blob: fd14dc82b48b466b2728496c5916beb779af2153 [file] [log] [blame]
/**
* @file tree_data.c
* @author Radek Krejci <rkrejci@cesnet.cz>
* @brief Schema tree implementation
*
* Copyright (c) 2015 - 2018 CESNET, z.s.p.o.
*
* This source code is licensed under BSD 3-Clause License (the "License").
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*/
#include "common.h"
#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <stdarg.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include "log.h"
#include "tree.h"
#include "tree_data.h"
#include "tree_data_internal.h"
#include "tree_schema_internal.h"
#include "hash_table.h"
#include "tree_schema.h"
#include "xpath.h"
#include "xml.h"
#include "plugins_exts_metadata.h"
#include "plugins_exts_internal.h"
struct ly_keys {
char *str;
struct {
const struct lysc_node_leaf *schema;
char *value;
struct lyd_value val;
} *keys;
size_t key_count;
};
LY_ERR
lyd_value_parse(struct lyd_node_term *node, const char *value, size_t value_len, int *dynamic, int second,
ly_clb_resolve_prefix get_prefix, void *parser, LYD_FORMAT format, const struct lyd_node *tree)
{
LY_ERR ret = LY_SUCCESS;
struct ly_err_item *err = NULL;
struct ly_ctx *ctx;
struct lysc_type *type;
int options = LY_TYPE_OPTS_STORE | (second ? LY_TYPE_OPTS_SECOND_CALL : 0) |
(dynamic && *dynamic ? LY_TYPE_OPTS_DYNAMIC : 0) | (tree ? 0 : LY_TYPE_OPTS_INCOMPLETE_DATA);
assert(node);
ctx = node->schema->module->ctx;
type = ((struct lysc_node_leaf*)node->schema)->type;
if (!second) {
node->value.realtype = type;
}
ret = type->plugin->store(ctx, type, value, value_len, options, get_prefix, parser, format,
tree ? (void *)node : (void *)node->schema, tree,
&node->value, NULL, &err);
if (ret && (ret != LY_EINCOMPLETE)) {
if (err) {
LOGVAL(ctx, LY_VLOG_LYD, node, err->vecode, err->msg);
ly_err_free(err);
}
goto error;
} else if (dynamic) {
*dynamic = 0;
}
error:
return ret;
}
/* similar to lyd_value_parse except can be used just to store the value, hence does also not support a second call */
static LY_ERR
lyd_value_store(struct lyd_value *val, const struct lysc_node *schema, const char *value, size_t value_len, int *dynamic,
ly_clb_resolve_prefix get_prefix, void *parser, LYD_FORMAT format)
{
LY_ERR ret = LY_SUCCESS;
struct ly_err_item *err = NULL;
struct ly_ctx *ctx;
struct lysc_type *type;
int options = LY_TYPE_OPTS_STORE | LY_TYPE_OPTS_INCOMPLETE_DATA | (dynamic && *dynamic ? LY_TYPE_OPTS_DYNAMIC : 0);
assert(val && schema && (schema->nodetype & LYD_NODE_TERM));
ctx = schema->module->ctx;
type = ((struct lysc_node_leaf *)schema)->type;
val->realtype = type;
ret = type->plugin->store(ctx, type, value, value_len, options, get_prefix, parser, format, (void *)schema, NULL,
val, NULL, &err);
if (ret == LY_EINCOMPLETE) {
/* this is fine, we do not need it resolved */
ret = LY_SUCCESS;
} else if (ret && err) {
ly_err_print(err);
LOGVAL(ctx, LY_VLOG_STR, err->path, err->vecode, err->msg);
ly_err_free(err);
}
if (!ret && dynamic) {
*dynamic = 0;
}
return ret;
}
LY_ERR
lyd_value_parse_meta(struct ly_ctx *ctx, struct lyd_meta *meta, const char *value, size_t value_len, int *dynamic,
int second, ly_clb_resolve_prefix get_prefix, void *parser, LYD_FORMAT format,
const struct lysc_node *ctx_snode, const struct lyd_node *tree)
{
LY_ERR ret = LY_SUCCESS;
struct ly_err_item *err = NULL;
struct lyext_metadata *ant;
int options = LY_TYPE_OPTS_STORE | (second ? LY_TYPE_OPTS_SECOND_CALL : 0) |
(dynamic && *dynamic ? LY_TYPE_OPTS_DYNAMIC : 0) | (tree ? 0 : LY_TYPE_OPTS_INCOMPLETE_DATA);
assert(ctx && meta && ((tree && meta->parent) || ctx_snode));
ant = meta->annotation->data;
if (!second) {
meta->value.realtype = ant->type;
}
ret = ant->type->plugin->store(ctx, ant->type, value, value_len, options, get_prefix, parser, format,
tree ? (void *)meta->parent : (void *)ctx_snode, tree, &meta->value, NULL, &err);
if (ret && (ret != LY_EINCOMPLETE)) {
if (err) {
ly_err_print(err);
LOGVAL(ctx, LY_VLOG_STR, err->path, err->vecode, err->msg);
ly_err_free(err);
}
goto error;
} else if (dynamic) {
*dynamic = 0;
}
error:
return ret;
}
API LY_ERR
lys_value_validate(const struct ly_ctx *ctx, const struct lysc_node *node, const char *value, size_t value_len,
ly_clb_resolve_prefix get_prefix, void *get_prefix_data, LYD_FORMAT format)
{
LY_ERR rc = LY_SUCCESS;
struct ly_err_item *err = NULL;
struct lysc_type *type;
LY_CHECK_ARG_RET(ctx, node, value, LY_EINVAL);
if (!(node->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGARG(ctx, node);
return LY_EINVAL;
}
type = ((struct lysc_node_leaf*)node)->type;
/* just validate, no storing of enything */
rc = type->plugin->store(ctx ? ctx : node->module->ctx, type, value, value_len, LY_TYPE_OPTS_INCOMPLETE_DATA,
get_prefix, get_prefix_data, format, node, NULL, NULL, NULL, &err);
if (rc == LY_EINCOMPLETE) {
/* actually success since we do not provide the context tree and call validation with
* LY_TYPE_OPTS_INCOMPLETE_DATA */
rc = LY_SUCCESS;
} else if (rc && err) {
if (ctx) {
/* log only in case the ctx was provided as input parameter */
ly_err_print(err);
LOGVAL(ctx, LY_VLOG_STR, err->path, err->vecode, err->msg);
}
ly_err_free(err);
}
return rc;
}
API LY_ERR
lyd_value_validate(const struct ly_ctx *ctx, const struct lyd_node_term *node, const char *value, size_t value_len,
ly_clb_resolve_prefix get_prefix, void *get_prefix_data, LYD_FORMAT format, const struct lyd_node *tree)
{
LY_ERR rc;
struct ly_err_item *err = NULL;
struct lysc_type *type;
int options = (tree ? 0 : LY_TYPE_OPTS_INCOMPLETE_DATA);
LY_CHECK_ARG_RET(ctx, node, value, LY_EINVAL);
type = ((struct lysc_node_leaf*)node->schema)->type;
rc = type->plugin->store(ctx ? ctx : node->schema->module->ctx, type, value, value_len, options,
get_prefix, get_prefix_data, format, tree ? (void*)node : (void*)node->schema, tree,
NULL, NULL, &err);
if (rc == LY_EINCOMPLETE) {
return rc;
} else if (rc) {
if (err) {
if (ctx) {
ly_err_print(err);
LOGVAL(ctx, LY_VLOG_STR, err->path, err->vecode, err->msg);
}
ly_err_free(err);
}
return rc;
}
return LY_SUCCESS;
}
API LY_ERR
lyd_value_compare(const struct lyd_node_term *node, const char *value, size_t value_len,
ly_clb_resolve_prefix get_prefix, void *get_prefix_data, LYD_FORMAT format, const struct lyd_node *tree)
{
LY_ERR ret = LY_SUCCESS, rc;
struct ly_err_item *err = NULL;
struct ly_ctx *ctx;
struct lysc_type *type;
struct lyd_value data = {0};
int options = LY_TYPE_OPTS_STORE | (tree ? 0 : LY_TYPE_OPTS_INCOMPLETE_DATA);
LY_CHECK_ARG_RET(node ? node->schema->module->ctx : NULL, node, value, LY_EINVAL);
ctx = node->schema->module->ctx;
type = ((struct lysc_node_leaf*)node->schema)->type;
rc = type->plugin->store(ctx, type, value, value_len, options, get_prefix, get_prefix_data, format, (struct lyd_node*)node,
tree, &data, NULL, &err);
if (rc == LY_EINCOMPLETE) {
ret = rc;
/* continue with comparing, just remember what to return if storing is ok */
} else if (rc) {
/* value to compare is invalid */
ret = LY_EINVAL;
if (err) {
ly_err_free(err);
}
goto cleanup;
}
/* compare data */
if (type->plugin->compare(&node->value, &data)) {
/* do not assign it directly from the compare callback to keep possible LY_EINCOMPLETE from validation */
ret = LY_EVALID;
}
cleanup:
type->plugin->free(ctx, &data);
return ret;
}
API const char *
lyd_value2str(const struct lyd_node_term *node, int *dynamic)
{
LY_CHECK_ARG_RET(node ? node->schema->module->ctx : NULL, node, dynamic, NULL);
return node->value.realtype->plugin->print(&node->value, LYD_JSON, json_print_get_prefix, NULL, dynamic);
}
API const char *
lyd_meta2str(const struct lyd_meta *meta, int *dynamic)
{
LY_CHECK_ARG_RET(meta ? meta->parent->schema->module->ctx : NULL, meta, dynamic, NULL);
return meta->value.realtype->plugin->print(&meta->value, LYD_JSON, json_print_get_prefix, NULL, dynamic);
}
API struct lyd_node *
lyd_parse_mem(struct ly_ctx *ctx, const char *data, LYD_FORMAT format, int options)
{
struct lyd_node *result = NULL;
#if 0
const char *yang_data_name = NULL;
#endif
LY_CHECK_ARG_RET(ctx, ctx, NULL);
if ((options & LYD_OPT_PARSE_ONLY) && (options & LYD_VALOPT_MASK)) {
LOGERR(ctx, LY_EINVAL, "Passing validation flags with LYD_OPT_PARSE_ONLY is not allowed.");
return NULL;
}
#if 0
if (options & LYD_OPT_RPCREPLY) {
/* first item in trees is mandatory - the RPC/action request */
LY_CHECK_ARG_RET(ctx, trees, LY_ARRAY_SIZE(trees) >= 1, NULL);
if (!trees[0] || trees[0]->parent || !(trees[0]->schema->nodetype & (LYS_ACTION | LYS_LIST | LYS_CONTAINER))) {
LOGERR(ctx, LY_EINVAL, "Data parser invalid argument trees - the first item in the array must be the RPC/action request when parsing %s.",
lyd_parse_options_type2str(options));
return NULL;
}
}
if (options & LYD_OPT_DATA_TEMPLATE) {
yang_data_name = va_arg(ap, const char *);
}
#endif
if (!format) {
/* TODO try to detect format from the content */
}
switch (format) {
case LYD_XML:
lyd_parse_xml_data(ctx, data, options, &result);
break;
#if 0
case LYD_JSON:
lyd_parse_json(ctx, data, options, trees, &result);
break;
case LYD_LYB:
lyd_parse_lyb(ctx, data, options, trees, &result);
break;
#endif
case LYD_SCHEMA:
LOGINT(ctx);
break;
}
return result;
}
API struct lyd_node *
lyd_parse_fd(struct ly_ctx *ctx, int fd, LYD_FORMAT format, int options)
{
struct lyd_node *result;
size_t length;
char *addr;
LY_CHECK_ARG_RET(ctx, ctx, NULL);
if (fd < 0) {
LOGARG(ctx, fd);
return NULL;
}
LY_CHECK_RET(ly_mmap(ctx, fd, &length, (void **)&addr), NULL);
result = lyd_parse_mem(ctx, addr ? addr : "", format, options);
if (addr) {
ly_munmap(addr, length);
}
return result;
}
API struct lyd_node *
lyd_parse_path(struct ly_ctx *ctx, const char *path, LYD_FORMAT format, int options)
{
int fd;
struct lyd_node *result;
size_t len;
LY_CHECK_ARG_RET(ctx, ctx, path, NULL);
fd = open(path, O_RDONLY);
LY_CHECK_ERR_RET(fd == -1, LOGERR(ctx, LY_ESYS, "Opening file \"%s\" failed (%s).", path, strerror(errno)), NULL);
if (!format) {
/* unknown format - try to detect it from filename's suffix */
len = strlen(path);
/* ignore trailing whitespaces */
for (; len > 0 && isspace(path[len - 1]); len--);
if (len >= 5 && !strncmp(&path[len - 4], ".xml", 4)) {
format = LYD_XML;
#if 0
} else if (len >= 6 && !strncmp(&path[len - 5], ".json", 5)) {
format = LYD_JSON;
} else if (len >= 5 && !strncmp(&path[len - 4], ".lyb", 4)) {
format = LYD_LYB;
#endif
} /* else still unknown, try later to detect it from the content */
}
result = lyd_parse_fd(ctx, fd, format, options);
close(fd);
return result;
}
LY_ERR
lyd_create_term(const struct lysc_node *schema, const char *value, size_t value_len, int *dynamic,
ly_clb_resolve_prefix get_prefix, void *prefix_data, LYD_FORMAT format, struct lyd_node **node)
{
LY_ERR ret;
struct lyd_node_term *term;
assert(schema->nodetype & LYD_NODE_TERM);
term = calloc(1, sizeof *term);
LY_CHECK_ERR_RET(!term, LOGMEM(schema->module->ctx), LY_EMEM);
term->schema = schema;
term->prev = (struct lyd_node *)term;
term->flags = LYD_NEW;
ret = lyd_value_parse(term, value, value_len, dynamic, 0, get_prefix, prefix_data, format, NULL);
if (ret && (ret != LY_EINCOMPLETE)) {
free(term);
return ret;
}
lyd_hash((struct lyd_node *)term);
*node = (struct lyd_node *)term;
return ret;
}
LY_ERR
lyd_create_term2(const struct lysc_node *schema, const struct lyd_value *val, struct lyd_node **node)
{
LY_ERR ret;
struct lyd_node_term *term;
struct lysc_type *type;
assert(schema->nodetype & LYD_NODE_TERM);
term = calloc(1, sizeof *term);
LY_CHECK_ERR_RET(!term, LOGMEM(schema->module->ctx), LY_EMEM);
term->schema = schema;
term->prev = (struct lyd_node *)term;
term->flags = LYD_NEW;
type = ((struct lysc_node_leaf *)schema)->type;
ret = type->plugin->duplicate(schema->module->ctx, val, &term->value);
if (ret) {
LOGERR(schema->module->ctx, ret, "Value duplication failed.");
free(term);
return ret;
}
lyd_hash((struct lyd_node *)term);
*node = (struct lyd_node *)term;
return ret;
}
LY_ERR
lyd_create_inner(const struct lysc_node *schema, struct lyd_node **node)
{
struct lyd_node_inner *in;
assert(schema->nodetype & LYD_NODE_INNER);
in = calloc(1, sizeof *in);
LY_CHECK_ERR_RET(!in, LOGMEM(schema->module->ctx), LY_EMEM);
in->schema = schema;
in->prev = (struct lyd_node *)in;
in->flags = LYD_NEW;
/* do not hash list with keys, we need them for the hash */
if ((schema->nodetype != LYS_LIST) || (schema->flags & LYS_KEYLESS)) {
lyd_hash((struct lyd_node *)in);
}
*node = (struct lyd_node *)in;
return LY_SUCCESS;
}
static void
ly_keys_clean(struct ly_keys *keys)
{
size_t i;
for (i = 0; i < keys->key_count; ++i) {
keys->keys[i].schema->type->plugin->free(keys->keys[i].schema->module->ctx, &keys->keys[i].val);
}
free(keys->str);
free(keys->keys);
}
static char *
ly_keys_parse_next(char **next_key, char **key_name)
{
char *ptr, *ptr2, *val, quot;
ptr = *next_key;
/* "[" */
LY_CHECK_GOTO(ptr[0] != '[', error);
++ptr;
/* key name */
ptr2 = strchr(ptr, '=');
LY_CHECK_GOTO(!ptr2, error);
*key_name = ptr;
ptr2[0] = '\0';
/* \0, was '=' */
ptr = ptr2 + 1;
/* quote */
LY_CHECK_GOTO((ptr[0] != '\'') && (ptr[0] != '\"'), error);
quot = ptr[0];
++ptr;
/* value, terminate it */
val = ptr;
ptr2 = strchr(ptr, quot);
LY_CHECK_GOTO(!ptr2, error);
ptr2[0] = '\0';
/* \0, was quote */
ptr = ptr2 + 1;
/* "]" */
LY_CHECK_GOTO(ptr[0] != ']', error);
++ptr;
*next_key = ptr;
return val;
error:
*next_key = ptr;
return NULL;
}
/* fill keys structure that is expected to be zeroed and must always be cleaned (even on error);
* if store is set, fill also each val */
static LY_ERR
ly_keys_parse(const struct lysc_node *list, const char *keys_str, size_t keys_len, int store, int log,
struct ly_keys *keys)
{
LY_ERR ret = LY_SUCCESS;
char *next_key, *name;
const struct lysc_node *key;
size_t i;
assert(list->nodetype == LYS_LIST);
if (!keys_str) {
/* nothing to parse */
return LY_SUCCESS;
}
keys->str = strndup(keys_str, keys_len);
LY_CHECK_ERR_GOTO(!keys->str, LOGMEM(list->module->ctx); ret = LY_EMEM, cleanup);
next_key = keys->str;
while (next_key[0]) {
/* new key */
keys->keys = ly_realloc(keys->keys, (keys->key_count + 1) * sizeof *keys->keys);
LY_CHECK_ERR_GOTO(!keys->keys, LOGMEM(list->module->ctx); ret = LY_EMEM, cleanup);
/* fill */
keys->keys[keys->key_count].value = ly_keys_parse_next(&next_key, &name);
if (!keys->keys[keys->key_count].value) {
if (log) {
LOGERR(list->module->ctx, LY_EINVAL, "Invalid keys string (at \"%s\").", next_key);
}
ret = LY_EINVAL;
goto cleanup;
}
/* find schema node */
key = lys_find_child(list, list->module, name, 0, LYS_LEAF, 0);
if (!key) {
if (log) {
LOGERR(list->module->ctx, LY_EINVAL, "List \"%s\" has no key \"%s\".", list->name, name);
}
ret = LY_EINVAL;
goto cleanup;
}
keys->keys[keys->key_count].schema = (const struct lysc_node_leaf *)key;
/* check that we do not have it already */
for (i = 0; i < keys->key_count; ++i) {
if (keys->keys[i].schema == keys->keys[keys->key_count].schema) {
if (log) {
LOGERR(list->module->ctx, LY_EINVAL, "Duplicit key \"%s\" value.", name);
}
ret = LY_EINVAL;
goto cleanup;
}
}
if (store) {
/* store the value */
ret = lyd_value_store(&keys->keys[keys->key_count].val, key, keys->keys[keys->key_count].value, 0, 0,
lydjson_resolve_prefix, NULL, LYD_JSON);
LY_CHECK_GOTO(ret, cleanup);
} else {
memset(&keys->keys[keys->key_count].val, 0, sizeof keys->keys[keys->key_count].val);
}
/* another valid key */
++keys->key_count;
}
cleanup:
return ret;
}
LY_ERR
lyd_create_list(const struct lysc_node *schema, const char *keys_str, size_t keys_len, LYD_FORMAT keys_format, int log,
struct lyd_node **node)
{
LY_ERR ret = LY_SUCCESS;
const struct lysc_node *key_s;
struct lyd_node *list = NULL, *key;
struct ly_keys keys = {0};
size_t i;
assert((schema->nodetype == LYS_LIST) && !(schema->flags & LYS_KEYLESS) && (keys_format != LYD_XML));
/* parse keys */
LY_CHECK_GOTO(ret = ly_keys_parse(schema, keys_str, keys_len, 0, log, &keys), cleanup);
/* create list */
LY_CHECK_GOTO(ret = lyd_create_inner(schema, &list), cleanup);
/* everything was checked except that all keys are set */
i = 0;
for (key_s = lysc_node_children(schema, 0); key_s && (key_s->flags & LYS_KEY); key_s = key_s->next) {
++i;
}
if (i != keys.key_count) {
if (log) {
LOGERR(schema->module->ctx, LY_EINVAL, "List \"%s\" is missing some keys.", schema->name);
}
ret = LY_EINVAL;
goto cleanup;
}
/* create and insert all the keys */
for (i = 0; i < keys.key_count; ++i) {
if (keys_format == LYD_JSON) {
ret = lyd_create_term((struct lysc_node *)keys.keys[i].schema, keys.keys[i].value, strlen(keys.keys[i].value),
NULL, lydjson_resolve_prefix, NULL, LYD_JSON, &key);
} else {
assert(keys_format == LYD_SCHEMA);
ret = lyd_create_term((struct lysc_node *)keys.keys[i].schema, keys.keys[i].value, strlen(keys.keys[i].value),
NULL, lys_resolve_prefix, NULL, LYD_SCHEMA, &key);
}
LY_CHECK_GOTO(ret, cleanup);
lyd_insert_node(list, NULL, key);
}
/* hash having all the keys */
lyd_hash(list);
/* success */
*node = list;
list = NULL;
cleanup:
lyd_free_tree(list);
ly_keys_clean(&keys);
return ret;
}
LY_ERR
lyd_create_any(const struct lysc_node *schema, const void *value, LYD_ANYDATA_VALUETYPE value_type, struct lyd_node **node)
{
struct lyd_node_any *any;
assert(schema->nodetype & LYD_NODE_ANY);
any = calloc(1, sizeof *any);
LY_CHECK_ERR_RET(!any, LOGMEM(schema->module->ctx), LY_EMEM);
any->schema = schema;
any->prev = (struct lyd_node *)any;
any->flags = LYD_NEW;
any->value.xml = value;
any->value_type = value_type;
lyd_hash((struct lyd_node *)any);
*node = (struct lyd_node *)any;
return LY_SUCCESS;
}
LY_ERR
lyd_create_opaq(const struct ly_ctx *ctx, const char *name, size_t name_len, const char *value, size_t value_len,
int *dynamic, LYD_FORMAT format, struct ly_prefix *val_prefs, const char *prefix, size_t pref_len,
const char *ns, struct lyd_node **node)
{
struct lyd_node_opaq *opaq;
assert(ctx && name && name_len && ns);
if (!value_len) {
value = "";
}
opaq = calloc(1, sizeof *opaq);
LY_CHECK_ERR_RET(!opaq, LOGMEM(ctx), LY_EMEM);
opaq->prev = (struct lyd_node *)opaq;
opaq->name = lydict_insert(ctx, name, name_len);
opaq->format = format;
if (pref_len) {
opaq->prefix.pref = lydict_insert(ctx, prefix, pref_len);
}
opaq->prefix.ns = lydict_insert(ctx, ns, 0);
opaq->val_prefs = val_prefs;
if (dynamic && *dynamic) {
opaq->value = lydict_insert_zc(ctx, (char *)value);
*dynamic = 0;
} else {
opaq->value = lydict_insert(ctx, value, value_len);
}
opaq->ctx = ctx;
*node = (struct lyd_node *)opaq;
return LY_SUCCESS;
}
API struct lyd_node *
lyd_new_inner(struct lyd_node *parent, const struct lys_module *module, const char *name)
{
struct lyd_node *ret = NULL;
const struct lysc_node *schema;
struct ly_ctx *ctx = parent ? parent->schema->module->ctx : (module ? module->ctx : NULL);
LY_CHECK_ARG_RET(ctx, parent || module, name, NULL);
if (!module) {
module = parent->schema->module;
}
schema = lys_find_child(parent ? parent->schema : NULL, module, name, 0, LYS_CONTAINER | LYS_NOTIF | LYS_RPC | LYS_ACTION, 0);
LY_CHECK_ERR_RET(!schema, LOGERR(ctx, LY_EINVAL, "Inner node \"%s\" not found.", name), NULL);
if (!lyd_create_inner(schema, &ret) && parent) {
lyd_insert_node(parent, NULL, ret);
}
return ret;
}
API struct lyd_node *
lyd_new_list(struct lyd_node *parent, const struct lys_module *module, const char *name, ...)
{
struct lyd_node *ret = NULL, *key;
const struct lysc_node *schema, *key_s;
struct ly_ctx *ctx = parent ? parent->schema->module->ctx : (module ? module->ctx : NULL);
va_list ap;
const char *key_val;
LY_ERR rc = LY_SUCCESS;
LY_CHECK_ARG_RET(ctx, parent || module, name, NULL);
if (!module) {
module = parent->schema->module;
}
schema = lys_find_child(parent ? parent->schema : NULL, module, name, 0, LYS_LIST, 0);
LY_CHECK_ERR_RET(!schema, LOGERR(ctx, LY_EINVAL, "List node \"%s\" not found.", name), NULL);
/* create list inner node */
LY_CHECK_RET(lyd_create_inner(schema, &ret), NULL);
va_start(ap, name);
/* create and insert all the keys */
for (key_s = lysc_node_children(schema, 0); key_s && (key_s->flags & LYS_KEY); key_s = key_s->next) {
key_val = va_arg(ap, const char *);
rc = lyd_create_term(key_s, key_val, key_val ? strlen(key_val) : 0, NULL, lydjson_resolve_prefix, NULL, LYD_JSON, &key);
LY_CHECK_GOTO(rc, cleanup);
lyd_insert_node(ret, NULL, key);
}
/* hash having all the keys */
lyd_hash(ret);
if (parent) {
lyd_insert_node(parent, NULL, ret);
}
cleanup:
if (rc) {
lyd_free_tree(ret);
ret = NULL;
}
va_end(ap);
return ret;
}
API struct lyd_node *
lyd_new_list2(struct lyd_node *parent, const struct lys_module *module, const char *name, const char *keys)
{
struct lyd_node *ret = NULL;
const struct lysc_node *schema;
struct ly_ctx *ctx = parent ? parent->schema->module->ctx : (module ? module->ctx : NULL);
LY_CHECK_ARG_RET(ctx, parent || module, name, NULL);
if (!module) {
module = parent->schema->module;
}
schema = lys_find_child(parent ? parent->schema : NULL, module, name, 0, LYS_LIST, 0);
LY_CHECK_ERR_RET(!schema, LOGERR(ctx, LY_EINVAL, "List node \"%s\" not found.", name), NULL);
if (!lyd_create_list(schema, keys, keys ? strlen(keys) : 0, LYD_JSON, 1, &ret) && parent) {
lyd_insert_node(parent, NULL, ret);
}
return ret;
}
API struct lyd_node *
lyd_new_term(struct lyd_node *parent, const struct lys_module *module, const char *name, const char *val_str)
{
struct lyd_node *ret = NULL;
const struct lysc_node *schema;
struct ly_ctx *ctx = parent ? parent->schema->module->ctx : (module ? module->ctx : NULL);
LY_CHECK_ARG_RET(ctx, parent || module, name, NULL);
if (!module) {
module = parent->schema->module;
}
schema = lys_find_child(parent ? parent->schema : NULL, module, name, 0, LYD_NODE_TERM, 0);
LY_CHECK_ERR_RET(!schema, LOGERR(ctx, LY_EINVAL, "Term node \"%s\" not found.", name), NULL);
if (!lyd_create_term(schema, val_str, val_str ? strlen(val_str) : 0, NULL, lydjson_resolve_prefix, NULL, LYD_JSON, &ret)
&& parent) {
lyd_insert_node(parent, NULL, ret);
}
return ret;
}
API struct lyd_node *
lyd_new_any(struct lyd_node *parent, const struct lys_module *module, const char *name, const void *value,
LYD_ANYDATA_VALUETYPE value_type)
{
struct lyd_node *ret = NULL;
const struct lysc_node *schema;
struct ly_ctx *ctx = parent ? parent->schema->module->ctx : (module ? module->ctx : NULL);
LY_CHECK_ARG_RET(ctx, parent || module, name, NULL);
if (!module) {
module = parent->schema->module;
}
schema = lys_find_child(parent ? parent->schema : NULL, module, name, 0, LYD_NODE_ANY, 0);
LY_CHECK_ERR_RET(!schema, LOGERR(ctx, LY_EINVAL, "Any node \"%s\" not found.", name), NULL);
if (!lyd_create_any(schema, value, value_type, &ret) && parent) {
lyd_insert_node(parent, NULL, ret);
}
return ret;
}
struct lyd_node *
lyd_get_prev_key_anchor(const struct lyd_node *first_sibling, const struct lysc_node *new_key)
{
const struct lysc_node *prev_key;
struct lyd_node *match = NULL;
if (!first_sibling) {
return NULL;
}
for (prev_key = new_key->prev; !match && prev_key->next; prev_key = prev_key->prev) {
lyd_find_sibling_val(first_sibling, prev_key, NULL, 0, &match);
}
return match;
}
/**
* @brief Insert node after a sibling.
*
* Handles inserting into NP containers and key-less lists.
*
* @param[in] sibling Sibling to insert after.
* @param[in] node Node to insert.
*/
static void
lyd_insert_after_node(struct lyd_node *sibling, struct lyd_node *node)
{
struct lyd_node_inner *par;
assert(!node->next && (node->prev == node));
node->next = sibling->next;
node->prev = sibling;
sibling->next = node;
if (node->next) {
/* sibling had a succeeding node */
node->next->prev = node;
} else {
/* sibling was last, find first sibling and change its prev */
if (sibling->parent) {
sibling = sibling->parent->child;
} else {
for (; sibling->prev->next != node; sibling = sibling->prev);
}
sibling->prev = node;
}
node->parent = sibling->parent;
for (par = node->parent; par; par = par->parent) {
if ((par->flags & LYD_DEFAULT) && !(node->flags & LYD_DEFAULT)) {
/* remove default flags from NP containers */
par->flags &= ~LYD_DEFAULT;
}
if ((par->schema->nodetype == LYS_LIST) && (par->schema->flags & LYS_KEYLESS)) {
/* rehash key-less list */
lyd_hash((struct lyd_node *)par);
}
}
/* insert into hash table */
lyd_insert_hash(node);
}
/**
* @brief Insert node before a sibling.
*
* Handles inserting into NP containers and key-less lists.
*
* @param[in] sibling Sibling to insert before.
* @param[in] node Node to insert.
*/
static void
lyd_insert_before_node(struct lyd_node *sibling, struct lyd_node *node)
{
struct lyd_node_inner *par;
assert(!node->next && (node->prev == node));
node->next = sibling;
/* covers situation of sibling being first */
node->prev = sibling->prev;
sibling->prev = node;
if (node->prev->next) {
/* sibling had a preceding node */
node->prev->next = node;
} else if (sibling->parent) {
/* sibling was first and we must also change parent child pointer */
sibling->parent->child = node;
}
node->parent = sibling->parent;
for (par = node->parent; par; par = par->parent) {
if ((par->flags & LYD_DEFAULT) && !(node->flags & LYD_DEFAULT)) {
/* remove default flags from NP containers */
par->flags &= ~LYD_DEFAULT;
}
if ((par->schema->nodetype == LYS_LIST) && (par->schema->flags & LYS_KEYLESS)) {
/* rehash key-less list */
lyd_hash((struct lyd_node *)par);
}
}
/* insert into hash table */
lyd_insert_hash(node);
}
/**
* @brief Insert node as the last child of a parent.
*
* Handles inserting into NP containers and key-less lists.
*
* @param[in] parent Parent to insert into.
* @param[in] node Node to insert.
*/
static void
lyd_insert_last_node(struct lyd_node *parent, struct lyd_node *node)
{
struct lyd_node_inner *par;
assert(parent && !node->next && (node->prev == node));
assert(!parent->schema || (parent->schema->nodetype & LYD_NODE_INNER));
par = (struct lyd_node_inner *)parent;
if (!par->child) {
par->child = node;
} else {
node->prev = par->child->prev;
par->child->prev->next = node;
par->child->prev = node;
}
node->parent = par;
for (; par; par = par->parent) {
if ((par->flags & LYD_DEFAULT) && !(node->flags & LYD_DEFAULT)) {
/* remove default flags from NP containers */
par->flags &= ~LYD_DEFAULT;
}
if (par->schema && (par->schema->nodetype == LYS_LIST) && (par->schema->flags & LYS_KEYLESS)) {
/* rehash key-less list */
lyd_hash((struct lyd_node *)par);
}
}
/* insert into hash table */
lyd_insert_hash(node);
}
void
lyd_insert_node(struct lyd_node *parent, struct lyd_node **first_sibling, struct lyd_node *node)
{
struct lyd_node *anchor;
const struct lysc_node *skey = NULL;
int has_keys;
assert((parent || first_sibling) && node && (node->hash || !node->schema));
if (!parent && first_sibling && (*first_sibling) && (*first_sibling)->parent) {
parent = (struct lyd_node *)(*first_sibling)->parent;
}
if (parent) {
if (node->schema && (node->schema->flags & LYS_KEY)) {
/* it is key and we need to insert it at the correct place */
anchor = lyd_get_prev_key_anchor(lyd_node_children(parent), node->schema);
if (anchor) {
lyd_insert_after_node(anchor, node);
} else if (lyd_node_children(parent)) {
lyd_insert_before_node(lyd_node_children(parent), node);
} else {
lyd_insert_last_node(parent, node);
}
/* hash list if all its keys were added */
assert(parent->schema->nodetype == LYS_LIST);
anchor = lyd_node_children(parent);
has_keys = 1;
while ((skey = lys_getnext(skey, parent->schema, NULL, 0)) && (skey->flags & LYS_KEY)) {
if (!anchor || (anchor->schema != skey)) {
/* key missing */
has_keys = 0;
break;
}
anchor = anchor->next;
}
if (has_keys) {
lyd_hash(parent);
}
} else {
/* last child */
lyd_insert_last_node(parent, node);
}
} else if (*first_sibling) {
/* top-level siblings */
anchor = (*first_sibling)->prev;
while (anchor->prev->next && (lyd_owner_module(anchor) != lyd_owner_module(node))) {
anchor = anchor->prev;
}
if (lyd_owner_module(anchor) == lyd_owner_module(node)) {
/* insert after last sibling from this module */
lyd_insert_after_node(anchor, node);
} else {
/* no data from this module, insert at the last position */
lyd_insert_after_node((*first_sibling)->prev, node);
}
} else {
/* the only sibling */
*first_sibling = node;
}
}
static LY_ERR
lyd_insert_check_schema(const struct lysc_node *parent, const struct lysc_node *schema)
{
const struct lysc_node *par2;
assert(schema);
assert(!parent || !(parent->nodetype & (LYS_CASE | LYS_CHOICE)));
/* find schema parent */
par2 = lysc_data_parent(schema);
if (parent) {
/* inner node */
if (par2 != parent) {
LOGERR(parent->module->ctx, LY_EINVAL, "Cannot insert, parent of \"%s\" is not \"%s\".", schema->name, parent->name);
return LY_EINVAL;
}
} else {
/* top-level node */
if (par2) {
LOGERR(parent->module->ctx, LY_EINVAL, "Cannot insert, node \"%s\" is not top-level.", schema->name);
return LY_EINVAL;
}
}
return LY_SUCCESS;
}
API LY_ERR
lyd_insert(struct lyd_node *parent, struct lyd_node *node)
{
struct lyd_node *iter;
LY_CHECK_ARG_RET(NULL, parent, node, !(parent->schema->nodetype & LYD_NODE_INNER), LY_EINVAL);
LY_CHECK_RET(lyd_insert_check_schema(parent->schema, node->schema));
if (node->schema->flags & LYS_KEY) {
LOGERR(parent->schema->module->ctx, LY_EINVAL, "Cannot insert key \"%s\".", node->schema->name);
return LY_EINVAL;
}
if (node->parent || node->prev->next) {
lyd_unlink_tree(node);
}
while (node) {
iter = node->next;
lyd_unlink_tree(node);
lyd_insert_node(parent, NULL, node);
node = iter;
}
return LY_SUCCESS;
}
API LY_ERR
lyd_insert_sibling(struct lyd_node *sibling, struct lyd_node *node)
{
struct lyd_node *iter;
LY_CHECK_ARG_RET(NULL, sibling, node, LY_EINVAL);
LY_CHECK_RET(lyd_insert_check_schema(lysc_data_parent(sibling->schema), node->schema));
if (node->schema->flags & LYS_KEY) {
LOGERR(sibling->schema->module->ctx, LY_EINVAL, "Cannot insert key \"%s\".", node->schema->name);
return LY_EINVAL;
}
if (node->parent || node->prev->next) {
lyd_unlink_tree(node);
}
while (node) {
iter = node->next;
lyd_unlink_tree(node);
lyd_insert_node(NULL, &sibling, node);
node = iter;
}
return LY_SUCCESS;
}
static LY_ERR
lyd_insert_after_check_place(struct lyd_node *anchor, struct lyd_node *sibling, struct lyd_node *node)
{
if (sibling->parent) {
/* nested, we do not care for the order */
return LY_SUCCESS;
}
if (anchor) {
if (anchor->next && (lyd_owner_module(anchor) == lyd_owner_module(anchor->next))
&& (lyd_owner_module(node) != lyd_owner_module(anchor))) {
LOGERR(sibling->schema->module->ctx, LY_EINVAL, "Cannot insert top-level module \"%s\" data into module \"%s\" data.",
lyd_owner_module(node)->name, lyd_owner_module(anchor)->name);
return LY_EINVAL;
}
if ((lyd_owner_module(node) == lyd_owner_module(anchor))
|| (anchor->next && (lyd_owner_module(node) == lyd_owner_module(anchor->next)))) {
/* inserting before/after its module data */
return LY_SUCCESS;
}
}
/* find first sibling */
while (sibling->prev->next) {
sibling = sibling->prev;
}
if (!anchor) {
if (lyd_owner_module(node) == lyd_owner_module(sibling)) {
/* inserting before its module data */
return LY_SUCCESS;
}
}
/* check there are no data of this module */
LY_LIST_FOR(sibling, sibling) {
if (lyd_owner_module(node) == lyd_owner_module(sibling)) {
/* some data of this module found */
LOGERR(sibling->schema->module->ctx, LY_EINVAL, "Top-level data of module \"%s\" already exist,"
" they must be directly connected.", lyd_owner_module(node)->name);
return LY_EINVAL;
}
}
return LY_SUCCESS;
}
API LY_ERR
lyd_insert_before(struct lyd_node *sibling, struct lyd_node *node)
{
struct lyd_node *iter;
LY_CHECK_ARG_RET(NULL, sibling, node, LY_EINVAL);
LY_CHECK_RET(lyd_insert_check_schema(lysc_data_parent(sibling->schema), node->schema));
if (node->schema->flags & LYS_KEY) {
LOGERR(sibling->schema->module->ctx, LY_EINVAL, "Cannot insert key \"%s\".", node->schema->name);
return LY_EINVAL;
} else if (sibling->schema->flags & LYS_KEY) {
LOGERR(sibling->schema->module->ctx, LY_EINVAL, "Cannot insert into keys.");
return LY_EINVAL;
}
LY_CHECK_RET(lyd_insert_after_check_place(sibling->prev->next ? sibling->prev : NULL, sibling, node));
if (node->parent || node->prev->next) {
lyd_unlink_tree(node);
}
/* insert in reverse order to get the original order */
node = node->prev;
while (node) {
iter = node->prev;
lyd_unlink_tree(node);
lyd_insert_before_node(sibling, node);
/* move the anchor accordingly */
sibling = node;
node = (iter == node) ? NULL : iter;
}
return LY_SUCCESS;
}
API LY_ERR
lyd_insert_after(struct lyd_node *sibling, struct lyd_node *node)
{
struct lyd_node *iter;
LY_CHECK_ARG_RET(NULL, sibling, node, LY_EINVAL);
LY_CHECK_RET(lyd_insert_check_schema(lysc_data_parent(sibling->schema), node->schema));
if (node->schema->flags & LYS_KEY) {
LOGERR(sibling->schema->module->ctx, LY_EINVAL, "Cannot insert key \"%s\".", node->schema->name);
return LY_EINVAL;
} else if (sibling->next && (sibling->next->schema->flags & LYS_KEY)) {
LOGERR(sibling->schema->module->ctx, LY_EINVAL, "Cannot insert into keys.");
return LY_EINVAL;
}
LY_CHECK_RET(lyd_insert_after_check_place(sibling, sibling, node));
if (node->parent || node->prev->next) {
lyd_unlink_tree(node);
}
while (node) {
iter = node->next;
lyd_unlink_tree(node);
lyd_insert_after_node(sibling, node);
/* move the anchor accordingly */
sibling = node;
node = iter;
}
return LY_SUCCESS;
}
API void
lyd_unlink_tree(struct lyd_node *node)
{
struct lyd_node *iter;
if (!node) {
return;
}
/* unlink from siblings */
if (node->prev->next) {
node->prev->next = node->next;
}
if (node->next) {
node->next->prev = node->prev;
} else {
/* unlinking the last node */
if (node->parent) {
iter = node->parent->child;
} else {
iter = node->prev;
while (iter->prev != node) {
iter = iter->prev;
}
}
/* update the "last" pointer from the first node */
iter->prev = node->prev;
}
/* unlink from parent */
if (node->parent) {
if (node->parent->child == node) {
/* the node is the first child */
node->parent->child = node->next;
}
lyd_unlink_hash(node);
/* check for keyless list and update its hash */
for (iter = (struct lyd_node *)node->parent; iter; iter = (struct lyd_node *)iter->parent) {
if (iter->schema && (iter->schema->flags & LYS_KEYLESS)) {
lyd_hash(iter);
}
}
node->parent = NULL;
}
node->next = NULL;
node->prev = node;
}
LY_ERR
lyd_create_meta(struct lyd_node *parent, struct lyd_meta **meta, const struct lys_module *mod, const char *name,
size_t name_len, const char *value, size_t value_len, int *dynamic, ly_clb_resolve_prefix resolve_prefix,
void *prefix_data, LYD_FORMAT format, const struct lysc_node *ctx_snode)
{
LY_ERR ret;
struct lysc_ext_instance *ant = NULL;
struct lyd_meta *mt, *last;
LY_ARRAY_SIZE_TYPE u;
assert((parent || meta) && mod);
LY_ARRAY_FOR(mod->compiled->exts, u) {
if (mod->compiled->exts[u].def->plugin == lyext_plugins_internal[LYEXT_PLUGIN_INTERNAL_ANNOTATION].plugin &&
!ly_strncmp(mod->compiled->exts[u].argument, name, name_len)) {
/* we have the annotation definition */
ant = &mod->compiled->exts[u];
break;
}
}
if (!ant) {
/* attribute is not defined as a metadata annotation (RFC 7952) */
LOGERR(mod->ctx, LY_EINVAL, "Annotation definition for attribute \"%s:%.*s\" not found.",
mod->name, name_len, name);
return LY_EINVAL;
}
mt = calloc(1, sizeof *mt);
LY_CHECK_ERR_RET(!mt, LOGMEM(mod->ctx), LY_EMEM);
mt->parent = parent;
mt->annotation = ant;
ret = lyd_value_parse_meta(mod->ctx, mt, value, value_len, dynamic, 0, resolve_prefix, prefix_data, format, ctx_snode, NULL);
if ((ret != LY_SUCCESS) && (ret != LY_EINCOMPLETE)) {
free(mt);
return ret;
}
mt->name = lydict_insert(mod->ctx, name, name_len);
/* insert as the last attribute */
if (parent) {
if (parent->meta) {
for (last = parent->meta; last->next; last = last->next);
last->next = mt;
} else {
parent->meta = mt;
}
} else if (*meta) {
for (last = *meta; last->next; last = last->next);
last->next = mt;
}
/* remove default flags from NP containers */
while (parent && (parent->flags & LYD_DEFAULT)) {
parent->flags &= ~LYD_DEFAULT;
parent = (struct lyd_node *)parent->parent;
}
if (meta) {
*meta = mt;
}
return ret;
}
LY_ERR
ly_create_attr(struct lyd_node *parent, struct ly_attr **attr, const struct ly_ctx *ctx, const char *name,
size_t name_len, const char *value, size_t value_len, int *dynamic, LYD_FORMAT format,
struct ly_prefix *val_prefs, const char *prefix, size_t prefix_len, const char *ns)
{
struct ly_attr *at, *last;
struct lyd_node_opaq *opaq;
assert(ctx && (parent || attr) && (!parent || !parent->schema));
assert(name && name_len);
assert((prefix_len && ns) || (!prefix_len && !ns));
if (!value_len) {
value = "";
}
at = calloc(1, sizeof *at);
LY_CHECK_ERR_RET(!at, LOGMEM(ctx), LY_EMEM);
at->parent = (struct lyd_node_opaq *)parent;
at->name = lydict_insert(ctx, name, name_len);
if (dynamic && *dynamic) {
at->value = lydict_insert_zc(ctx, (char *)value);
*dynamic = 0;
} else {
at->value = lydict_insert(ctx, value, value_len);
}
at->format = format;
at->val_prefs = val_prefs;
if (ns) {
at->prefix.pref = lydict_insert(ctx, prefix, prefix_len);
at->prefix.ns = lydict_insert(ctx, ns, 0);
}
/* insert as the last attribute */
if (parent) {
opaq = (struct lyd_node_opaq *)parent;
if (opaq->attr) {
for (last = opaq->attr; last->next; last = last->next);
last->next = at;
} else {
opaq->attr = at;
}
} else if (*attr) {
for (last = *attr; last->next; last = last->next);
last->next = at;
}
if (attr) {
*attr = at;
}
return LY_SUCCESS;
}
API const struct lyd_node_term *
lyd_target(struct lyd_value_path *path, const struct lyd_node *tree)
{
LY_ARRAY_SIZE_TYPE u, v;
const struct lyd_node *start_sibling;
struct lyd_node *node = NULL;
uint64_t pos = 1;
int match;
LY_CHECK_ARG_RET(NULL, path, tree, NULL);
/* first iteration */
start_sibling = tree;
u = 0;
while (u < LY_ARRAY_SIZE(path)) {
/* find next node instance */
if (start_sibling && !start_sibling->prev->next && !(path[u].node->nodetype & (LYS_LEAFLIST | LYS_LIST))) {
/* starting from the beginning using hashes */
lyd_find_sibling_val(start_sibling, path[u].node, NULL, 0, &node);
} else {
/* next matching sibling */
lyd_find_sibling_next2(start_sibling, path[u].node, NULL, 0, &node);
}
if (!node) {
break;
}
/* check predicate if any */
match = 1;
LY_ARRAY_FOR(path[u].predicates, v) {
if (path[u].predicates[v].type == 0) {
assert(LY_ARRAY_SIZE(path[u].predicates) == 1);
/* position predicate */
if (pos != path[u].predicates[v].position) {
pos++;
match = 0;
}
} else if (path[u].predicates[v].type == 1) {
/* key-predicate */
struct lysc_type *type = ((struct lysc_node_leaf *)path[u].predicates[v].key)->type;
struct lyd_node *key;
lyd_find_sibling_val(lyd_node_children(node), path[u].predicates[v].key, NULL, 0, &key);
if (!key) {
/* probably error and we shouldn't be here due to previous checks when creating path */
match = 0;
} else if (type->plugin->compare(&((struct lyd_node_term *)key)->value, path[u].predicates[v].value)) {
match = 0;
}
} else if (path[u].predicates[v].type == 2) {
/* leaf-list-predicate */
struct lysc_type *type = ((struct lysc_node_leaf *)path[u].node)->type;
if (type->plugin->compare(&((struct lyd_node_term *)node)->value, path[u].predicates[v].value)) {
match = 0;
}
} else {
LOGINT(NULL);
return NULL;
}
if (!match) {
/* useless to check more predicates */
break;
}
}
if (!match) {
/* try to match next sibling */
start_sibling = node->next;
} else {
/* matched, move to the next path segment */
++u;
start_sibling = lyd_node_children(node);
pos = 1;
}
}
return (const struct lyd_node_term *)node;
}
API LY_ERR
lyd_compare(const struct lyd_node *node1, const struct lyd_node *node2, int options)
{
const struct lyd_node *iter1, *iter2;
struct lyd_node_term *term1, *term2;
struct lyd_node_any *any1, *any2;
struct lyd_node_opaq *opaq1, *opaq2;
struct lysc_type *type;
size_t len1, len2;
if (!node1 || !node2) {
if (node1 == node2) {
return LY_SUCCESS;
} else {
return LY_ENOT;
}
}
if ((LYD_NODE_CTX(node1) != LYD_NODE_CTX(node2)) || (node1->schema != node2->schema)) {
return LY_ENOT;
}
if (node1->hash != node2->hash) {
return LY_ENOT;
}
/* equal hashes do not mean equal nodes, they can be just in collision (or both be 0) so the nodes must be checked explicitly */
if (!node1->schema) {
opaq1 = (struct lyd_node_opaq *)node1;
opaq2 = (struct lyd_node_opaq *)node2;
if ((opaq1->name != opaq2->name) || (opaq1->prefix.ns != opaq2->prefix.ns) || (opaq1->format != opaq2->format)) {
return LY_ENOT;
}
switch (opaq1->format) {
case LYD_XML:
if (lyxml_value_compare(opaq1->value, opaq1->val_prefs, opaq2->value, opaq2->val_prefs)) {
return LY_ENOT;
}
break;
case LYD_SCHEMA:
/* not allowed */
LOGINT(LYD_NODE_CTX(node1));
return LY_EINT;
}
if (options & LYD_COMPARE_FULL_RECURSION) {
iter1 = opaq1->child;
iter2 = opaq2->child;
goto all_children_compare;
}
return LY_SUCCESS;
} else {
switch (node1->schema->nodetype) {
case LYS_LEAF:
case LYS_LEAFLIST:
if (options & LYD_COMPARE_DEFAULTS) {
if ((node1->flags & LYD_DEFAULT) != (node2->flags & LYD_DEFAULT)) {
return LY_ENOT;
}
}
term1 = (struct lyd_node_term*)node1;
term2 = (struct lyd_node_term*)node2;
type = ((struct lysc_node_leaf*)node1->schema)->type;
return type->plugin->compare(&term1->value, &term2->value);
case LYS_CONTAINER:
if (options & LYD_COMPARE_DEFAULTS) {
if ((node1->flags & LYD_DEFAULT) != (node2->flags & LYD_DEFAULT)) {
return LY_ENOT;
}
}
if (options & LYD_COMPARE_FULL_RECURSION) {
iter1 = ((struct lyd_node_inner*)node1)->child;
iter2 = ((struct lyd_node_inner*)node2)->child;
goto all_children_compare;
}
return LY_SUCCESS;
case LYS_RPC:
case LYS_ACTION:
if (options & LYD_COMPARE_FULL_RECURSION) {
/* TODO action/RPC
goto all_children_compare;
*/
}
return LY_SUCCESS;
case LYS_NOTIF:
if (options & LYD_COMPARE_FULL_RECURSION) {
/* TODO Notification
goto all_children_compare;
*/
}
return LY_SUCCESS;
case LYS_LIST:
iter1 = ((struct lyd_node_inner*)node1)->child;
iter2 = ((struct lyd_node_inner*)node2)->child;
if (!(node1->schema->flags & LYS_KEYLESS) && !(options & LYD_COMPARE_FULL_RECURSION)) {
/* lists with keys, their equivalence is based on their keys */
for (struct lysc_node *key = ((struct lysc_node_list*)node1->schema)->child;
key && key->nodetype == LYS_LEAF && (key->flags & LYS_KEY);
key = key->next) {
if (lyd_compare(iter1, iter2, options)) {
return LY_ENOT;
}
iter1 = iter1->next;
iter2 = iter2->next;
}
} else {
/* lists without keys, their equivalence is based on equivalence of all the children (both direct and indirect) */
all_children_compare:
if (!iter1 && !iter2) {
/* no children, nothing to compare */
return LY_SUCCESS;
}
for (; iter1 && iter2; iter1 = iter1->next, iter2 = iter2->next) {
if (lyd_compare(iter1, iter2, options | LYD_COMPARE_FULL_RECURSION)) {
return LY_ENOT;
}
}
if (iter1 || iter2) {
return LY_ENOT;
}
}
return LY_SUCCESS;
case LYS_ANYXML:
case LYS_ANYDATA:
any1 = (struct lyd_node_any*)node1;
any2 = (struct lyd_node_any*)node2;
if (any1->value_type != any2->value_type) {
return LY_ENOT;
}
switch (any1->value_type) {
case LYD_ANYDATA_DATATREE:
iter1 = any1->value.tree;
iter2 = any2->value.tree;
goto all_children_compare;
case LYD_ANYDATA_STRING:
case LYD_ANYDATA_XML:
case LYD_ANYDATA_JSON:
len1 = strlen(any1->value.str);
len2 = strlen(any2->value.str);
if (len1 != len2 || strcmp(any1->value.str, any2->value.str)) {
return LY_ENOT;
}
return LY_SUCCESS;
#if 0 /* TODO LYB format */
case LYD_ANYDATA_LYB:
int len1 = lyd_lyb_data_length(any1->value.mem);
int len2 = lyd_lyb_data_length(any2->value.mem);
if (len1 != len2 || memcmp(any1->value.mem, any2->value.mem, len1)) {
return LY_ENOT;
}
return LY_SUCCESS;
#endif
}
}
}
LOGINT(LYD_NODE_CTX(node1));
return LY_EINT;
}
/**
* @brief Duplicate a single node and connect it into @p parent (if present) or last of @p first siblings.
*
* Ignores LYD_DUP_WITH_PARENTS and LYD_DUP_WITH_SIBLINGS which are supposed to be handled by lyd_dup().
*
* @param[in] node Original node to duplicate
* @param[in] parent Parent to insert into, NULL for top-level sibling.
* @param[in,out] first First sibling, NULL if no top-level sibling exist yet. Can be also NULL if @p parent is set.
* @param[in] options Bitmask of options flags, see @ref dupoptions.
* @param[out] dup_p Pointer where the created duplicated node is placed (besides connecting it int @p parent / @p first sibling).
* @return LY_ERR value
*/
static LY_ERR
lyd_dup_recursive(const struct lyd_node *node, struct lyd_node *parent, struct lyd_node **first, int options,
struct lyd_node **dup_p)
{
LY_ERR ret;
struct lyd_node *dup = NULL;
LY_ARRAY_SIZE_TYPE u;
LY_CHECK_ARG_RET(NULL, node, LY_EINVAL);
if (!node->schema) {
dup = calloc(1, sizeof(struct lyd_node_opaq));
} else {
switch (node->schema->nodetype) {
case LYS_RPC:
case LYS_ACTION:
case LYS_NOTIF:
case LYS_CONTAINER:
case LYS_LIST:
dup = calloc(1, sizeof(struct lyd_node_inner));
break;
case LYS_LEAF:
case LYS_LEAFLIST:
dup = calloc(1, sizeof(struct lyd_node_term));
break;
case LYS_ANYDATA:
case LYS_ANYXML:
dup = calloc(1, sizeof(struct lyd_node_any));
break;
default:
LOGINT(LYD_NODE_CTX(node));
ret = LY_EINT;
goto error;
}
}
LY_CHECK_ERR_GOTO(!dup, LOGMEM(LYD_NODE_CTX(node)); ret = LY_EMEM, error);
/* TODO implement LYD_DUP_WITH_WHEN */
dup->flags = node->flags;
dup->schema = node->schema;
dup->prev = dup;
/* TODO duplicate attributes, implement LYD_DUP_NO_ATTR */
/* nodetype-specific work */
if (!dup->schema) {
struct lyd_node_opaq *opaq = (struct lyd_node_opaq *)dup;
struct lyd_node_opaq *orig = (struct lyd_node_opaq *)node;
struct lyd_node *child;
if (options & LYD_DUP_RECURSIVE) {
/* duplicate all the children */
LY_LIST_FOR(orig->child, child) {
LY_CHECK_GOTO(ret = lyd_dup_recursive(child, dup, NULL, options, NULL), error);
}
}
opaq->name = lydict_insert(LYD_NODE_CTX(node), orig->name, 0);
opaq->format = orig->format;
if (orig->prefix.pref) {
opaq->prefix.pref = lydict_insert(LYD_NODE_CTX(node), orig->prefix.pref, 0);
}
if (orig->prefix.ns) {
opaq->prefix.ns = lydict_insert(LYD_NODE_CTX(node), orig->prefix.ns, 0);
}
if (orig->val_prefs) {
LY_ARRAY_CREATE_GOTO(LYD_NODE_CTX(node), opaq->val_prefs, LY_ARRAY_SIZE(orig->val_prefs), ret, error);
LY_ARRAY_FOR(orig->val_prefs, u) {
opaq->val_prefs[u].pref = lydict_insert(LYD_NODE_CTX(node), orig->val_prefs[u].pref, 0);
opaq->val_prefs[u].ns = lydict_insert(LYD_NODE_CTX(node), orig->val_prefs[u].ns, 0);
LY_ARRAY_INCREMENT(opaq->val_prefs);
}
}
opaq->value = lydict_insert(LYD_NODE_CTX(node), orig->value, 0);
opaq->ctx = orig->ctx;
} else if (dup->schema->nodetype & LYD_NODE_TERM) {
struct lyd_node_term *term = (struct lyd_node_term *)dup;
struct lyd_node_term *orig = (struct lyd_node_term *)node;
term->hash = orig->hash;
term->value.realtype = orig->value.realtype;
LY_CHECK_ERR_GOTO(term->value.realtype->plugin->duplicate(LYD_NODE_CTX(node), &orig->value, &term->value),
LOGERR(LYD_NODE_CTX(node), LY_EINT, "Value duplication failed."); ret = LY_EINT, error);
} else if (dup->schema->nodetype & LYD_NODE_INNER) {
struct lyd_node_inner *orig = (struct lyd_node_inner *)node;
struct lyd_node *child;
if (options & LYD_DUP_RECURSIVE) {
/* duplicate all the children */
LY_LIST_FOR(orig->child, child) {
LY_CHECK_GOTO(ret = lyd_dup_recursive(child, dup, NULL, options, NULL), error);
}
} else if (dup->schema->nodetype == LYS_LIST && !(dup->schema->flags & LYS_KEYLESS)) {
/* always duplicate keys of a list */
child = orig->child;
for (struct lysc_node *key = ((struct lysc_node_list *)dup->schema)->child;
key && key->nodetype == LYS_LEAF && (key->flags & LYS_KEY);
key = key->next) {
if (!child) {
/* possibly not keys are present in filtered tree */
break;
} else if (child->schema != key) {
/* possibly not all keys are present in filtered tree,
* but there can be also some non-key nodes */
continue;
}
LY_CHECK_GOTO(ret = lyd_dup_recursive(child, dup, NULL, options, NULL), error);
child = child->next;
}
}
lyd_hash(dup);
} else if (dup->schema->nodetype & LYD_NODE_ANY) {
struct lyd_node_any *any = (struct lyd_node_any *)dup;
struct lyd_node_any *orig = (struct lyd_node_any *)node;
any->hash = orig->hash;
any->value_type = orig->value_type;
switch (any->value_type) {
case LYD_ANYDATA_DATATREE:
if (orig->value.tree) {
any->value.tree = lyd_dup(orig->value.tree, NULL, LYD_DUP_RECURSIVE | LYD_DUP_WITH_SIBLINGS);
if (!any->value.tree) {
/* get the last error's error code recorded by lyd_dup */
struct ly_err_item *ei = ly_err_first(LYD_NODE_CTX(node));
ret = ei ? ei->prev->no : LY_EOTHER;
goto error;
}
LY_CHECK_ERR_GOTO(!any->value.tree, ret = 0 ,error);
}
break;
case LYD_ANYDATA_STRING:
case LYD_ANYDATA_XML:
case LYD_ANYDATA_JSON:
if (orig->value.str) {
any->value.str = lydict_insert(LYD_NODE_CTX(node), orig->value.str, strlen(orig->value.str));
}
break;
}
}
/* insert */
lyd_insert_node(parent, first, dup);
lyd_insert_hash(dup);
if (dup_p) {
*dup_p = dup;
}
return LY_SUCCESS;
error:
lyd_free_tree(dup);
return ret;
}
API struct lyd_node *
lyd_dup(const struct lyd_node *node, struct lyd_node_inner *parent, int options)
{
struct ly_ctx *ctx;
const struct lyd_node *orig; /* original node to be duplicated */
struct lyd_node *first = NULL; /* the first duplicated node, this is returned */
struct lyd_node *top = NULL; /* the most higher created node */
struct lyd_node_inner *local_parent = NULL; /* the direct parent node for the duplicated node(s) */
int keyless_parent_list = 0;
LY_CHECK_ARG_RET(NULL, node, NULL);
ctx = node->schema->module->ctx;
if (options & LYD_DUP_WITH_PARENTS) {
struct lyd_node_inner *orig_parent, *iter;
int repeat = 1;
for (top = NULL, orig_parent = node->parent; repeat && orig_parent; orig_parent = orig_parent->parent) {
if (parent && parent->schema == orig_parent->schema) {
/* stop creating parents, connect what we have into the provided parent */
iter = parent;
repeat = 0;
/* get know if there is a keyless list which we will have to rehash */
for (struct lyd_node_inner *piter = parent; piter; piter = piter->parent) {
if (piter->schema->nodetype == LYS_LIST && (piter->schema->flags & LYS_KEYLESS)) {
keyless_parent_list = 1;
break;
}
}
} else {
iter = NULL;
LY_CHECK_GOTO(lyd_dup_recursive((struct lyd_node *)orig_parent, NULL, (struct lyd_node **)&iter, 0,
(struct lyd_node **)&iter), error);
}
if (!local_parent) {
local_parent = iter;
}
if (iter->child) {
/* 1) list - add after keys
* 2) provided parent with some children */
iter->child->prev->next = top;
if (top) {
top->prev = iter->child->prev;
iter->child->prev = top;
}
} else {
iter->child = top;
if (iter->schema->nodetype == LYS_LIST) {
/* keyless list - we will need to rehash it since we are going to add nodes into it */
keyless_parent_list = 1;
}
}
if (top) {
top->parent = iter;
}
top = (struct lyd_node*)iter;
}
if (repeat && parent) {
/* given parent and created parents chain actually do not interconnect */
LOGERR(ctx, LY_EINVAL, "Invalid argument parent (%s()) - does not interconnect with the created node's parents chain.", __func__);
goto error;
}
} else {
local_parent = parent;
}
LY_LIST_FOR(node, orig) {
/* if there is no local parent, it will be inserted into first */
LY_CHECK_GOTO(lyd_dup_recursive(orig, (struct lyd_node *)local_parent, &first, options, first ? NULL : &first), error);
if (!(options & LYD_DUP_WITH_SIBLINGS)) {
break;
}
}
if (keyless_parent_list) {
/* rehash */
for (; local_parent; local_parent = local_parent->parent) {
if (local_parent->schema->nodetype == LYS_LIST && (local_parent->schema->flags & LYS_KEYLESS)) {
lyd_hash((struct lyd_node*)local_parent);
}
}
}
return first;
error:
if (top) {
lyd_free_tree(top);
} else {
lyd_free_siblings(first);
}
return NULL;
}
static LY_ERR
lyd_path_str_enlarge(char **buffer, size_t *buflen, size_t reqlen, int is_static)
{
/* ending \0 */
++reqlen;
if (reqlen > *buflen) {
if (is_static) {
return LY_EINCOMPLETE;
}
*buffer = ly_realloc(*buffer, reqlen * sizeof **buffer);
if (!*buffer) {
return LY_EMEM;
}
*buflen = reqlen;
}
return LY_SUCCESS;
}
/**
* @brief Append all list key predicates to path.
*
* @param[in] node Node with keys to print.
* @param[in,out] buffer Buffer to print to.
* @param[in,out] buflen Current buffer length.
* @param[in,out] bufused Current number of characters used in @p buffer.
* @param[in] is_static Whether buffer is static or can be reallocated.
* @return LY_ERR
*/
static LY_ERR
lyd_path_list_predicate(const struct lyd_node *node, char **buffer, size_t *buflen, size_t *bufused, int is_static)
{
const struct lyd_node *key;
int dynamic = 0;
size_t len;
const char *val;
char quot;
LY_ERR rc;
for (key = lyd_node_children(node); key && (key->schema->flags & LYS_KEY); key = key->next) {
val = lyd_value2str((struct lyd_node_term *)key, &dynamic);
len = 1 + strlen(key->schema->name) + 2 + strlen(val) + 2;
rc = lyd_path_str_enlarge(buffer, buflen, *bufused + len, is_static);
if (rc != LY_SUCCESS) {
if (dynamic) {
free((char *)val);
}
return rc;
}
quot = '\'';
if (strchr(val, '\'')) {
quot = '"';
}
*bufused += sprintf(*buffer + *bufused, "[%s=%c%s%c]", key->schema->name, quot, val, quot);
if (dynamic) {
free((char *)val);
}
}
return LY_SUCCESS;
}
/**
* @brief Append leaf-list value predicate to path.
*
* @param[in] node Node to print.
* @param[in,out] buffer Buffer to print to.
* @param[in,out] buflen Current buffer length.
* @param[in,out] bufused Current number of characters used in @p buffer.
* @param[in] is_static Whether buffer is static or can be reallocated.
* @return LY_ERR
*/
static LY_ERR
lyd_path_leaflist_predicate(const struct lyd_node *node, char **buffer, size_t *buflen, size_t *bufused, int is_static)
{
int dynamic = 0;
size_t len;
const char *val;
char quot;
LY_ERR rc;
val = lyd_value2str((struct lyd_node_term *)node, &dynamic);
len = 4 + strlen(val) + 2;
rc = lyd_path_str_enlarge(buffer, buflen, *bufused + len, is_static);
if (rc != LY_SUCCESS) {
goto cleanup;
}
quot = '\'';
if (strchr(val, '\'')) {
quot = '"';
}
*bufused += sprintf(*buffer + *bufused, "[.=%c%s%c]", quot, val, quot);
cleanup:
if (dynamic) {
free((char *)val);
}
return rc;
}
/**
* @brief Append node position (relative to its other instances) predicate to path.
*
* @param[in] node Node to print.
* @param[in,out] buffer Buffer to print to.
* @param[in,out] buflen Current buffer length.
* @param[in,out] bufused Current number of characters used in @p buffer.
* @param[in] is_static Whether buffer is static or can be reallocated.
* @return LY_ERR
*/
static LY_ERR
lyd_path_position_predicate(const struct lyd_node *node, char **buffer, size_t *buflen, size_t *bufused, int is_static)
{
const struct lyd_node *first, *iter;
size_t len;
int pos;
char *val = NULL;
LY_ERR rc;
if (node->parent) {
first = node->parent->child;
} else {
for (first = node; node->prev->next; node = node->prev);
}
pos = 1;
for (iter = first; iter != node; iter = iter->next) {
if (iter->schema == node->schema) {
++pos;
}
}
if (asprintf(&val, "%d", pos) == -1) {
return LY_EMEM;
}
len = 1 + strlen(val) + 1;
rc = lyd_path_str_enlarge(buffer, buflen, *bufused + len, is_static);
if (rc != LY_SUCCESS) {
goto cleanup;
}
*bufused += sprintf(*buffer + *bufused, "[%s]", val);
cleanup:
free(val);
return rc;
}
API char *
lyd_path(const struct lyd_node *node, LYD_PATH_TYPE pathtype, char *buffer, size_t buflen)
{
int is_static = 0, i, depth;
size_t bufused = 0, len;
const struct lyd_node *iter;
const struct lys_module *mod;
LY_ERR rc;
LY_CHECK_ARG_RET(NULL, node, NULL);
if (buffer) {
LY_CHECK_ARG_RET(node->schema->module->ctx, buflen > 1, NULL);
is_static = 1;
} else {
buflen = 0;
}
switch (pathtype) {
case LYD_PATH_LOG:
depth = 1;
for (iter = node; iter->parent; iter = (const struct lyd_node *)iter->parent) {
++depth;
}
goto iter_print;
while (depth) {
/* find the right node */
for (iter = node, i = 1; i < depth; iter = (const struct lyd_node *)iter->parent, ++i);
iter_print:
/* print prefix and name */
mod = NULL;
if (!iter->parent || (iter->schema->module != iter->parent->schema->module)) {
mod = iter->schema->module;
}
/* realloc string */
len = 1 + (mod ? strlen(mod->name) + 1 : 0) + strlen(iter->schema->name);
rc = lyd_path_str_enlarge(&buffer, &buflen, bufused + len, is_static);
if (rc != LY_SUCCESS) {
break;
}
/* print next node */
bufused += sprintf(buffer + bufused, "/%s%s%s", mod ? mod->name : "", mod ? ":" : "", iter->schema->name);
switch (iter->schema->nodetype) {
case LYS_LIST:
if (iter->schema->flags & LYS_KEYLESS) {
/* print its position */
rc = lyd_path_position_predicate(iter, &buffer, &buflen, &bufused, is_static);
} else {
/* print all list keys in predicates */
rc = lyd_path_list_predicate(iter, &buffer, &buflen, &bufused, is_static);
}
break;
case LYS_LEAFLIST:
if (iter->schema->flags & LYS_CONFIG_W) {
/* print leaf-list value */
rc = lyd_path_leaflist_predicate(iter, &buffer, &buflen, &bufused, is_static);
} else {
/* print its position */
rc = lyd_path_position_predicate(iter, &buffer, &buflen, &bufused, is_static);
}
break;
default:
/* nothing to print more */
rc = LY_SUCCESS;
break;
}
if (rc != LY_SUCCESS) {
break;
}
--depth;
}
break;
}
return buffer;
}
LY_ERR
lyd_find_sibling_next2(const struct lyd_node *first, const struct lysc_node *schema, const char *key_or_value,
size_t val_len, struct lyd_node **match)
{
LY_ERR rc;
const struct lyd_node *node = NULL;
struct lyd_node_term *term;
struct ly_keys keys = {0};
struct lyd_value val = {0};
size_t i;
LY_CHECK_ARG_RET(NULL, schema, LY_EINVAL);
if (!first) {
/* no data */
if (match) {
*match = NULL;
}
return LY_ENOTFOUND;
}
if (key_or_value && !val_len) {
val_len = strlen(key_or_value);
}
if (key_or_value && (schema->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
/* store the value */
LY_CHECK_GOTO(rc = lyd_value_store(&val, schema, key_or_value, val_len, 0, lydjson_resolve_prefix, NULL, LYD_JSON), cleanup);
} else if (key_or_value && (schema->nodetype == LYS_LIST)) {
/* parse keys into canonical values */
LY_CHECK_GOTO(rc = ly_keys_parse(schema, key_or_value, val_len, 1, 1, &keys), cleanup);
}
/* find first matching value */
LY_LIST_FOR(first, node) {
if (node->schema != schema) {
continue;
}
if ((schema->nodetype == LYS_LIST) && keys.str) {
/* compare all set keys */
for (i = 0; i < keys.key_count; ++i) {
/* find key */
rc = lyd_find_sibling_val(lyd_node_children(node), (struct lysc_node *)keys.keys[i].schema, NULL, 0,
(struct lyd_node **)&term);
if (rc == LY_ENOTFOUND) {
/* all keys must always exist */
LOGINT_RET(schema->module->ctx);
}
LY_CHECK_GOTO(rc, cleanup);
/* compare values */
if (!term->value.realtype->plugin->compare(&term->value, &keys.keys[i].val)) {
break;
}
}
if (i < keys.key_count) {
/* not a match */
continue;
}
} else if ((schema->nodetype & (LYS_LEAF | LYS_LEAFLIST)) && val.realtype) {
term = (struct lyd_node_term *)node;
/* compare values */
if (!term->value.realtype->plugin->compare(&term->value, &val)) {
/* not a match */
continue;
}
}
/* all criteria passed */
break;
}
if (!node) {
rc = LY_ENOTFOUND;
if (match) {
*match = NULL;
}
goto cleanup;
}
/* success */
if (match) {
*match = (struct lyd_node *)node;
}
rc = LY_SUCCESS;
cleanup:
ly_keys_clean(&keys);
if (val.realtype) {
val.realtype->plugin->free(schema->module->ctx, &val);
}
return rc;
}
API LY_ERR
lyd_find_sibling_next(const struct lyd_node *first, const struct lys_module *module, const char *name, size_t name_len,
const char *key_or_value, size_t val_len, struct lyd_node **match)
{
const struct lysc_node *schema;
LY_CHECK_ARG_RET(NULL, module, name, match, LY_EINVAL);
if (!first) {
/* no data */
*match = NULL;
return LY_ENOTFOUND;
}
/* find schema */
schema = lys_find_child(first->parent ? first->parent->schema : NULL, module, name, name_len, 0, 0);
if (!schema) {
LOGERR(module->ctx, LY_EINVAL, "Schema node not found.");
return LY_EINVAL;
}
return lyd_find_sibling_next2(first, schema, key_or_value, val_len, match);
}
API LY_ERR
lyd_find_sibling_first(const struct lyd_node *siblings, const struct lyd_node *target, struct lyd_node **match)
{
struct lyd_node **match_p;
struct lyd_node_inner *parent;
LY_CHECK_ARG_RET(NULL, target, LY_EINVAL);
if (!siblings || (lysc_data_parent(siblings->schema) != lysc_data_parent(target->schema))) {
/* no data or schema mismatch */
if (match) {
*match = NULL;
}
return LY_ENOTFOUND;
}
/* find first sibling */
if (siblings->parent) {
siblings = siblings->parent->child;
} else {
while (siblings->prev->next) {
siblings = siblings->prev;
}
}
parent = (struct lyd_node_inner *)siblings->parent;
if (parent && parent->children_ht) {
assert(target->hash);
/* find by hash */
if (!lyht_find(parent->children_ht, &target, target->hash, (void **)&match_p)) {
siblings = *match_p;
} else {
/* not found */
siblings = NULL;
}
} else {
/* no children hash table */
for (; siblings; siblings = siblings->next) {
if (!lyd_compare(siblings, target, 0)) {
break;
}
}
}
if (!siblings) {
if (match) {
*match = NULL;
}
return LY_ENOTFOUND;
}
if (match) {
*match = (struct lyd_node *)siblings;
}
return LY_SUCCESS;
}
API LY_ERR
lyd_find_sibling_set(const struct lyd_node *siblings, const struct lyd_node *target, struct ly_set **set)
{
struct lyd_node_inner *parent;
struct lyd_node *match;
struct lyd_node **match_p;
struct ly_set *ret;
LY_CHECK_ARG_RET(NULL, target, set, LY_EINVAL);
if (!siblings || (lysc_data_parent(siblings->schema) != lysc_data_parent(target->schema))) {
/* no data or schema mismatch */
return LY_ENOTFOUND;
}
ret = ly_set_new();
LY_CHECK_ERR_RET(!ret, LOGMEM(target->schema->module->ctx), LY_EMEM);
/* find first sibling */
if (siblings->parent) {
siblings = siblings->parent->child;
} else {
while (siblings->prev->next) {
siblings = siblings->prev;
}
}
parent = (struct lyd_node_inner *)siblings->parent;
if (parent && parent->children_ht) {
assert(target->hash);
/* find by hash */
if (!lyht_find(parent->children_ht, &target, target->hash, (void **)&match_p)) {
match = *match_p;
} else {
/* not found */
match = NULL;
}
while (match) {
/* add all found nodes into the return set */
if (ly_set_add(ret, match, LY_SET_OPT_USEASLIST) == -1) {
goto error;
}
/* find next instance */
if (lyht_find_next(parent->children_ht, &match, match->hash, (void **)&match_p)) {
match = NULL;
} else {
match = *match_p;
}
}
} else {
/* no children hash table */
for (; siblings; siblings = siblings->next) {
if (!lyd_compare(siblings, target, 0)) {
/* a match */
if (ly_set_add(ret, (struct lyd_node *)siblings, LY_SET_OPT_USEASLIST) == -1) {
goto error;
}
}
}
}
if (!ret->count) {
ly_set_free(ret, NULL);
return LY_ENOTFOUND;
}
*set = ret;
return LY_SUCCESS;
error:
ly_set_free(ret, NULL);
return LY_EMEM;
}
static int
lyd_hash_table_schema_val_equal(void *val1_p, void *val2_p, int UNUSED(mod), void *UNUSED(cb_data))
{
struct lysc_node *val1;
struct lyd_node *val2;
val1 = *((struct lysc_node **)val1_p);
val2 = *((struct lyd_node **)val2_p);
assert(val1->nodetype & (LYD_NODE_INNER | LYS_LEAF));
if (val1 == val2->schema) {
/* schema match is enough */
return 1;
} else {
return 0;
}
}
static LY_ERR
lyd_find_sibling_schema(const struct lyd_node *siblings, const struct lysc_node *schema, struct lyd_node **match)
{
struct lyd_node **match_p;
struct lyd_node_inner *parent;
uint32_t hash;
values_equal_cb ht_cb;
assert(siblings && schema && (schema->nodetype & (LYD_NODE_INNER | LYS_LEAF)));
/* find first sibling */
if (siblings->parent) {
siblings = siblings->parent->child;
} else {
while (siblings->prev->next) {
siblings = siblings->prev;
}
}
parent = (struct lyd_node_inner *)siblings->parent;
if (parent && parent->children_ht) {
/* calculate our hash */
hash = dict_hash_multi(0, schema->module->name, strlen(schema->module->name));
hash = dict_hash_multi(hash, schema->name, strlen(schema->name));
hash = dict_hash_multi(hash, NULL, 0);
/* use special hash table function */
ht_cb = lyht_set_cb(parent->children_ht, lyd_hash_table_schema_val_equal);
/* find by hash */
if (!lyht_find(parent->children_ht, &schema, hash, (void **)&match_p)) {
siblings = *match_p;
} else {
/* not found */
siblings = NULL;
}
/* set the original hash table compare function back */
lyht_set_cb(parent->children_ht, ht_cb);
} else {
/* no children hash table */
for (; siblings; siblings = siblings->next) {
if (siblings->schema == schema) {
/* schema match is enough */
break;
}
}
}
if (!siblings) {
if (match) {
*match = NULL;
}
return LY_ENOTFOUND;
}
if (match) {
*match = (struct lyd_node *)siblings;
}
return LY_SUCCESS;
}
API LY_ERR
lyd_find_sibling_val(const struct lyd_node *siblings, const struct lysc_node *schema, const char *key_or_value,
size_t val_len, struct lyd_node **match)
{
LY_ERR rc;
struct lyd_node *target = NULL;
LY_CHECK_ARG_RET(NULL, schema, LY_EINVAL);
if ((schema->nodetype == LYS_LIST) && (schema->flags & LYS_KEYLESS)) {
LOGERR(schema->module->ctx, LY_EINVAL, "Invalid arguments - key-less list (%s()).", __func__);
return LY_EINVAL;
} else if ((schema->nodetype & (LYS_LEAFLIST | LYS_LIST)) && !key_or_value) {
LOGERR(schema->module->ctx, LY_EINVAL, "Invalid arguments - no value/keys for a (leaf-)list (%s()).", __func__);
return LY_EINVAL;
} else if (schema->nodetype & (LYS_CHOICE | LYS_CASE)) {
LOGERR(schema->module->ctx, LY_EINVAL, "Invalid arguments - schema type %s (%s()).",
lys_nodetype2str(schema->nodetype), __func__);
return LY_EINVAL;
}
if (!siblings || (lysc_data_parent(siblings->schema) != lysc_data_parent(schema))) {
/* no data or schema mismatch */
if (match) {
*match = NULL;
}
return LY_ENOTFOUND;
}
if (key_or_value && !val_len) {
val_len = strlen(key_or_value);
}
/* create data node if needed and find it */
switch (schema->nodetype) {
case LYS_CONTAINER:
case LYS_ANYXML:
case LYS_ANYDATA:
case LYS_NOTIF:
case LYS_RPC:
case LYS_ACTION:
case LYS_LEAF:
/* find it based on schema only */
rc = lyd_find_sibling_schema(siblings, schema, match);
break;
case LYS_LEAFLIST:
/* target used attributes: schema, hash, value */
LY_CHECK_RET(lyd_create_term(schema, key_or_value, val_len, NULL, lydjson_resolve_prefix, NULL, LYD_JSON, &target));
/* fallthrough */
case LYS_LIST:
if (schema->nodetype == LYS_LIST) {
/* target used attributes: schema, hash, child (all keys) */
LY_CHECK_RET(lyd_create_list(schema, key_or_value, val_len, LYD_JSON, 1, &target));
}
/* find it */
rc = lyd_find_sibling_first(siblings, target, match);
break;
default:
/* unreachable */
LOGINT(schema->module->ctx);
return LY_EINT;
}
lyd_free_tree(target);
return rc;
}
API LY_ERR
lyd_find_xpath(const struct lyd_node *ctx_node, const char *xpath, struct ly_set **set)
{
LY_ERR ret = LY_SUCCESS;
struct lyxp_set xp_set;
struct lyxp_expr *exp;
uint32_t i;
LY_CHECK_ARG_RET(NULL, ctx_node, xpath, set, LY_EINVAL);
memset(&xp_set, 0, sizeof xp_set);
/* compile expression */
exp = lyxp_expr_parse((struct ly_ctx *)LYD_NODE_CTX(ctx_node), xpath);
LY_CHECK_ERR_GOTO(!exp, ret = LY_EINVAL, cleanup);
/* evaluate expression */
ret = lyxp_eval(exp, LYD_JSON, ctx_node->schema->module, ctx_node, LYXP_NODE_ELEM, ctx_node, &xp_set, 0);
LY_CHECK_GOTO(ret, cleanup);
/* allocate return set */
*set = ly_set_new();
LY_CHECK_ERR_GOTO(!*set, LOGMEM(LYD_NODE_CTX(ctx_node)); ret = LY_EMEM, cleanup);
/* transform into ly_set */
if (xp_set.type == LYXP_SET_NODE_SET) {
/* allocate memory for all the elements once (even though not all items must be elements but most likely will be) */
(*set)->objs = malloc(xp_set.used * sizeof *(*set)->objs);
LY_CHECK_ERR_GOTO(!(*set)->objs, LOGMEM(LYD_NODE_CTX(ctx_node)); ret = LY_EMEM, cleanup);
(*set)->size = xp_set.used;
for (i = 0; i < xp_set.used; ++i) {
if (xp_set.val.nodes[i].type == LYXP_NODE_ELEM) {
ly_set_add(*set, xp_set.val.nodes[i].node, LY_SET_OPT_USEASLIST);
}
}
}
cleanup:
//lyxp_set_free_content(&xp_set);
lyxp_set_cast(&xp_set, LYXP_SET_EMPTY);
lyxp_expr_free((struct ly_ctx *)LYD_NODE_CTX(ctx_node), exp);
return ret;
}