groupings) */
LY_CHECK_GOTO(ret = ly_set_new(&dep_set), cleanup);
LY_CHECK_GOTO(ret = ly_set_add(dep_set, m, 1, NULL), cleanup);
LY_CHECK_GOTO(ret = ly_set_add(main_set, dep_set, 1, NULL), cleanup);
dep_set = NULL;
} else {
++i;
}
}
cleanup:
ly_set_free(dep_set, NULL);
return ret;
}
LY_ERR
lys_unres_dep_sets_create(struct ly_ctx *ctx, struct ly_set *main_set, struct lys_module *mod)
{
LY_ERR ret = LY_SUCCESS;
struct lys_module *m;
struct ly_set *dep_set = NULL, *ctx_set = NULL, aux_set = {0};
uint32_t i;
ly_bool found;
assert(!main_set->count);
/* start with a duplicate set of modules that we will remove from */
LY_CHECK_GOTO(ret = ly_set_dup(&ctx->list, NULL, &ctx_set), cleanup);
/* first create all dep sets with single modules */
LY_CHECK_GOTO(ret = lys_unres_dep_sets_create_single(ctx_set, main_set), cleanup);
if (mod && !ly_set_contains(ctx_set, mod, NULL)) {
/* dep set for this module has already been created, nothing else to do */
goto cleanup;
}
while (ctx_set->count) {
/* create new dep set */
LY_CHECK_GOTO(ret = ly_set_new(&dep_set), cleanup);
if (mod) {
/* use the module create a dep set with the rest of its dependent modules */
LY_CHECK_GOTO(ret = lys_unres_dep_sets_create_mod_r(mod, ctx_set, dep_set, &aux_set), cleanup);
} else {
/* use first ctx mod to create a dep set with the rest of its dependent modules */
LY_CHECK_GOTO(ret = lys_unres_dep_sets_create_mod_r(ctx_set->objs[0], ctx_set, dep_set, &aux_set), cleanup);
}
ly_set_erase(&aux_set, NULL);
assert(dep_set->count);
/* check whether there is any module that will be (re)compiled */
found = 0;
for (i = 0; i < dep_set->count; ++i) {
m = dep_set->objs[i];
if (m->to_compile) {
found = 1;
break;
}
}
if (found) {
/* if there is, all the implemented modules need to be recompiled */
for (i = 0; i < dep_set->count; ++i) {
m = dep_set->objs[i];
if (m->implemented) {
m->to_compile = 1;
}
}
}
/* add the dep set into main set */
LY_CHECK_GOTO(ret = ly_set_add(main_set, dep_set, 1, NULL), cleanup);
dep_set = NULL;
if (mod) {
/* we need dep set only for this module */
break;
}
}
#ifndef NDEBUG
LOGDBG(LY_LDGDEPSETS, "dep sets created (%" PRIu32 "):", main_set->count);
for (i = 0; i < main_set->count; ++i) {
struct ly_set *iter_set = main_set->objs[i];
LOGDBG(LY_LDGDEPSETS, "dep set #%" PRIu32 ":", i);
for (uint32_t j = 0; j < iter_set->count; ++j) {
m = iter_set->objs[j];
LOGDBG(LY_LDGDEPSETS, "\t%s", m->name);
}
}
#endif
cleanup:
assert(ret || main_set->objs);
ly_set_erase(&aux_set, NULL);
ly_set_free(dep_set, NULL);
ly_set_free(ctx_set, NULL);
return ret;
}
void
lys_unres_glob_revert(struct ly_ctx *ctx, struct lys_glob_unres *unres)
{
uint32_t i, j, idx, temp_lo = 0;
struct lysf_ctx fctx = {.ctx = ctx};
struct ly_set *dep_set;
LY_ERR ret;
for (i = 0; i < unres->implementing.count; ++i) {
fctx.mod = unres->implementing.objs[i];
assert(fctx.mod->implemented);
/* make the module correctly non-implemented again */
fctx.mod->implemented = 0;
lys_precompile_augments_deviations_revert(ctx, fctx.mod);
lysc_module_free(&fctx, fctx.mod->compiled);
fctx.mod->compiled = NULL;
/* should not be made implemented */
fctx.mod->to_compile = 0;
}
for (i = 0; i < unres->creating.count; ++i) {
fctx.mod = unres->creating.objs[i];
/* remove the module from the context */
ly_set_rm(&ctx->list, fctx.mod, NULL);
/* remove it also from dep sets */
for (j = 0; j < unres->dep_sets.count; ++j) {
dep_set = unres->dep_sets.objs[j];
if (ly_set_contains(dep_set, fctx.mod, &idx)) {
ly_set_rm_index(dep_set, idx, NULL);
break;
}
}
/* free the module */
lys_module_free(&fctx, fctx.mod, 1);
}
/* remove the extensions as well */
lysf_ctx_erase(&fctx);
if (unres->implementing.count) {
/* recompile previous context because some implemented modules are no longer implemented,
* we can reuse the current to_compile flags */
ly_temp_log_options(&temp_lo);
ret = lys_compile_depset_all(ctx, &ctx->unres);
ly_temp_log_options(NULL);
if (ret) {
LOGINT(ctx);
}
}
}
void
lys_unres_glob_erase(struct lys_glob_unres *unres)
{
uint32_t i;
for (i = 0; i < unres->dep_sets.count; ++i) {
ly_set_free(unres->dep_sets.objs[i], NULL);
}
ly_set_erase(&unres->dep_sets, NULL);
ly_set_erase(&unres->implementing, NULL);
ly_set_erase(&unres->creating, NULL);
assert(!unres->ds_unres.whens.count);
assert(!unres->ds_unres.musts.count);
assert(!unres->ds_unres.leafrefs.count);
assert(!unres->ds_unres.disabled_leafrefs.count);
assert(!unres->ds_unres.dflts.count);
assert(!unres->ds_unres.disabled.count);
}
LIBYANG_API_DEF LY_ERR
lys_set_implemented(struct lys_module *mod, const char **features)
{
LY_ERR ret = LY_SUCCESS;
struct lys_glob_unres *unres = &mod->ctx->unres;
LY_CHECK_ARG_RET(NULL, mod, LY_EINVAL);
/* implement */
ret = _lys_set_implemented(mod, features, unres);
LY_CHECK_GOTO(ret, cleanup);
if (!(mod->ctx->flags & LY_CTX_EXPLICIT_COMPILE)) {
/* create dep set for the module and mark all the modules that will be (re)compiled */
LY_CHECK_GOTO(ret = lys_unres_dep_sets_create(mod->ctx, &unres->dep_sets, mod), cleanup);
/* (re)compile the whole dep set (other dep sets will have no modules marked for compilation) */
LY_CHECK_GOTO(ret = lys_compile_depset_all(mod->ctx, unres), cleanup);
/* unres resolved */
lys_unres_glob_erase(unres);
}
cleanup:
if (ret) {
lys_unres_glob_revert(mod->ctx, unres);
lys_unres_glob_erase(unres);
}
return ret;
}
/**
* @brief Resolve (find) all imported and included modules.
*
* @param[in] pctx Parser context.
* @param[in] pmod Parsed module to resolve.
* @param[out] new_mods Set with all the newly loaded modules.
* @return LY_ERR value.
*/
static LY_ERR
lysp_resolve_import_include(struct lysp_ctx *pctx, struct lysp_module *pmod, struct ly_set *new_mods)
{
struct lysp_import *imp;
LY_ARRAY_COUNT_TYPE u, v;
pmod->parsing = 1;
LY_ARRAY_FOR(pmod->imports, u) {
imp = &pmod->imports[u];
if (!imp->module) {
LY_CHECK_RET(lys_parse_load(PARSER_CTX(pctx), imp->name, imp->rev[0] ? imp->rev : NULL, new_mods, &imp->module));
if (!imp->rev[0]) {
/* This module must be selected for the next similar
* import without revision-date to avoid incorrect
* derived identities in the ::lys_module.identities.
*/
imp->module->latest_revision |= LYS_MOD_IMPORTED_REV;
}
}
/* check for importing the same module twice */
for (v = 0; v < u; ++v) {
if (imp->module == pmod->imports[v].module) {
LOGWRN(PARSER_CTX(pctx), "Single revision of the module \"%s\" imported twice.", imp->name);
}
}
}
LY_CHECK_RET(lysp_load_submodules(pctx, pmod, new_mods));
pmod->parsing = 0;
return LY_SUCCESS;
}
/**
* @brief Generate path of the given paresed node.
*
* @param[in] node Schema path of this node will be generated.
* @param[in] parent Build relative path only until this parent is found. If NULL, the full absolute path is printed.
* @return NULL in case of memory allocation error, path of the node otherwise.
* In case the @p buffer is NULL, the returned string is dynamically allocated and caller is responsible to free it.
*/
static char *
lysp_path_until(const struct lysp_node *node, const struct lysp_node *parent, const struct lysp_module *pmod)
{
const struct lysp_node *iter, *par;
char *path = NULL, *s;
const char *slash;
int len = 0;
for (iter = node; iter && (iter != parent) && (len >= 0); iter = iter->parent) {
if (parent && (iter->parent == parent)) {
slash = "";
} else {
slash = "/";
}
s = path;
par = iter->parent;
if (!par) {
/* print prefix */
len = asprintf(&path, "%s%s:%s%s", slash, pmod->mod->name, iter->name, s ? s : "");
} else {
/* prefix is the same as in parent */
len = asprintf(&path, "%s%s%s", slash, iter->name, s ? s : "");
}
free(s);
}
if (len < 0) {
free(path);
path = NULL;
} else if (len == 0) {
path = strdup("/");
}
return path;
}
/**
* @brief Build log path for a parsed extension instance.
*
* @param[in] pcxt Parse context.
* @param[in] ext Parsed extension instance.
* @param[out] path Generated path.
* @return LY_ERR value.
*/
static LY_ERR
lysp_resolve_ext_instance_log_path(const struct lysp_ctx *pctx, const struct lysp_ext_instance *ext, char **path)
{
char *buf = NULL;
uint32_t used = 0, size = 0;
if (ext->parent_stmt & LY_STMT_NODE_MASK) {
/* parsed node path */
buf = lysp_path_until(ext->parent, NULL, PARSER_CUR_PMOD(pctx));
LY_CHECK_ERR_RET(!buf, LOGMEM(PARSER_CTX(pctx)), LY_EMEM);
size = used = strlen(buf);
/* slash */
size += 1;
buf = realloc(buf, size + 1);
LY_CHECK_ERR_RET(!buf, LOGMEM(PARSER_CTX(pctx)), LY_EMEM);
used += sprintf(buf + used, "/");
} else {
/* module */
size += 1 + strlen(PARSER_CUR_PMOD(pctx)->mod->name) + 1;
buf = realloc(buf, size + 1);
LY_CHECK_ERR_RET(!buf, LOGMEM(PARSER_CTX(pctx)), LY_EMEM);
used += sprintf(buf + used, "/%s:", PARSER_CUR_PMOD(pctx)->mod->name);
}
/* extension name */
size += 12 + strlen(ext->name) + 2;
buf = realloc(buf, size + 1);
LY_CHECK_ERR_RET(!buf, LOGMEM(PARSER_CTX(pctx)), LY_EMEM);
used += sprintf(buf + used, "{extension='%s'}", ext->name);
/* extension argument */
if (ext->argument) {
size += 1 + strlen(ext->argument);
buf = realloc(buf, size + 1);
LY_CHECK_ERR_RET(!buf, LOGMEM(PARSER_CTX(pctx)), LY_EMEM);
used += sprintf(buf + used, "/%s", ext->argument);
}
*path = buf;
return LY_SUCCESS;
}
/**
* @brief Resolve (find) all extension instance records and finish their parsing.
*
* @param[in] pctx Parse context with all the parsed extension instances.
* @return LY_ERR value.
*/
static LY_ERR
lysp_resolve_ext_instance_records(struct lysp_ctx *pctx)
{
LY_ERR r;
struct lysf_ctx fctx = {.ctx = PARSER_CTX(pctx)};
struct lysp_ext_instance *exts, *ext;
const struct lys_module *mod;
uint32_t i;
LY_ARRAY_COUNT_TYPE u;
char *path = NULL;
/* first finish parsing all extension instances ... */
for (i = 0; i < pctx->ext_inst.count; ++i) {
exts = pctx->ext_inst.objs[i];
LY_ARRAY_FOR(exts, u) {
ext = &exts[u];
/* find the extension definition */
LY_CHECK_RET(lysp_ext_find_definition(PARSER_CTX(pctx), ext, &mod, &ext->def));
/* resolve the argument, if needed */
LY_CHECK_RET(lysp_ext_instance_resolve_argument(PARSER_CTX(pctx), ext));
/* find the extension record, if any */
ext->record = lyplg_ext_record_find(mod->name, mod->revision, ext->def->name);
}
}
/* ... then call the parse callback */
for (i = 0; i < pctx->ext_inst.count; ++i) {
exts = pctx->ext_inst.objs[i];
u = 0;
while (u < LY_ARRAY_COUNT(exts)) {
ext = &exts[u];
if (!ext->record || !ext->record->plugin.parse) {
goto next_iter;
}
/* set up log path */
if ((r = lysp_resolve_ext_instance_log_path(pctx, ext, &path))) {
return r;
}
LOG_LOCSET(NULL, NULL, path, NULL);
/* parse */
r = ext->record->plugin.parse(pctx, ext);
LOG_LOCBACK(0, 0, 1, 0);
free(path);
if (r == LY_ENOT) {
/* instance should be ignored, remove it */
lysp_ext_instance_free(&fctx, ext);
LY_ARRAY_DECREMENT(exts);
if (u < LY_ARRAY_COUNT(exts)) {
/* replace by the last item */
*ext = exts[LY_ARRAY_COUNT(exts)];
} /* else if there are no more items, leave the empty array, we are not able to free it */
continue;
} else if (r) {
/* error */
return r;
}
next_iter:
++u;
}
}
return LY_SUCCESS;
}
LY_ERR
lys_parse_submodule(struct ly_ctx *ctx, struct ly_in *in, LYS_INFORMAT format, struct lysp_ctx *main_ctx,
LY_ERR (*custom_check)(const struct ly_ctx *, struct lysp_module *, struct lysp_submodule *, void *),
void *check_data, struct ly_set *new_mods, struct lysp_submodule **submodule)
{
LY_ERR ret;
struct lysp_submodule *submod = NULL, *latest_sp;
struct lysp_yang_ctx *yangctx = NULL;
struct lysp_yin_ctx *yinctx = NULL;
struct lysp_ctx *pctx;
struct lysf_ctx fctx = {.ctx = ctx};
LY_CHECK_ARG_RET(ctx, ctx, in, LY_EINVAL);
switch (format) {
case LYS_IN_YIN:
ret = yin_parse_submodule(&yinctx, ctx, main_ctx, in, &submod);
pctx = (struct lysp_ctx *)yinctx;
break;
case LYS_IN_YANG:
ret = yang_parse_submodule(&yangctx, ctx, main_ctx, in, &submod);
pctx = (struct lysp_ctx *)yangctx;
break;
default:
LOGERR(ctx, LY_EINVAL, "Invalid schema input format.");
ret = LY_EINVAL;
break;
}
LY_CHECK_GOTO(ret, error);
assert(submod);
/* make sure that the newest revision is at position 0 */
lysp_sort_revisions(submod->revs);
/* decide the latest revision */
latest_sp = (struct lysp_submodule *)ly_ctx_get_submodule2_latest(submod->mod, submod->name);
if (latest_sp) {
if (submod->revs) {
if (!latest_sp->revs) {
/* latest has no revision, so mod is anyway newer */
submod->latest_revision = latest_sp->latest_revision;
/* the latest_sp is zeroed later when the new module is being inserted into the context */
} else if (strcmp(submod->revs[0].date, latest_sp->revs[0].date) > 0) {
submod->latest_revision = latest_sp->latest_revision;
/* the latest_sp is zeroed later when the new module is being inserted into the context */
} else {
latest_sp = NULL;
}
} else {
latest_sp = NULL;
}
} else {
submod->latest_revision = 1;
}
if (custom_check) {
LY_CHECK_GOTO(ret = custom_check(ctx, NULL, submod, check_data), error);
}
if (latest_sp) {
latest_sp->latest_revision = 0;
}
lys_parser_fill_filepath(ctx, in, &submod->filepath);
/* resolve imports and includes */
LY_CHECK_GOTO(ret = lysp_resolve_import_include(pctx, (struct lysp_module *)submod, new_mods), error);
if (format == LYS_IN_YANG) {
lysp_yang_ctx_free(yangctx);
} else {
lysp_yin_ctx_free(yinctx);
}
*submodule = submod;
return LY_SUCCESS;
error:
if (!submod || !submod->name) {
LOGERR(ctx, ret, "Parsing submodule failed.");
} else {
LOGERR(ctx, ret, "Parsing submodule \"%s\" failed.", submod->name);
}
lysp_module_free(&fctx, (struct lysp_module *)submod);
if (format == LYS_IN_YANG) {
lysp_yang_ctx_free(yangctx);
} else {
lysp_yin_ctx_free(yinctx);
}
return ret;
}
/**
* @brief Add ietf-netconf metadata to the parsed module. Operation, filter, and select are added.
*
* @param[in] pctx Parse context.
* @param[in] mod Parsed module to add to.
* @return LY_SUCCESS on success.
* @return LY_ERR on error.
*/
static LY_ERR
lysp_add_internal_ietf_netconf(struct lysp_ctx *pctx, struct lysp_module *mod)
{
struct lysp_ext_instance *extp;
struct lysp_stmt *stmt;
struct lysp_import *imp;
/*
* 1) edit-config's operation
*/
LY_ARRAY_NEW_RET(mod->mod->ctx, mod->exts, extp, LY_EMEM);
LY_CHECK_ERR_RET(!extp, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "md_:annotation", 0, &extp->name));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "operation", 0, &extp->argument));
extp->format = LY_VALUE_SCHEMA;
extp->prefix_data = mod;
extp->parent = mod;
extp->parent_stmt = LY_STMT_MODULE;
extp->flags = LYS_INTERNAL;
extp->child = stmt = calloc(1, sizeof *extp->child);
LY_CHECK_ERR_RET(!stmt, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "type", 0, &stmt->stmt));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "enumeration", 0, &stmt->arg));
stmt->format = LY_VALUE_SCHEMA;
stmt->prefix_data = mod;
stmt->kw = LY_STMT_TYPE;
stmt->child = calloc(1, sizeof *stmt->child);
stmt = stmt->child;
LY_CHECK_ERR_RET(!stmt, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "enum", 0, &stmt->stmt));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "merge", 0, &stmt->arg));
stmt->format = LY_VALUE_SCHEMA;
stmt->prefix_data = mod;
stmt->kw = LY_STMT_ENUM;
stmt->next = calloc(1, sizeof *stmt->child);
stmt = stmt->next;
LY_CHECK_ERR_RET(!stmt, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "enum", 0, &stmt->stmt));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "replace", 0, &stmt->arg));
stmt->format = LY_VALUE_SCHEMA;
stmt->prefix_data = mod;
stmt->kw = LY_STMT_ENUM;
stmt->next = calloc(1, sizeof *stmt->child);
stmt = stmt->next;
LY_CHECK_ERR_RET(!stmt, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "enum", 0, &stmt->stmt));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "create", 0, &stmt->arg));
stmt->format = LY_VALUE_SCHEMA;
stmt->prefix_data = mod;
stmt->kw = LY_STMT_ENUM;
stmt->next = calloc(1, sizeof *stmt->child);
stmt = stmt->next;
LY_CHECK_ERR_RET(!stmt, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "enum", 0, &stmt->stmt));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "delete", 0, &stmt->arg));
stmt->format = LY_VALUE_SCHEMA;
stmt->prefix_data = mod;
stmt->kw = LY_STMT_ENUM;
stmt->next = calloc(1, sizeof *stmt->child);
stmt = stmt->next;
LY_CHECK_ERR_RET(!stmt, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "enum", 0, &stmt->stmt));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "remove", 0, &stmt->arg));
stmt->format = LY_VALUE_SCHEMA;
stmt->prefix_data = mod;
stmt->kw = LY_STMT_ENUM;
/*
* 2) filter's type
*/
LY_ARRAY_NEW_RET(mod->mod->ctx, mod->exts, extp, LY_EMEM);
LY_CHECK_ERR_RET(!extp, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "md_:annotation", 0, &extp->name));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "type", 0, &extp->argument));
extp->format = LY_VALUE_SCHEMA;
extp->prefix_data = mod;
extp->parent = mod;
extp->parent_stmt = LY_STMT_MODULE;
extp->flags = LYS_INTERNAL;
extp->child = stmt = calloc(1, sizeof *extp->child);
LY_CHECK_ERR_RET(!stmt, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "type", 0, &stmt->stmt));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "enumeration", 0, &stmt->arg));
stmt->format = LY_VALUE_SCHEMA;
stmt->prefix_data = mod;
stmt->kw = LY_STMT_TYPE;
stmt->child = calloc(1, sizeof *stmt->child);
stmt = stmt->child;
LY_CHECK_ERR_RET(!stmt, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "enum", 0, &stmt->stmt));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "subtree", 0, &stmt->arg));
stmt->format = LY_VALUE_SCHEMA;
stmt->prefix_data = mod;
stmt->kw = LY_STMT_ENUM;
stmt->next = calloc(1, sizeof *stmt->child);
stmt = stmt->next;
LY_CHECK_ERR_RET(!stmt, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "enum", 0, &stmt->stmt));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "xpath", 0, &stmt->arg));
stmt->format = LY_VALUE_SCHEMA;
stmt->prefix_data = mod;
stmt->kw = LY_STMT_ENUM;
/* if-feature for enum allowed only for YANG 1.1 modules */
if (mod->version >= LYS_VERSION_1_1) {
stmt->child = calloc(1, sizeof *stmt->child);
stmt = stmt->child;
LY_CHECK_ERR_RET(!stmt, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "if-feature", 0, &stmt->stmt));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "xpath", 0, &stmt->arg));
stmt->format = LY_VALUE_SCHEMA;
stmt->prefix_data = mod;
stmt->kw = LY_STMT_IF_FEATURE;
}
/*
* 3) filter's select
*/
LY_ARRAY_NEW_RET(mod->mod->ctx, mod->exts, extp, LY_EMEM);
LY_CHECK_ERR_RET(!extp, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "md_:annotation", 0, &extp->name));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "select", 0, &extp->argument));
extp->format = LY_VALUE_SCHEMA;
extp->prefix_data = mod;
extp->parent = mod;
extp->parent_stmt = LY_STMT_MODULE;
extp->flags = LYS_INTERNAL;
extp->child = stmt = calloc(1, sizeof *extp->child);
LY_CHECK_ERR_RET(!stmt, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "type", 0, &stmt->stmt));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "yang_:xpath1.0", 0, &stmt->arg));
stmt->format = LY_VALUE_SCHEMA;
stmt->prefix_data = mod;
stmt->kw = LY_STMT_TYPE;
if (LY_ARRAY_COUNT(mod->exts) == 3) {
/* first extension instances */
assert(pctx->main_ctx == pctx);
LY_CHECK_RET(ly_set_add(&pctx->ext_inst, mod->exts, 1, NULL));
}
/* create new imports for the used prefixes */
LY_ARRAY_NEW_RET(mod->mod->ctx, mod->imports, imp, LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "ietf-yang-metadata", 0, &imp->name));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "md_", 0, &imp->prefix));
imp->flags = LYS_INTERNAL;
LY_ARRAY_NEW_RET(mod->mod->ctx, mod->imports, imp, LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "ietf-yang-types", 0, &imp->name));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "yang_", 0, &imp->prefix));
imp->flags = LYS_INTERNAL;
return LY_SUCCESS;
}
/**
* @brief Add ietf-netconf-with-defaults "default" metadata to the parsed module.
*
* @param[in] pctx Parse context.
* @param[in] mod Parsed module to add to.
* @return LY_SUCCESS on success.
* @return LY_ERR on error.
*/
static LY_ERR
lysp_add_internal_ietf_netconf_with_defaults(struct lysp_ctx *pctx, struct lysp_module *mod)
{
struct lysp_ext_instance *extp;
struct lysp_stmt *stmt;
struct lysp_import *imp;
/* add new extension instance */
LY_ARRAY_NEW_RET(mod->mod->ctx, mod->exts, extp, LY_EMEM);
/* fill in the extension instance fields */
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "md_:annotation", 0, &extp->name));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "default", 0, &extp->argument));
extp->format = LY_VALUE_SCHEMA;
extp->prefix_data = mod;
extp->parent = mod;
extp->parent_stmt = LY_STMT_MODULE;
extp->flags = LYS_INTERNAL;
extp->child = stmt = calloc(1, sizeof *extp->child);
LY_CHECK_ERR_RET(!stmt, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "type", 0, &stmt->stmt));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "boolean", 0, &stmt->arg));
stmt->format = LY_VALUE_SCHEMA;
stmt->prefix_data = mod;
stmt->kw = LY_STMT_TYPE;
if (LY_ARRAY_COUNT(mod->exts) == 1) {
/* first extension instance */
assert(pctx->main_ctx == pctx);
LY_CHECK_RET(ly_set_add(&pctx->ext_inst, mod->exts, 1, NULL));
}
/* create new import for the used prefix */
LY_ARRAY_NEW_RET(mod->mod->ctx, mod->imports, imp, LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "ietf-yang-metadata", 0, &imp->name));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "md_", 0, &imp->prefix));
imp->flags = LYS_INTERNAL;
return LY_SUCCESS;
}
LY_ERR
lys_parse_in(struct ly_ctx *ctx, struct ly_in *in, LYS_INFORMAT format,
LY_ERR (*custom_check)(const struct ly_ctx *ctx, struct lysp_module *mod, struct lysp_submodule *submod, void *data),
void *check_data, struct ly_set *new_mods, struct lys_module **module)
{
struct lys_module *mod = NULL, *latest, *mod_dup = NULL;
LY_ERR ret;
struct lysp_yang_ctx *yangctx = NULL;
struct lysp_yin_ctx *yinctx = NULL;
struct lysp_ctx *pctx = NULL;
struct lysf_ctx fctx = {.ctx = ctx};
char *filename, *rev, *dot;
size_t len;
ly_bool module_created = 0;
assert(ctx && in && new_mods);
if (module) {
*module = NULL;
}
mod = calloc(1, sizeof *mod);
LY_CHECK_ERR_RET(!mod, LOGMEM(ctx), LY_EMEM);
mod->ctx = ctx;
/* parse */
switch (format) {
case LYS_IN_YIN:
ret = yin_parse_module(&yinctx, in, mod);
pctx = (struct lysp_ctx *)yinctx;
break;
case LYS_IN_YANG:
ret = yang_parse_module(&yangctx, in, mod);
pctx = (struct lysp_ctx *)yangctx;
break;
default:
LOGERR(ctx, LY_EINVAL, "Invalid schema input format.");
ret = LY_EINVAL;
break;
}
LY_CHECK_GOTO(ret, cleanup);
/* make sure that the newest revision is at position 0 */
lysp_sort_revisions(mod->parsed->revs);
if (mod->parsed->revs) {
LY_CHECK_GOTO(ret = lydict_insert(ctx, mod->parsed->revs[0].date, 0, &mod->revision), cleanup);
}
/* decide the latest revision */
latest = ly_ctx_get_module_latest(ctx, mod->name);
if (latest) {
if (mod->revision) {
if (!latest->revision) {
/* latest has no revision, so mod is anyway newer */
mod->latest_revision = latest->latest_revision & (LYS_MOD_LATEST_REV | LYS_MOD_LATEST_SEARCHDIRS);
/* the latest is zeroed later when the new module is being inserted into the context */
} else if (strcmp(mod->revision, latest->revision) > 0) {
mod->latest_revision = latest->latest_revision & (LYS_MOD_LATEST_REV | LYS_MOD_LATEST_SEARCHDIRS);
/* the latest is zeroed later when the new module is being inserted into the context */
} else {
latest = NULL;
}
} else {
latest = NULL;
}
} else {
mod->latest_revision = LYS_MOD_LATEST_REV;
}
if (custom_check) {
LY_CHECK_GOTO(ret = custom_check(ctx, mod->parsed, NULL, check_data), cleanup);
}
/* check whether it is not already in the context in the same revision */
mod_dup = ly_ctx_get_module(ctx, mod->name, mod->revision);
if (mod_dup) {
/* nothing to do */
LOGVRB("Module \"%s@%s\" is already present in the context.", mod_dup->name,
mod_dup->revision ? mod_dup->revision : "<none>");
goto cleanup;
}
/* check whether there is not a namespace collision */
mod_dup = ly_ctx_get_module_latest_ns(ctx, mod->ns);
if (mod_dup && (mod_dup->revision == mod->revision)) {
LOGERR(ctx, LY_EINVAL, "Two different modules (\"%s\" and \"%s\") have the same namespace \"%s\".",
mod_dup->name, mod->name, mod->ns);
ret = LY_EINVAL;
goto cleanup;
}
switch (in->type) {
case LY_IN_FILEPATH:
/* check that name and revision match filename */
filename = strrchr(in->method.fpath.filepath, '/');
if (!filename) {
filename = in->method.fpath.filepath;
} else {
filename++;
}
rev = strchr(filename, '@');
dot = strrchr(filename, '.');
/* name */
len = strlen(mod->name);
if (strncmp(filename, mod->name, len) ||
((rev && (rev != &filename[len])) || (!rev && (dot != &filename[len])))) {
LOGWRN(ctx, "File name \"%s\" does not match module name \"%s\".", filename, mod->name);
}
if (rev) {
len = dot - ++rev;
if (!mod->parsed->revs || (len != LY_REV_SIZE - 1) || strncmp(mod->parsed->revs[0].date, rev, len)) {
LOGWRN(ctx, "File name \"%s\" does not match module revision \"%s\".", filename,
mod->parsed->revs ? mod->parsed->revs[0].date : "none");
}
}
break;
case LY_IN_FD:
case LY_IN_FILE:
case LY_IN_MEMORY:
/* nothing special to do */
break;
case LY_IN_ERROR:
LOGINT(ctx);
ret = LY_EINT;
goto cleanup;
}
lys_parser_fill_filepath(ctx, in, &mod->filepath);
if (latest) {
latest->latest_revision &= ~(LYS_MOD_LATEST_REV | LYS_MOD_LATEST_SEARCHDIRS);
}
/* add internal data in case specific modules were parsed */
if (!strcmp(mod->name, "ietf-netconf")) {
LY_CHECK_GOTO(ret = lysp_add_internal_ietf_netconf(pctx, mod->parsed), cleanup);
} else if (!strcmp(mod->name, "ietf-netconf-with-defaults")) {
LY_CHECK_GOTO(ret = lysp_add_internal_ietf_netconf_with_defaults(pctx, mod->parsed), cleanup);
}
/* add the module into newly created module set, will also be freed from there on any error */
LY_CHECK_GOTO(ret = ly_set_add(new_mods, mod, 1, NULL), cleanup);
module_created = 1;
/* add into context */
ret = ly_set_add(&ctx->list, mod, 1, NULL);
LY_CHECK_GOTO(ret, cleanup);
ctx->change_count++;
/* resolve includes and all imports */
LY_CHECK_GOTO(ret = lysp_resolve_import_include(pctx, mod->parsed, new_mods), cleanup);
/* resolve extension instance plugin records */
LY_CHECK_GOTO(ret = lysp_resolve_ext_instance_records(pctx), cleanup);
/* check name collisions */
LY_CHECK_GOTO(ret = lysp_check_dup_typedefs(pctx, mod->parsed), cleanup);
LY_CHECK_GOTO(ret = lysp_check_dup_groupings(pctx, mod->parsed), cleanup);
LY_CHECK_GOTO(ret = lysp_check_dup_features(pctx, mod->parsed), cleanup);
LY_CHECK_GOTO(ret = lysp_check_dup_identities(pctx, mod->parsed), cleanup);
/* compile features */
LY_CHECK_GOTO(ret = lys_compile_feature_iffeatures(mod->parsed), cleanup);
/* compile identities */
LY_CHECK_GOTO(ret = lys_compile_identities(mod), cleanup);
cleanup:
if (ret && (ret != LY_EEXIST)) {
if (mod && mod->name) {
/* there are cases when path is not available for parsing error, so this additional
* message tries to add information about the module where the error occurred */
struct ly_err_item *e = ly_err_last(ctx);
if (e && (!e->path || !strncmp(e->path, "Line ", ly_strlen_const("Line ")))) {
LOGERR(ctx, ret, "Parsing module \"%s\" failed.", mod->name);
}
}
}
if (!module_created) {
fctx.mod = mod;
lys_module_free(&fctx, mod, 0);
lysf_ctx_erase(&fctx);
mod = mod_dup;
}
if (format == LYS_IN_YANG) {
lysp_yang_ctx_free(yangctx);
} else {
lysp_yin_ctx_free(yinctx);
}
if (!ret && module) {
*module = mod;
}
return ret;
}
static LYS_INFORMAT
lys_parse_get_format(const struct ly_in *in, LYS_INFORMAT format)
{
if (!format && (in->type == LY_IN_FILEPATH)) {
/* unknown format - try to detect it from filename's suffix */
const char *path = in->method.fpath.filepath;
size_t len = strlen(path);
/* ignore trailing whitespaces */
for ( ; len > 0 && isspace(path[len - 1]); len--) {}
if ((len >= LY_YANG_SUFFIX_LEN + 1) &&
!strncmp(&path[len - LY_YANG_SUFFIX_LEN], LY_YANG_SUFFIX, LY_YANG_SUFFIX_LEN)) {
format = LYS_IN_YANG;
} else if ((len >= LY_YIN_SUFFIX_LEN + 1) &&
!strncmp(&path[len - LY_YIN_SUFFIX_LEN], LY_YIN_SUFFIX, LY_YIN_SUFFIX_LEN)) {
format = LYS_IN_YIN;
} /* else still unknown */
}
return format;
}
LIBYANG_API_DEF LY_ERR
lys_parse(struct ly_ctx *ctx, struct ly_in *in, LYS_INFORMAT format, const char **features, struct lys_module **module)
{
LY_ERR ret = LY_SUCCESS;
struct lys_module *mod;
if (module) {
*module = NULL;
}
LY_CHECK_ARG_RET(NULL, ctx, in, LY_EINVAL);
format = lys_parse_get_format(in, format);
LY_CHECK_ARG_RET(ctx, format, LY_EINVAL);
/* remember input position */
in->func_start = in->current;
/* parse */
ret = lys_parse_in(ctx, in, format, NULL, NULL, &ctx->unres.creating, &mod);
LY_CHECK_GOTO(ret, cleanup);
/* implement */
ret = _lys_set_implemented(mod, features, &ctx->unres);
LY_CHECK_GOTO(ret, cleanup);
if (!(ctx->flags & LY_CTX_EXPLICIT_COMPILE)) {
/* create dep set for the module and mark all the modules that will be (re)compiled */
LY_CHECK_GOTO(ret = lys_unres_dep_sets_create(ctx, &ctx->unres.dep_sets, mod), cleanup);
/* (re)compile the whole dep set (other dep sets will have no modules marked for compilation) */
LY_CHECK_GOTO(ret = lys_compile_depset_all(ctx, &ctx->unres), cleanup);
/* unres resolved */
lys_unres_glob_erase(&ctx->unres);
}
cleanup:
if (ret) {
lys_unres_glob_revert(ctx, &ctx->unres);
lys_unres_glob_erase(&ctx->unres);
} else if (module) {
*module = mod;
}
return ret;
}
LIBYANG_API_DEF LY_ERR
lys_parse_mem(struct ly_ctx *ctx, const char *data, LYS_INFORMAT format, struct lys_module **module)
{
LY_ERR ret;
struct ly_in *in = NULL;
LY_CHECK_ARG_RET(ctx, data, format != LYS_IN_UNKNOWN, LY_EINVAL);
LY_CHECK_ERR_RET(ret = ly_in_new_memory(data, &in), LOGERR(ctx, ret, "Unable to create input handler."), ret);
ret = lys_parse(ctx, in, format, NULL, module);
ly_in_free(in, 0);
return ret;
}
LIBYANG_API_DEF LY_ERR
lys_parse_fd(struct ly_ctx *ctx, int fd, LYS_INFORMAT format, struct lys_module **module)
{
LY_ERR ret;
struct ly_in *in = NULL;
LY_CHECK_ARG_RET(ctx, fd > -1, format != LYS_IN_UNKNOWN, LY_EINVAL);
LY_CHECK_ERR_RET(ret = ly_in_new_fd(fd, &in), LOGERR(ctx, ret, "Unable to create input handler."), ret);
ret = lys_parse(ctx, in, format, NULL, module);
ly_in_free(in, 0);
return ret;
}
LIBYANG_API_DEF LY_ERR
lys_parse_path(struct ly_ctx *ctx, const char *path, LYS_INFORMAT format, struct lys_module **module)
{
LY_ERR ret;
struct ly_in *in = NULL;
LY_CHECK_ARG_RET(ctx, path, format != LYS_IN_UNKNOWN, LY_EINVAL);
LY_CHECK_ERR_RET(ret = ly_in_new_filepath(path, 0, &in),
LOGERR(ctx, ret, "Unable to create input handler for filepath %s.", path), ret);
ret = lys_parse(ctx, in, format, NULL, module);
ly_in_free(in, 0);
return ret;
}
LIBYANG_API_DEF LY_ERR
lys_search_localfile(const char * const *searchpaths, ly_bool cwd, const char *name, const char *revision,
char **localfile, LYS_INFORMAT *format)
{
LY_ERR ret = LY_EMEM;
size_t len, flen, match_len = 0, dir_len;
ly_bool implicit_cwd = 0;
char *wd, *wn = NULL;
DIR *dir = NULL;
struct dirent *file;
char *match_name = NULL;
LYS_INFORMAT format_aux, match_format = 0;
struct ly_set *dirs;
struct stat st;
LY_CHECK_ARG_RET(NULL, localfile, LY_EINVAL);
/* start to fill the dir fifo with the context's search path (if set)
* and the current working directory */
LY_CHECK_RET(ly_set_new(&dirs));
len = strlen(name);
if (cwd) {
wd = get_current_dir_name();
if (!wd) {
LOGMEM(NULL);
goto cleanup;
} else {
/* add implicit current working directory (./) to be searched,
* this directory is not searched recursively */
ret = ly_set_add(dirs, wd, 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
implicit_cwd = 1;
}
}
if (searchpaths) {
for (uint64_t i = 0; searchpaths[i]; i++) {
/* check for duplicities with the implicit current working directory */
if (implicit_cwd && !strcmp(dirs->objs[0], searchpaths[i])) {
implicit_cwd = 0;
continue;
}
wd = strdup(searchpaths[i]);
if (!wd) {
LOGMEM(NULL);
goto cleanup;
} else {
ret = ly_set_add(dirs, wd, 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
}
}
wd = NULL;
/* start searching */
while (dirs->count) {
free(wd);
free(wn); wn = NULL;
dirs->count--;
wd = (char *)dirs->objs[dirs->count];
dirs->objs[dirs->count] = NULL;
LOGVRB("Searching for \"%s\" in \"%s\".", name, wd);
if (dir) {
closedir(dir);
}
dir = opendir(wd);
dir_len = strlen(wd);
if (!dir) {
LOGWRN(NULL, "Unable to open directory \"%s\" for searching (sub)modules (%s).", wd, strerror(errno));
} else {
while ((file = readdir(dir))) {
if (!strcmp(".", file->d_name) || !strcmp("..", file->d_name)) {
/* skip . and .. */
continue;
}
free(wn);
if (asprintf(&wn, "%s/%s", wd, file->d_name) == -1) {
LOGMEM(NULL);
goto cleanup;
}
if (stat(wn, &st) == -1) {
LOGWRN(NULL, "Unable to get information about \"%s\" file in \"%s\" when searching for (sub)modules (%s)",
file->d_name, wd, strerror(errno));
continue;
}
if (S_ISDIR(st.st_mode) && (dirs->count || !implicit_cwd)) {
/* we have another subdirectory in searchpath to explore,
* subdirectories are not taken into account in current working dir (dirs->set.g[0]) */
ret = ly_set_add(dirs, wn, 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
/* continue with the next item in current directory */
wn = NULL;
continue;
} else if (!S_ISREG(st.st_mode)) {
/* not a regular file (note that we see the target of symlinks instead of symlinks */
continue;
}
/* here we know that the item is a file which can contain a module */
if (strncmp(name, file->d_name, len) ||
((file->d_name[len] != '.') && (file->d_name[len] != '@'))) {
/* different filename than the module we search for */
continue;
}
/* get type according to filename suffix */
flen = strlen(file->d_name);
if ((flen >= LY_YANG_SUFFIX_LEN + 1) &&
!strcmp(&file->d_name[flen - LY_YANG_SUFFIX_LEN], LY_YANG_SUFFIX)) {
format_aux = LYS_IN_YANG;
} else if ((flen >= LY_YIN_SUFFIX_LEN + 1) &&
!strcmp(&file->d_name[flen - LY_YIN_SUFFIX_LEN], LY_YIN_SUFFIX)) {
format_aux = LYS_IN_YIN;
} else {
/* not supportde suffix/file format */
continue;
}
if (revision) {
/* we look for the specific revision, try to get it from the filename */
if (file->d_name[len] == '@') {
/* check revision from the filename */
if (strncmp(revision, &file->d_name[len + 1], strlen(revision))) {
/* another revision */
continue;
} else {
/* exact revision */
free(match_name);
match_name = wn;
wn = NULL;
match_len = dir_len + 1 + len;
match_format = format_aux;
goto success;
}
} else {
/* continue trying to find exact revision match, use this only if not found */
free(match_name);
match_name = wn;
wn = NULL;
match_len = dir_len + 1 + len;
match_format = format_aux;
continue;
}
} else {
/* remember the revision and try to find the newest one */
if (match_name) {
if ((file->d_name[len] != '@') ||
lysp_check_date(NULL, &file->d_name[len + 1],
flen - ((format_aux == LYS_IN_YANG) ? LY_YANG_SUFFIX_LEN : LY_YIN_SUFFIX_LEN) - len - 1, NULL)) {
continue;
} else if ((match_name[match_len] == '@') &&
(strncmp(&match_name[match_len + 1], &file->d_name[len + 1], LY_REV_SIZE - 1) >= 0)) {
continue;
}
free(match_name);
}
match_name = wn;
wn = NULL;
match_len = dir_len + 1 + len;
match_format = format_aux;
continue;
}
}
}
}
success:
(*localfile) = match_name;
match_name = NULL;
if (format) {
(*format) = match_format;
}
ret = LY_SUCCESS;
cleanup:
free(wn);
free(wd);
if (dir) {
closedir(dir);
}
free(match_name);
ly_set_free(dirs, free);
return ret;
}