blob: 499cf28d3dab9277498fa77247af0b1e15a7f6eb [file] [log] [blame]
/**
* @file parser_lyb.c
* @author Michal Vasko <mvasko@cesnet.cz>
* @brief LYB data parser for libyang
*
* Copyright (c) 2020 CESNET, z.s.p.o.
*
* This source code is licensed under BSD 3-Clause License (the "License").
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*/
#include "lyb.h"
#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "common.h"
#include "compat.h"
#include "context.h"
#include "dict.h"
#include "log.h"
#include "parser_data.h"
#include "parser_internal.h"
#include "set.h"
#include "tree.h"
#include "tree_data_internal.h"
#include "tree_schema.h"
#include "validation.h"
/**
* @brief Read YANG data from LYB input. Metadata are handled transparently and not returned.
*
* @param[in] buf Destination buffer.
* @param[in] count Number of bytes to read.
* @param[in] lybctx LYB context.
*/
static void
lyb_read(uint8_t *buf, size_t count, struct lyd_lyb_ctx *lybctx)
{
int parsed = 0;
LY_ARRAY_COUNT_TYPE u;
struct lyd_lyb_subtree *empty;
size_t to_read;
uint8_t meta_buf[LYB_META_BYTES];
assert(lybctx);
while (1) {
/* check for fully-read (empty) data chunks */
to_read = count;
empty = NULL;
LY_ARRAY_FOR(lybctx->subtrees, u) {
/* we want the innermost chunks resolved first, so replace previous empty chunks,
* also ignore chunks that are completely finished, there is nothing for us to do */
if ((lybctx->subtrees[u].written <= to_read) && lybctx->subtrees[u].position) {
/* empty chunk, do not read more */
to_read = lybctx->subtrees[u].written;
empty = &lybctx->subtrees[u];
}
}
if (!empty && !count) {
break;
}
/* we are actually reading some data, not just finishing another chunk */
if (to_read) {
if (buf) {
memcpy(buf, lybctx->data + parsed, to_read);
}
LY_ARRAY_FOR(lybctx->subtrees, u) {
/* decrease all written counters */
lybctx->subtrees[u].written -= to_read;
assert(lybctx->subtrees[u].written <= LYB_SIZE_MAX);
}
/* decrease count/buf */
count -= to_read;
if (buf) {
buf += to_read;
}
parsed += to_read;
}
if (empty) {
/* read the next chunk meta information */
memcpy(meta_buf, lybctx->data + parsed, LYB_META_BYTES);
empty->written = meta_buf[0];
empty->inner_chunks = meta_buf[1];
/* remember whether there is a following chunk or not */
empty->position = (empty->written == LYB_SIZE_MAX ? 1 : 0);
parsed += LYB_META_BYTES;
}
}
lybctx->byte_count += parsed;
lybctx->data += parsed;
}
/**
* @brief Read a number.
*
* @param[in] num Destination buffer.
* @param[in] num_size Size of @p num.
* @param[in] bytes Number of bytes to read.
* @param[in] lybctx LYB context.
*/
static void
lyb_read_number(void *num, size_t num_size, size_t bytes, struct lyd_lyb_ctx *lybctx)
{
uint64_t buf = 0;
lyb_read((uint8_t *)&buf, bytes, lybctx);
/* correct byte order */
buf = le64toh(buf);
switch (num_size) {
case 1:
*((uint8_t *)num) = buf;
break;
case 2:
*((uint16_t *)num) = buf;
break;
case 4:
*((uint32_t *)num) = buf;
break;
case 8:
*((uint64_t *)num) = buf;
break;
default:
LOGINT(lybctx->ctx);
}
}
/**
* @brief Read a string.
*
* @param[in] str Destination buffer, is allocated.
* @param[in] with_length Whether the string is preceded with its length or it ends at the end of this subtree.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_read_string(char **str, int with_length, struct lyd_lyb_ctx *lybctx)
{
int next_chunk = 0;
size_t len = 0, cur_len;
*str = NULL;
if (with_length) {
lyb_read_number(&len, sizeof len, 2, lybctx);
} else {
/* read until the end of this subtree */
len = LYB_LAST_SUBTREE(lybctx).written;
if (LYB_LAST_SUBTREE(lybctx).position) {
next_chunk = 1;
}
}
*str = malloc((len + 1) * sizeof **str);
LY_CHECK_ERR_RET(!*str, LOGMEM(lybctx->ctx), LY_EMEM);
lyb_read((uint8_t *)*str, len, lybctx);
while (next_chunk) {
cur_len = LYB_LAST_SUBTREE(lybctx).written;
if (LYB_LAST_SUBTREE(lybctx).position) {
next_chunk = 1;
} else {
next_chunk = 0;
}
*str = ly_realloc(*str, (len + cur_len + 1) * sizeof **str);
LY_CHECK_ERR_RET(!*str, LOGMEM(lybctx->ctx), LY_EMEM);
lyb_read(((uint8_t *)*str) + len, cur_len, lybctx);
len += cur_len;
}
((char *)*str)[len] = '\0';
return LY_SUCCESS;
}
/**
* @brief Stop the current subtree - change LYB context state.
*
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_read_stop_subtree(struct lyd_lyb_ctx *lybctx)
{
if (LYB_LAST_SUBTREE(lybctx).written) {
LOGINT_RET(lybctx->ctx);
}
LY_ARRAY_DECREMENT(lybctx->subtrees);
return LY_SUCCESS;
}
/**
* @brief Start a new subtree - change LYB context state but also read the expected metadata.
*
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_read_start_subtree(struct lyd_lyb_ctx *lybctx)
{
uint8_t meta_buf[LYB_META_BYTES];
LY_ARRAY_COUNT_TYPE u;
if (!lybctx->subtrees) {
assert(lybctx->subtree_size == 0);
u = 0;
} else {
u = LY_ARRAY_COUNT(lybctx->subtrees);
}
if (u == lybctx->subtree_size) {
LY_ARRAY_CREATE_RET(lybctx->ctx, lybctx->subtrees, u + LYB_SUBTREE_STEP, LY_EMEM);
lybctx->subtree_size = u + LYB_SUBTREE_STEP;
}
memcpy(meta_buf, lybctx->data, LYB_META_BYTES);
LY_ARRAY_INCREMENT(lybctx->subtrees);
LYB_LAST_SUBTREE(lybctx).written = meta_buf[0];
LYB_LAST_SUBTREE(lybctx).inner_chunks = meta_buf[LYB_SIZE_BYTES];
LYB_LAST_SUBTREE(lybctx).position = (LYB_LAST_SUBTREE(lybctx).written == LYB_SIZE_MAX ? 1 : 0);
lybctx->byte_count += LYB_META_BYTES;
lybctx->data += LYB_META_BYTES;
return LY_SUCCESS;
}
/**
* @brief Parse YANG model info.
*
* @param[in] lybctx LYB context.
* @param[out] mod Parsed module.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_model(struct lyd_lyb_ctx *lybctx, const struct lys_module **mod)
{
LY_ERR ret = LY_SUCCESS;
char *mod_name = NULL, mod_rev[11];
uint16_t rev;
/* model name */
ret = lyb_read_string(&mod_name, 1, lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* revision */
lyb_read_number(&rev, sizeof rev, 2, lybctx);
if (!mod_name[0]) {
/* opaq node, no module */
*mod = NULL;
goto cleanup;
}
if (rev) {
sprintf(mod_rev, "%04u-%02u-%02u", ((rev & 0xFE00) >> 9) + 2000, (rev & 0x01E0) >> 5, rev & 0x001Fu);
*mod = ly_ctx_get_module(lybctx->ctx, mod_name, mod_rev);
if ((lybctx->parse_options & LYD_PARSE_LYB_MOD_UPDATE) && !(*mod)) {
/* try to use an updated module */
*mod = ly_ctx_get_module_implemented(lybctx->ctx, mod_name);
if (*mod && (!(*mod)->revision || (strcmp((*mod)->revision, mod_rev) < 0))) {
/* not an implemented module in a newer revision */
*mod = NULL;
}
}
} else {
*mod = ly_ctx_get_module_latest(lybctx->ctx, mod_name);
}
/* TODO data_clb supported?
if (lybctx->ctx->data_clb) {
if (!*mod) {
*mod = lybctx->ctx->data_clb(lybctx->ctx, mod_name, NULL, 0, lybctx->ctx->data_clb_data);
} else if (!(*mod)->implemented) {
*mod = lybctx->ctx->data_clb(lybctx->ctx, mod_name, (*mod)->ns, LY_MODCLB_NOT_IMPLEMENTED, lybctx->ctx->data_clb_data);
}
}*/
if (!*mod || !(*mod)->implemented) {
if (lybctx->parse_options & LYD_PARSE_STRICT) {
if (!*mod) {
LOGERR(lybctx->ctx, LY_EINVAL, "Invalid context for LYB data parsing, missing module \"%s%s%s\".",
mod_name, rev ? "@" : "", rev ? mod_rev : "");
} else if (!(*mod)->implemented) {
LOGERR(lybctx->ctx, LY_EINVAL, "Invalid context for LYB data parsing, module \"%s%s%s\" not implemented.",
mod_name, rev ? "@" : "", rev ? mod_rev : "");
}
ret = LY_EINVAL;
goto cleanup;
}
}
cleanup:
free(mod_name);
return ret;
}
/**
* @brief Parse YANG node metadata.
*
* @param[in] lybctx LYB context.
* @param[in] sparent Schema parent node.
* @param[out] meta Parsed metadata.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_metadata(struct lyd_lyb_ctx *lybctx, const struct lysc_node *sparent, struct lyd_meta **meta)
{
LY_ERR ret = LY_SUCCESS;
int dynamic;
uint8_t i, count = 0;
char *meta_name = NULL, *meta_value;
const struct lys_module *mod;
/* read number of attributes stored */
lyb_read(&count, 1, lybctx);
/* read attributes */
for (i = 0; i < count; ++i) {
ret = lyb_read_start_subtree(lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* find model */
ret = lyb_parse_model(lybctx, &mod);
LY_CHECK_GOTO(ret, cleanup);
if (!mod) {
/* skip it */
do {
lyb_read(NULL, LYB_LAST_SUBTREE(lybctx).written, lybctx);
} while (LYB_LAST_SUBTREE(lybctx).written);
goto stop_subtree;
}
/* meta name */
ret = lyb_read_string(&meta_name, 1, lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* meta value */
ret = lyb_read_string(&meta_value, 0, lybctx);
LY_CHECK_GOTO(ret, cleanup);
dynamic = 1;
/* create metadata */
ret = lyd_create_meta(NULL, meta, mod, meta_name, strlen(meta_name), meta_value, strlen(meta_value), &dynamic,
lydjson_resolve_prefix, NULL, LYD_JSON, sparent);
/* free strings */
free(meta_name);
meta_name = NULL;
if (dynamic) {
free(meta_value);
dynamic = 0;
}
if (ret == LY_EINCOMPLETE) {
ly_set_add(&lybctx->unres_meta_type, *meta, LY_SET_OPT_USEASLIST);
} else if (ret) {
goto cleanup;
}
stop_subtree:
ret = lyb_read_stop_subtree(lybctx);
LY_CHECK_GOTO(ret, cleanup);
}
cleanup:
free(meta_name);
if (ret) {
lyd_free_meta(lybctx->ctx, *meta, 1);
*meta = NULL;
}
return ret;
}
/**
* @brief Parse opaque prefixes structure.
*
* @param[in] lybctx LYB context.
* @param[out] prefs Parsed prefixes.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_opaq_prefixes(struct lyd_lyb_ctx *lybctx, struct ly_prefix **prefs)
{
LY_ERR ret = LY_SUCCESS;
uint8_t count, i;
char *str;
/* read count */
lyb_read(&count, 1, lybctx);
if (!count) {
return LY_SUCCESS;
}
LY_ARRAY_CREATE_RET(lybctx->ctx, *prefs, count, LY_EMEM);
for (i = 0; i < count; ++i) {
LY_ARRAY_INCREMENT(*prefs);
/* prefix */
ret = lyb_read_string(&str, 1, lybctx);
LY_CHECK_GOTO(ret, cleanup);
(*prefs)[i].pref = lydict_insert_zc(lybctx->ctx, str);
/* namespace */
ret = lyb_read_string(&str, 1, lybctx);
LY_CHECK_GOTO(ret, cleanup);
(*prefs)[i].ns = lydict_insert_zc(lybctx->ctx, str);
}
cleanup:
if (ret) {
ly_free_val_prefs(lybctx->ctx, *prefs);
*prefs = NULL;
}
return ret;
}
/**
* @brief Parse opaque attributes.
*
* @param[in] lybctx LYB context.
* @param[out] attr Parsed attributes.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_attributes(struct lyd_lyb_ctx *lybctx, struct ly_attr **attr)
{
LY_ERR ret = LY_SUCCESS;
uint8_t count, i;
struct ly_attr *attr2;
char *prefix = NULL, *ns = NULL, *name = NULL, *value = NULL;
int dynamic = 0;
LYD_FORMAT format = 0;
struct ly_prefix *val_prefs = NULL;
/* read count */
lyb_read(&count, 1, lybctx);
/* read attributes */
for (i = 0; i < count; ++i) {
ret = lyb_read_start_subtree(lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* prefix, may be emtpy */
ret = lyb_read_string(&prefix, 1, lybctx);
LY_CHECK_GOTO(ret, cleanup);
if (!prefix[0]) {
free(prefix);
prefix = NULL;
}
/* namespace, may be empty */
ret = lyb_read_string(&ns, 1, lybctx);
LY_CHECK_GOTO(ret, cleanup);
if (!ns[0]) {
free(ns);
ns = NULL;
}
/* name */
ret = lyb_read_string(&name, 1, lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* value prefixes */
ret = lyb_parse_opaq_prefixes(lybctx, &val_prefs);
LY_CHECK_GOTO(ret, cleanup);
/* format */
lyb_read((uint8_t *)&format, 1, lybctx);
/* value */
ret = lyb_read_string(&value, 0, lybctx);
LY_CHECK_GOTO(ret, cleanup);
dynamic = 1;
/* attr2 is always changed to the created attribute */
ret = ly_create_attr(NULL, &attr2, lybctx->ctx, name, strlen(name), value, strlen(value), &dynamic, format,
val_prefs, prefix, prefix ? strlen(prefix) : 0, ns);
LY_CHECK_GOTO(ret, cleanup);
free(prefix);
prefix = NULL;
free(ns);
ns = NULL;
free(name);
name = NULL;
val_prefs = NULL;
assert(!dynamic);
value = NULL;
if (!*attr) {
*attr = attr2;
}
ret = lyb_read_stop_subtree(lybctx);
LY_CHECK_GOTO(ret, cleanup);
}
cleanup:
free(prefix);
free(ns);
free(name);
if (dynamic) {
free(value);
}
ly_free_val_prefs(lybctx->ctx, val_prefs);
if (ret) {
ly_free_attr(lybctx->ctx, *attr, 1);
*attr = NULL;
}
return ret;
}
/**
* @brief Check whether a schema node matches a hash(es).
*
* @param[in] sibling Schema node to check.
* @param[in] hash Hash array to check.
* @param[in] hash_count Number of hashes in @p hash.
* @return non-zero if matches,
* @return 0 if not.
*/
static int
lyb_is_schema_hash_match(struct lysc_node *sibling, LYB_HASH *hash, uint8_t hash_count)
{
LYB_HASH sibling_hash;
uint8_t i;
/* compare all the hashes starting from collision ID 0 */
for (i = 0; i < hash_count; ++i) {
sibling_hash = lyb_hash(sibling, i);
if (sibling_hash != hash[i]) {
return 0;
}
}
return 1;
}
/**
* @brief Check that a schema node is suitable based on options.
*
* @param[in] lybctx LYB context.
* @param[in] snode Schema node to check.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_check_schema(struct lyd_lyb_ctx *lybctx, const struct lysc_node *snode)
{
LY_ERR ret = LY_SUCCESS;
if ((lybctx->parse_options & LYD_PARSE_NO_STATE) && (snode->flags & LYS_CONFIG_R)) {
LOGVAL(lybctx->ctx, LY_VLOG_LYSC, snode, LY_VCODE_INNODE, "state", snode->name);
return LY_EVALID;
}
if (snode->nodetype & (LYS_RPC | LYS_ACTION)) {
if (lybctx->int_opts & LYD_INTOPT_RPC) {
if (lybctx->op_ntf) {
LOGVAL(lybctx->ctx, LY_VLOG_LYSC, snode, LYVE_DATA, "Unexpected %s element \"%s\", %s \"%s\" already parsed.",
lys_nodetype2str(snode->nodetype), snode->name,
lys_nodetype2str(lybctx->op_ntf->schema->nodetype), lybctx->op_ntf->schema->name);
return LY_EVALID;
}
} else {
LOGVAL(lybctx->ctx, LY_VLOG_LYSC, snode, LYVE_DATA, "Unexpected %s element \"%s\".",
lys_nodetype2str(snode->nodetype), snode->name);
return LY_EVALID;
}
} else if (snode->nodetype == LYS_NOTIF) {
if (lybctx->int_opts & LYD_INTOPT_NOTIF) {
if (lybctx->op_ntf) {
LOGVAL(lybctx->ctx, LY_VLOG_LYSC, snode, LYVE_DATA, "Unexpected %s element \"%s\", %s \"%s\" already parsed.",
lys_nodetype2str(snode->nodetype), snode->name,
lys_nodetype2str(lybctx->op_ntf->schema->nodetype), lybctx->op_ntf->schema->name);
return LY_EVALID;
}
} else {
LOGVAL(lybctx->ctx, LY_VLOG_LYSC, snode, LYVE_DATA, "Unexpected %s element \"%s\".",
lys_nodetype2str(snode->nodetype), snode->name);
return LY_EVALID;
}
}
return ret;
}
/**
* @brief Parse schema node hash.
*
* @param[in] lybctx LYB context.
* @param[in] sparent Schema parent, must be set if @p mod is not.
* @param[in] mod Module of the top-level node, must be set if @p sparent is not.
* @param[out] snode Parsed found schema node, may be NULL if opaque.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_schema_hash(struct lyd_lyb_ctx *lybctx, const struct lysc_node *sparent, const struct lys_module *mod,
const struct lysc_node **snode)
{
LY_ERR ret;
uint8_t i, j;
const struct lysc_node *sibling;
LYB_HASH hash[LYB_HASH_BITS - 1];
int getnext_opts;
*snode = NULL;
/* leave if-feature check for validation */
getnext_opts = LYS_GETNEXT_NOSTATECHECK | (lybctx->int_opts & LYD_INTOPT_REPLY ? LYS_GETNEXT_OUTPUT : 0);
/* read the first hash */
lyb_read(&hash[0], sizeof *hash, lybctx);
if (!hash[0]) {
/* opaque node */
return LY_SUCCESS;
}
/* based on the first hash read all the other ones, if any */
for (i = 0; !(hash[0] & (LYB_HASH_COLLISION_ID >> i)); ++i) {
if (i > LYB_HASH_BITS) {
LOGINT_RET(lybctx->ctx);
}
}
/* move the first hash on its accurate position */
hash[i] = hash[0];
/* read the rest of hashes */
for (j = i; j; --j) {
lyb_read(&hash[j - 1], sizeof *hash, lybctx);
/* correct collision ID */
assert(hash[j - 1] & (LYB_HASH_COLLISION_ID >> (j - 1)));
/* preceded with zeros */
assert(!(hash[j - 1] & (LYB_HASH_MASK << (LYB_HASH_BITS - (j - 1)))));
}
/* find our node with matching hashes */
sibling = NULL;
while ((sibling = lys_getnext(sibling, sparent, mod ? mod->compiled : NULL, getnext_opts))) {
/* skip schema nodes from models not present during printing */
if (lyb_has_schema_model(sibling, lybctx->models)
&& lyb_is_schema_hash_match((struct lysc_node *)sibling, hash, i + 1)) {
/* match found */
break;
}
}
if (!sibling && (lybctx->parse_options & LYD_PARSE_STRICT)) {
if (mod) {
LOGVAL(lybctx->ctx, LY_VLOG_NONE, NULL, LYVE_REFERENCE, "Failed to find matching hash for a top-level node"
" from \"%s\".", mod->name);
} else {
LOGVAL(lybctx->ctx, LY_VLOG_LYSC, sparent, LYVE_REFERENCE, "Failed to find matching hash for a child node"
" of \"%s\".", sparent->name);
}
return LY_EVALID;
} else if (sibling && (ret = lyb_parse_check_schema(lybctx, sibling))) {
return ret;
}
*snode = sibling;
return LY_SUCCESS;
}
/**
* @brief Read until the end of the current subtree.
*
* @param[in] lybctx LYB context.
*/
static void
lyb_skip_subtree(struct lyd_lyb_ctx *lybctx)
{
int parsed;
do {
/* first skip any meta information inside */
parsed = LYB_LAST_SUBTREE(lybctx).inner_chunks * LYB_META_BYTES;
lybctx->data += parsed;
lybctx->byte_count += parsed;
/* then read data */
lyb_read(NULL, LYB_LAST_SUBTREE(lybctx).written, lybctx);
} while (LYB_LAST_SUBTREE(lybctx).written);
}
/**
* @brief Parse LYB subtree.
*
* @param[in] lybctx LYB context.
* @param[in] parent Data parent of the subtree, must be set if @p first is not.
* @param[in,out] first First top-level sibling, must be set if @p parent is not.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_subtree_r(struct lyd_lyb_ctx *lybctx, struct lyd_node_inner *parent, struct lyd_node **first)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_node *node = NULL, *tree;
const struct lys_module *mod;
const struct lysc_node *snode = NULL;
struct lyd_meta *meta = NULL, *m;
struct ly_attr *attr = NULL, *a;
struct ly_prefix *val_prefs = NULL;
LYD_ANYDATA_VALUETYPE value_type;
char *value = NULL, *name = NULL, *prefix = NULL, *ns = NULL;
int dynamic = 0;
LYD_FORMAT format = 0;
int prev_lo;
/* register a new subtree */
LY_CHECK_GOTO(ret = lyb_read_start_subtree(lybctx), cleanup);
if (!parent) {
/* top-level, read module name */
ret = lyb_parse_model(lybctx, &mod);
LY_CHECK_GOTO(ret, cleanup);
/* read hash, find the schema node starting from mod */
ret = lyb_parse_schema_hash(lybctx, NULL, mod, &snode);
LY_CHECK_GOTO(ret, cleanup);
} else {
/* read hash, find the schema node starting from parent schema */
ret = lyb_parse_schema_hash(lybctx, parent->schema, NULL, &snode);
LY_CHECK_GOTO(ret, cleanup);
}
if (!snode && !(lybctx->parse_options & LYD_PARSE_OPAQ)) {
/* unknown data, skip them */
lyb_skip_subtree(lybctx);
goto stop_subtree;
}
/* create metadata/attributes */
if (snode) {
ret = lyb_parse_metadata(lybctx, snode, &meta);
LY_CHECK_GOTO(ret, cleanup);
} else {
ret = lyb_parse_attributes(lybctx, &attr);
LY_CHECK_GOTO(ret, cleanup);
}
if (!snode) {
/* parse prefix */
ret = lyb_read_string(&prefix, 1, lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* parse namespace */
ret = lyb_read_string(&ns, 1, lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* parse name */
ret = lyb_read_string(&name, 1, lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* parse value prefixes */
ret = lyb_parse_opaq_prefixes(lybctx, &val_prefs);
LY_CHECK_GOTO(ret, cleanup);
/* parse format */
lyb_read((uint8_t *)&format, 1, lybctx);
/* parse value */
ret = lyb_read_string(&value, 0, lybctx);
LY_CHECK_GOTO(ret, cleanup);
dynamic = 1;
/* create node */
ret = lyd_create_opaq(lybctx->ctx, name, strlen(name), value, strlen(value), &dynamic, format, val_prefs, prefix,
strlen(prefix), ns, &node);
LY_CHECK_GOTO(ret, cleanup);
/* process children */
while (LYB_LAST_SUBTREE(lybctx).written) {
ret = lyb_parse_subtree_r(lybctx, (struct lyd_node_inner *)node, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
} else if (snode->nodetype & LYD_NODE_TERM) {
/* parse value */
ret = lyb_read_string(&value, 0, lybctx);
LY_CHECK_GOTO(ret, cleanup);
dynamic = 1;
/* create node */
ret = lyd_create_term(snode, value, strlen(value), &dynamic, lydjson_resolve_prefix, NULL, LYD_JSON, &node);
if (dynamic) {
free(value);
dynamic = 0;
}
value = NULL;
if (ret == LY_EINCOMPLETE) {
if (!(lybctx->parse_options & LYD_PARSE_ONLY)) {
ly_set_add(&lybctx->unres_node_type, node, LY_SET_OPT_USEASLIST);
}
ret = LY_SUCCESS;
} else if (ret) {
goto cleanup;
}
} else if (snode->nodetype & LYD_NODE_INNER) {
/* create node */
ret = lyd_create_inner(snode, &node);
LY_CHECK_GOTO(ret, cleanup);
/* process children */
while (LYB_LAST_SUBTREE(lybctx).written) {
ret = lyb_parse_subtree_r(lybctx, (struct lyd_node_inner *)node, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
if (!(lybctx->parse_options & LYD_PARSE_ONLY)) {
/* new node validation, autodelete CANNOT occur, all nodes are new */
ret = lyd_validate_new(lyd_node_children_p(node), snode, NULL);
LY_CHECK_GOTO(ret, cleanup);
/* add any missing default children */
ret = lyd_validate_defaults_r((struct lyd_node_inner *)node, lyd_node_children_p(node), NULL, NULL,
&lybctx->unres_node_type, &lybctx->when_check, lybctx->validate_options);
LY_CHECK_GOTO(ret, cleanup);
}
if (snode->nodetype == LYS_LIST) {
/* hash now that all keys should be parsed, rehash for key-less list */
lyd_hash(node);
} else if (snode->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)) {
/* rememeber the RPC/action/notification */
lybctx->op_ntf = node;
}
} else if (snode->nodetype & LYD_NODE_ANY) {
/* parse value type */
lyb_read((uint8_t *)&value_type, sizeof value_type, lybctx);
if (value_type == LYD_ANYDATA_DATATREE) {
/* invalid situation */
LOGINT(lybctx->ctx);
goto cleanup;
}
/* read anydata content */
ret = lyb_read_string(&value, 0, lybctx);
LY_CHECK_GOTO(ret, cleanup);
dynamic = 1;
if (value_type == LYD_ANYDATA_LYB) {
/* turn logging off */
prev_lo = ly_log_options(0);
/* try to parse LYB into a data tree */
if (lyd_parse_data_mem((struct ly_ctx *)lybctx->ctx, value, LYD_LYB, LYD_PARSE_ONLY | LYD_PARSE_OPAQ | LYD_PARSE_STRICT, 0, &tree) == LY_SUCCESS) {
/* successfully parsed */
free(value);
value = (char *)tree;
value_type = LYD_ANYDATA_DATATREE;
}
/* turn logging on again */
ly_log_options(prev_lo);
}
/* create node */
ret = lyd_create_any(snode, value, value_type, &node);
LY_CHECK_GOTO(ret, cleanup);
dynamic = 0;
value = NULL;
}
assert(node);
/* add/correct flags */
if (snode) {
lyd_parse_set_data_flags(node, &lybctx->when_check, &meta, lybctx->parse_options);
}
/* add metadata/attributes */
if (snode) {
LY_LIST_FOR(meta, m) {
m->parent = node;
}
node->meta = meta;
meta = NULL;
} else {
assert(!node->schema);
LY_LIST_FOR(attr, a) {
a->parent = (struct lyd_node_opaq *)node;
}
((struct lyd_node_opaq *)node)->attr = attr;
attr = NULL;
}
/* insert */
lyd_insert_node((struct lyd_node *)parent, first, node);
node = NULL;
stop_subtree:
/* end the subtree */
ret = lyb_read_stop_subtree(lybctx);
LY_CHECK_GOTO(ret, cleanup);
cleanup:
free(prefix);
free(ns);
free(name);
if (dynamic) {
free(value);
}
ly_free_val_prefs(lybctx->ctx, val_prefs);
lyd_free_meta(lybctx->ctx, meta, 1);
ly_free_attr(lybctx->ctx, attr, 1);
lyd_free_tree(node);
return ret;
}
/**
* @brief Parse used YANG data models.
*
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_data_models(struct lyd_lyb_ctx *lybctx)
{
LY_ERR ret;
uint32_t count;
LY_ARRAY_COUNT_TYPE u;
/* read model count */
lyb_read_number(&count, sizeof count, 2, lybctx);
if (count) {
LY_ARRAY_CREATE_RET(lybctx->ctx, lybctx->models, count, LY_EMEM);
/* read modules */
for (u = 0; u < count; ++u) {
ret = lyb_parse_model(lybctx, &lybctx->models[u]);
LY_CHECK_RET(ret);
LY_ARRAY_INCREMENT(lybctx->models);
}
}
return LY_SUCCESS;
}
/**
* @brief Parse LYB magic number.
*
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_magic_number(struct lyd_lyb_ctx *lybctx)
{
char magic_byte = 0;
lyb_read((uint8_t *)&magic_byte, 1, lybctx);
if (magic_byte != 'l') {
LOGERR(lybctx->ctx, LY_EINVAL, "Invalid first magic number byte \"0x%02x\".", magic_byte);
return LY_EINVAL;
}
lyb_read((uint8_t *)&magic_byte, 1, lybctx);
if (magic_byte != 'y') {
LOGERR(lybctx->ctx, LY_EINVAL, "Invalid second magic number byte \"0x%02x\".", magic_byte);
return LY_EINVAL;
}
lyb_read((uint8_t *)&magic_byte, 1, lybctx);
if (magic_byte != 'b') {
LOGERR(lybctx->ctx, LY_EINVAL, "Invalid third magic number byte \"0x%02x\".", magic_byte);
return LY_EINVAL;
}
return LY_SUCCESS;
}
/**
* @brief Parse LYB header.
*
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_header(struct lyd_lyb_ctx *lybctx)
{
uint8_t byte = 0;
/* version, future flags */
lyb_read((uint8_t *)&byte, sizeof byte, lybctx);
if ((byte & LYB_VERSION_MASK) != LYB_VERSION_NUM) {
LOGERR(lybctx->ctx, LY_EINVAL, "Invalid LYB format version \"0x%02x\", expected \"0x%02x\".",
byte & LYB_VERSION_MASK, LYB_VERSION_NUM);
return LY_EINVAL;
}
return LY_SUCCESS;
}
LY_ERR
lyd_parse_lyb_data(const struct ly_ctx *ctx, const char *data, int parse_options, int validate_options, struct lyd_node **tree, int *parsed_bytes)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_lyb_ctx lybctx = {0};
assert(!(parse_options & ~LYD_PARSE_OPTS_MASK));
assert(!(validate_options & ~LYD_VALIDATE_OPTS_MASK));
*tree = NULL;
lybctx.data = data;
lybctx.ctx = ctx;
lybctx.parse_options = parse_options;
lybctx.validate_options = validate_options;
/* read magic number */
ret = lyb_parse_magic_number(&lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* read header */
ret = lyb_parse_header(&lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* read used models */
ret = lyb_parse_data_models(&lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* read subtree(s) */
while (lybctx.data[0]) {
ret = lyb_parse_subtree_r(&lybctx, NULL, tree);
LY_CHECK_GOTO(ret, cleanup);
}
/* read the last zero, parsing finished */
++lybctx.byte_count;
++lybctx.data;
/* TODO validation */
cleanup:
LY_ARRAY_FREE(lybctx.subtrees);
LY_ARRAY_FREE(lybctx.models);
ly_set_erase(&lybctx.unres_node_type, NULL);
ly_set_erase(&lybctx.unres_meta_type, NULL);
ly_set_erase(&lybctx.when_check, NULL);
if (parsed_bytes) {
*parsed_bytes = lybctx.byte_count;
}
if (ret) {
lyd_free_all(*tree);
*tree = NULL;
}
return ret;
}
LY_ERR
lyd_parse_lyb_rpc(const struct ly_ctx *ctx, const char *data, struct lyd_node **tree, struct lyd_node **op, int *parsed_bytes)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_lyb_ctx lybctx = {0};
lybctx.data = data;
lybctx.ctx = ctx;
lybctx.parse_options = LYD_PARSE_ONLY | LYD_PARSE_STRICT;
lybctx.int_opts = LYD_INTOPT_RPC;
*tree = NULL;
if (op) {
*op = NULL;
}
/* read magic number */
ret = lyb_parse_magic_number(&lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* read header */
ret = lyb_parse_header(&lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* read used models */
ret = lyb_parse_data_models(&lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* read subtree(s) */
while (lybctx.data[0]) {
ret = lyb_parse_subtree_r(&lybctx, NULL, tree);
LY_CHECK_GOTO(ret, cleanup);
}
/* read the last zero, parsing finished */
++lybctx.byte_count;
++lybctx.data;
/* make sure we have parsed some operation */
if (!lybctx.op_ntf) {
LOGVAL(ctx, LY_VLOG_NONE, NULL, LYVE_DATA, "Missing the \"rpc\"/\"action\" node.");
ret = LY_EVALID;
goto cleanup;
}
if (op) {
*op = lybctx.op_ntf;
}
assert(*tree);
cleanup:
LY_ARRAY_FREE(lybctx.subtrees);
LY_ARRAY_FREE(lybctx.models);
assert(!lybctx.unres_node_type.count && !lybctx.unres_meta_type.count && !lybctx.when_check.count);
if (parsed_bytes) {
*parsed_bytes = lybctx.byte_count;
}
if (ret) {
lyd_free_all(*tree);
*tree = NULL;
}
return ret;
}
LY_ERR
lyd_parse_lyb_notif(const struct ly_ctx *ctx, const char *data, struct lyd_node **tree, struct lyd_node **ntf, int *parsed_bytes)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_lyb_ctx lybctx = {0};
lybctx.data = data;
lybctx.ctx = ctx;
lybctx.parse_options = LYD_PARSE_ONLY | LYD_PARSE_STRICT;
lybctx.int_opts = LYD_INTOPT_NOTIF;
*tree = NULL;
if (ntf) {
*ntf = NULL;
}
/* read magic number */
ret = lyb_parse_magic_number(&lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* read header */
ret = lyb_parse_header(&lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* read used models */
ret = lyb_parse_data_models(&lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* read subtree(s) */
while (lybctx.data[0]) {
ret = lyb_parse_subtree_r(&lybctx, NULL, tree);
LY_CHECK_GOTO(ret, cleanup);
}
/* read the last zero, parsing finished */
++lybctx.byte_count;
++lybctx.data;
/* make sure we have parsed some notification */
if (!lybctx.op_ntf) {
LOGVAL(ctx, LY_VLOG_NONE, NULL, LYVE_DATA, "Missing the \"notification\" node.");
ret = LY_EVALID;
goto cleanup;
}
if (ntf) {
*ntf = lybctx.op_ntf;
}
assert(*tree);
cleanup:
LY_ARRAY_FREE(lybctx.subtrees);
LY_ARRAY_FREE(lybctx.models);
assert(!lybctx.unres_node_type.count && !lybctx.unres_meta_type.count && !lybctx.when_check.count);
if (parsed_bytes) {
*parsed_bytes = lybctx.byte_count;
}
if (ret) {
lyd_free_all(*tree);
*tree = NULL;
}
return ret;
}
LY_ERR
lyd_parse_lyb_reply(const struct lyd_node *request, const char *data, struct lyd_node **tree, struct lyd_node **op,
int *parsed_bytes)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_lyb_ctx lybctx = {0};
struct lyd_node *iter, *req_op, *rep_op = NULL;
lybctx.data = data;
lybctx.ctx = LYD_NODE_CTX(request);
lybctx.parse_options = LYD_PARSE_ONLY | LYD_PARSE_STRICT;
lybctx.int_opts = LYD_INTOPT_REPLY;
*tree = NULL;
if (op) {
*op = NULL;
}
/* find request OP */
LYD_TREE_DFS_BEGIN((struct lyd_node *)request, iter, req_op) {
if (req_op->schema->nodetype & (LYS_RPC | LYS_ACTION)) {
break;
}
LYD_TREE_DFS_END(request, iter, req_op);
}
if (!(req_op->schema->nodetype & (LYS_RPC | LYS_ACTION))) {
LOGERR(LYD_NODE_CTX(request), LY_EINVAL, "No RPC/action in the request found.");
ret = LY_EINVAL;
goto cleanup;
}
/* duplicate request OP with parents */
rep_op = lyd_dup(req_op, NULL, LYD_DUP_WITH_PARENTS);
LY_CHECK_ERR_GOTO(!rep_op, ret = LY_EMEM, cleanup);
/* read magic number */
ret = lyb_parse_magic_number(&lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* read header */
ret = lyb_parse_header(&lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* read used models */
ret = lyb_parse_data_models(&lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* read subtree(s) */
while (lybctx.data[0]) {
ret = lyb_parse_subtree_r(&lybctx, (struct lyd_node_inner *)rep_op, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
/* read the last zero, parsing finished */
++lybctx.byte_count;
++lybctx.data;
if (op) {
*op = rep_op;
}
for (iter = rep_op; iter->parent; iter = (struct lyd_node *)iter->parent);
*tree = iter;
rep_op = NULL;
cleanup:
lyd_free_all(rep_op);
LY_ARRAY_FREE(lybctx.subtrees);
LY_ARRAY_FREE(lybctx.models);
assert(!lybctx.unres_node_type.count && !lybctx.unres_meta_type.count && !lybctx.when_check.count);
if (parsed_bytes) {
*parsed_bytes = lybctx.byte_count;
}
if (ret) {
lyd_free_all(*tree);
*tree = NULL;
}
return ret;
}
API int
lyd_lyb_data_length(const char *data)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_lyb_ctx lybctx = {0};
int count, i;
size_t len;
uint8_t buf[LYB_SIZE_MAX];
if (!data) {
return -1;
}
lybctx.data = data;
/* read magic number */
ret = lyb_parse_magic_number(&lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* read header */
ret = lyb_parse_header(&lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* read model count */
lyb_read_number(&count, sizeof count, 2, &lybctx);
/* read all models */
for (i = 0; i < count; ++i) {
/* module name length */
len = 0;
lyb_read_number(&len, sizeof len, 2, &lybctx);
/* model name */
lyb_read(buf, len, &lybctx);
/* revision */
lyb_read(buf, 2, &lybctx);
}
while (lybctx.data[0]) {
/* register a new subtree */
ret = lyb_read_start_subtree(&lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* skip it */
lyb_skip_subtree(&lybctx);
/* subtree finished */
ret = lyb_read_stop_subtree(&lybctx);
LY_CHECK_GOTO(ret, cleanup);
}
/* read the last zero, parsing finished */
++lybctx.byte_count;
++lybctx.data;
cleanup:
LY_ARRAY_FREE(lybctx.subtrees);
return ret ? -1 : (signed)lybctx.byte_count;
}