blob: ad64425f7aaca787784ea7626c3d90a8ddc4f777 [file] [log] [blame]
module ietf-interfaces {
namespace "urn:ietf:params:xml:ns:yang:ietf-interfaces";
prefix if;
import ietf-yang-types {
prefix yang;
}
organization
"IETF NETMOD (NETCONF Data Modeling Language) Working Group";
contact
"WG Web: <http://tools.ietf.org/wg/netmod/>
WG List: <mailto:netmod@ietf.org>
WG Chair: Thomas Nadeau
<mailto:tnadeau@lucidvision.com>
WG Chair: Juergen Schoenwaelder
<mailto:j.schoenwaelder@jacobs-university.de>
Editor: Martin Bjorklund
<mailto:mbj@tail-f.com>";
description
"This module contains a collection of YANG definitions for
managing network interfaces.
Copyright (c) 2014 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 7223; see
the RFC itself for full legal notices.";
revision 2014-05-08 {
description
"Initial revision.";
reference
"RFC 7223: A YANG Data Model for Interface Management";
}
/*
* Typedefs
*/
typedef interface-ref {
type leafref {
path "/if:interfaces/if:interface/if:name";
}
description
"This type is used by data models that need to reference
configured interfaces.";
}
typedef interface-state-ref {
type leafref {
path "/if:interfaces-state/if:interface/if:name";
}
description
"This type is used by data models that need to reference
the operationally present interfaces.";
}
/*
* Identities
*/
identity interface-type {
description
"Base identity from which specific interface types are
derived.";
}
/*
* Features
*/
feature arbitrary-names {
description
"This feature indicates that the device allows user-controlled
interfaces to be named arbitrarily.";
}
feature pre-provisioning {
description
"This feature indicates that the device supports
pre-provisioning of interface configuration, i.e., it is
possible to configure an interface whose physical interface
hardware is not present on the device.";
}
feature if-mib {
description
"This feature indicates that the device implements
the IF-MIB.";
reference
"RFC 2863: The Interfaces Group MIB";
}
/*
* Configuration data nodes
*/
container interfaces {
description
"Interface configuration parameters.";
list interface {
key "name";
description
"The list of configured interfaces on the device.
The operational state of an interface is available in the
/interfaces-state/interface list. If the configuration of a
system-controlled interface cannot be used by the system
(e.g., the interface hardware present does not match the
interface type), then the configuration is not applied to
the system-controlled interface shown in the
/interfaces-state/interface list. If the configuration
of a user-controlled interface cannot be used by the system,
the configured interface is not instantiated in the
/interfaces-state/interface list.";
leaf name {
type string;
description
"The name of the interface.
A device MAY restrict the allowed values for this leaf,
possibly depending on the type of the interface.
For system-controlled interfaces, this leaf is the
device-specific name of the interface. The 'config false'
list /interfaces-state/interface contains the currently
existing interfaces on the device.
If a client tries to create configuration for a
system-controlled interface that is not present in the
/interfaces-state/interface list, the server MAY reject
the request if the implementation does not support
pre-provisioning of interfaces or if the name refers to
an interface that can never exist in the system. A
NETCONF server MUST reply with an rpc-error with the
error-tag 'invalid-value' in this case.
If the device supports pre-provisioning of interface
configuration, the 'pre-provisioning' feature is
advertised.
If the device allows arbitrarily named user-controlled
interfaces, the 'arbitrary-names' feature is advertised.
When a configured user-controlled interface is created by
the system, it is instantiated with the same name in the
/interface-state/interface list.";
}
leaf description {
type string;
description
"A textual description of the interface.
A server implementation MAY map this leaf to the ifAlias
MIB object. Such an implementation needs to use some
mechanism to handle the differences in size and characters
allowed between this leaf and ifAlias. The definition of
such a mechanism is outside the scope of this document.
Since ifAlias is defined to be stored in non-volatile
storage, the MIB implementation MUST map ifAlias to the
value of 'description' in the persistently stored
datastore.
Specifically, if the device supports ':startup', when
ifAlias is read the device MUST return the value of
'description' in the 'startup' datastore, and when it is
written, it MUST be written to the 'running' and 'startup'
datastores. Note that it is up to the implementation to
decide whether to modify this single leaf in 'startup' or
perform an implicit copy-config from 'running' to
'startup'.
If the device does not support ':startup', ifAlias MUST
be mapped to the 'description' leaf in the 'running'
datastore.";
reference
"RFC 2863: The Interfaces Group MIB - ifAlias";
}
leaf type {
type identityref {
base interface-type;
}
mandatory true;
description
"The type of the interface.
When an interface entry is created, a server MAY
initialize the type leaf with a valid value, e.g., if it
is possible to derive the type from the name of the
interface.
If a client tries to set the type of an interface to a
value that can never be used by the system, e.g., if the
type is not supported or if the type does not match the
name of the interface, the server MUST reject the request.
A NETCONF server MUST reply with an rpc-error with the
error-tag 'invalid-value' in this case.";
reference
"RFC 2863: The Interfaces Group MIB - ifType";
}
leaf enabled {
type boolean;
default "true";
description
"This leaf contains the configured, desired state of the
interface.
Systems that implement the IF-MIB use the value of this
leaf in the 'running' datastore to set
IF-MIB.ifAdminStatus to 'up' or 'down' after an ifEntry
has been initialized, as described in RFC 2863.
Changes in this leaf in the 'running' datastore are
reflected in ifAdminStatus, but if ifAdminStatus is
changed over SNMP, this leaf is not affected.";
reference
"RFC 2863: The Interfaces Group MIB - ifAdminStatus";
}
leaf link-up-down-trap-enable {
if-feature if-mib;
type enumeration {
enum enabled {
value 1;
}
enum disabled {
value 2;
}
}
description
"Controls whether linkUp/linkDown SNMP notifications
should be generated for this interface.
If this node is not configured, the value 'enabled' is
operationally used by the server for interfaces that do
not operate on top of any other interface (i.e., there are
no 'lower-layer-if' entries), and 'disabled' otherwise.";
reference
"RFC 2863: The Interfaces Group MIB -
ifLinkUpDownTrapEnable";
}
}
}
/*
* Operational state data nodes
*/
container interfaces-state {
config false;
description
"Data nodes for the operational state of interfaces.";
list interface {
key "name";
description
"The list of interfaces on the device.
System-controlled interfaces created by the system are
always present in this list, whether they are configured or
not.";
leaf name {
type string;
description
"The name of the interface.
A server implementation MAY map this leaf to the ifName
MIB object. Such an implementation needs to use some
mechanism to handle the differences in size and characters
allowed between this leaf and ifName. The definition of
such a mechanism is outside the scope of this document.";
reference
"RFC 2863: The Interfaces Group MIB - ifName";
}
leaf type {
type identityref {
base interface-type;
}
mandatory true;
description
"The type of the interface.";
reference
"RFC 2863: The Interfaces Group MIB - ifType";
}
leaf admin-status {
if-feature if-mib;
type enumeration {
enum up {
value 1;
description
"Ready to pass packets.";
}
enum down {
value 2;
description
"Not ready to pass packets and not in some test mode.";
}
enum testing {
value 3;
description
"In some test mode.";
}
}
mandatory true;
description
"The desired state of the interface.
This leaf has the same read semantics as ifAdminStatus.";
reference
"RFC 2863: The Interfaces Group MIB - ifAdminStatus";
}
leaf oper-status {
type enumeration {
enum up {
value 1;
description
"Ready to pass packets.";
}
enum down {
value 2;
description
"The interface does not pass any packets.";
}
enum testing {
value 3;
description
"In some test mode. No operational packets can
be passed.";
}
enum unknown {
value 4;
description
"Status cannot be determined for some reason.";
}
enum dormant {
value 5;
description
"Waiting for some external event.";
}
enum not-present {
value 6;
description
"Some component (typically hardware) is missing.";
}
enum lower-layer-down {
value 7;
description
"Down due to state of lower-layer interface(s).";
}
}
mandatory true;
description
"The current operational state of the interface.
This leaf has the same semantics as ifOperStatus.";
reference
"RFC 2863: The Interfaces Group MIB - ifOperStatus";
}
leaf last-change {
type yang:date-and-time;
description
"The time the interface entered its current operational
state. If the current state was entered prior to the
last re-initialization of the local network management
subsystem, then this node is not present.";
reference
"RFC 2863: The Interfaces Group MIB - ifLastChange";
}
leaf if-index {
if-feature if-mib;
type int32 {
range "1..2147483647";
}
mandatory true;
description
"The ifIndex value for the ifEntry represented by this
interface.";
reference
"RFC 2863: The Interfaces Group MIB - ifIndex";
}
leaf phys-address {
type yang:phys-address;
description
"The interface's address at its protocol sub-layer. For
example, for an 802.x interface, this object normally
contains a Media Access Control (MAC) address. The
interface's media-specific modules must define the bit
and byte ordering and the format of the value of this
object. For interfaces that do not have such an address
(e.g., a serial line), this node is not present.";
reference
"RFC 2863: The Interfaces Group MIB - ifPhysAddress";
}
leaf-list higher-layer-if {
type interface-state-ref;
description
"A list of references to interfaces layered on top of this
interface.";
reference
"RFC 2863: The Interfaces Group MIB - ifStackTable";
}
leaf-list lower-layer-if {
type interface-state-ref;
description
"A list of references to interfaces layered underneath this
interface.";
reference
"RFC 2863: The Interfaces Group MIB - ifStackTable";
}
leaf speed {
type yang:gauge64;
units "bits/second";
description
"An estimate of the interface's current bandwidth in bits
per second. For interfaces that do not vary in
bandwidth or for those where no accurate estimation can
be made, this node should contain the nominal bandwidth.
For interfaces that have no concept of bandwidth, this
node is not present.";
reference
"RFC 2863: The Interfaces Group MIB -
ifSpeed, ifHighSpeed";
}
container statistics {
description
"A collection of interface-related statistics objects.";
leaf discontinuity-time {
type yang:date-and-time;
mandatory true;
description
"The time on the most recent occasion at which any one or
more of this interface's counters suffered a
discontinuity. If no such discontinuities have occurred
since the last re-initialization of the local management
subsystem, then this node contains the time the local
management subsystem re-initialized itself.";
}
leaf in-octets {
type yang:counter64;
description
"The total number of octets received on the interface,
including framing characters.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB - ifHCInOctets";
}
leaf in-unicast-pkts {
type yang:counter64;
description
"The number of packets, delivered by this sub-layer to a
higher (sub-)layer, that were not addressed to a
multicast or broadcast address at this sub-layer.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB - ifHCInUcastPkts";
}
leaf in-broadcast-pkts {
type yang:counter64;
description
"The number of packets, delivered by this sub-layer to a
higher (sub-)layer, that were addressed to a broadcast
address at this sub-layer.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB -
ifHCInBroadcastPkts";
}
leaf in-multicast-pkts {
type yang:counter64;
description
"The number of packets, delivered by this sub-layer to a
higher (sub-)layer, that were addressed to a multicast
address at this sub-layer. For a MAC-layer protocol,
this includes both Group and Functional addresses.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB -
ifHCInMulticastPkts";
}
leaf in-discards {
type yang:counter32;
description
"The number of inbound packets that were chosen to be
discarded even though no errors had been detected to
prevent their being deliverable to a higher-layer
protocol. One possible reason for discarding such a
packet could be to free up buffer space.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB - ifInDiscards";
}
leaf in-errors {
type yang:counter32;
description
"For packet-oriented interfaces, the number of inbound
packets that contained errors preventing them from being
deliverable to a higher-layer protocol. For character-
oriented or fixed-length interfaces, the number of
inbound transmission units that contained errors
preventing them from being deliverable to a higher-layer
protocol.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB - ifInErrors";
}
leaf in-unknown-protos {
type yang:counter32;
description
"For packet-oriented interfaces, the number of packets
received via the interface that were discarded because
of an unknown or unsupported protocol. For
character-oriented or fixed-length interfaces that
support protocol multiplexing, the number of
transmission units received via the interface that were
discarded because of an unknown or unsupported protocol.
For any interface that does not support protocol
multiplexing, this counter is not present.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB - ifInUnknownProtos";
}
leaf out-octets {
type yang:counter64;
description
"The total number of octets transmitted out of the
interface, including framing characters.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB - ifHCOutOctets";
}
leaf out-unicast-pkts {
type yang:counter64;
description
"The total number of packets that higher-level protocols
requested be transmitted, and that were not addressed
to a multicast or broadcast address at this sub-layer,
including those that were discarded or not sent.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB - ifHCOutUcastPkts";
}
leaf out-broadcast-pkts {
type yang:counter64;
description
"The total number of packets that higher-level protocols
requested be transmitted, and that were addressed to a
broadcast address at this sub-layer, including those
that were discarded or not sent.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB -
ifHCOutBroadcastPkts";
}
leaf out-multicast-pkts {
type yang:counter64;
description
"The total number of packets that higher-level protocols
requested be transmitted, and that were addressed to a
multicast address at this sub-layer, including those
that were discarded or not sent. For a MAC-layer
protocol, this includes both Group and Functional
addresses.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB -
ifHCOutMulticastPkts";
}
leaf out-discards {
type yang:counter32;
description
"The number of outbound packets that were chosen to be
discarded even though no errors had been detected to
prevent their being transmitted. One possible reason
for discarding such a packet could be to free up buffer
space.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB - ifOutDiscards";
}
leaf out-errors {
type yang:counter32;
description
"For packet-oriented interfaces, the number of outbound
packets that could not be transmitted because of errors.
For character-oriented or fixed-length interfaces, the
number of outbound transmission units that could not be
transmitted because of errors.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB - ifOutErrors";
}
}
}
}
}