blob: 97cb85d15d706a30258c2aeac99f0b083158b9a1 [file] [log] [blame]
/**
* @file parser_lyb.c
* @author Michal Vasko <mvasko@cesnet.cz>
* @brief LYB data parser for libyang
*
* Copyright (c) 2020 CESNET, z.s.p.o.
*
* This source code is licensed under BSD 3-Clause License (the "License").
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*/
#include "lyb.h"
#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "common.h"
#include "compat.h"
#include "context.h"
#include "dict.h"
#include "hash_table.h"
#include "in.h"
#include "in_internal.h"
#include "log.h"
#include "parser_data.h"
#include "parser_internal.h"
#include "tree.h"
#include "tree_data.h"
#include "tree_data_internal.h"
#include "tree_schema.h"
#include "validation.h"
#include "xml.h"
void
lylyb_ctx_free(struct lylyb_ctx *ctx)
{
LY_ARRAY_COUNT_TYPE u;
LY_ARRAY_FREE(ctx->subtrees);
LY_ARRAY_FREE(ctx->models);
LY_ARRAY_FOR(ctx->sib_hts, u) {
lyht_free(ctx->sib_hts[u].ht);
}
LY_ARRAY_FREE(ctx->sib_hts);
free(ctx);
}
void
lyd_lyb_ctx_free(struct lyd_ctx *lydctx)
{
struct lyd_lyb_ctx *ctx = (struct lyd_lyb_ctx *)lydctx;
lyd_ctx_free(lydctx);
lylyb_ctx_free(ctx->lybctx);
free(ctx);
}
/**
* @brief Read YANG data from LYB input. Metadata are handled transparently and not returned.
*
* @param[in] buf Destination buffer.
* @param[in] count Number of bytes to read.
* @param[in] lybctx LYB context.
*/
static void
lyb_read(uint8_t *buf, size_t count, struct lylyb_ctx *lybctx)
{
LY_ARRAY_COUNT_TYPE u;
struct lyd_lyb_subtree *empty;
size_t to_read;
uint8_t meta_buf[LYB_META_BYTES];
assert(lybctx);
while (1) {
/* check for fully-read (empty) data chunks */
to_read = count;
empty = NULL;
LY_ARRAY_FOR(lybctx->subtrees, u) {
/* we want the innermost chunks resolved first, so replace previous empty chunks,
* also ignore chunks that are completely finished, there is nothing for us to do */
if ((lybctx->subtrees[u].written <= to_read) && lybctx->subtrees[u].position) {
/* empty chunk, do not read more */
to_read = lybctx->subtrees[u].written;
empty = &lybctx->subtrees[u];
}
}
if (!empty && !count) {
break;
}
/* we are actually reading some data, not just finishing another chunk */
if (to_read) {
if (buf) {
ly_in_read(lybctx->in, buf, to_read);
} else {
ly_in_skip(lybctx->in, to_read);
}
LY_ARRAY_FOR(lybctx->subtrees, u) {
/* decrease all written counters */
lybctx->subtrees[u].written -= to_read;
assert(lybctx->subtrees[u].written <= LYB_SIZE_MAX);
}
/* decrease count/buf */
count -= to_read;
if (buf) {
buf += to_read;
}
}
if (empty) {
/* read the next chunk meta information */
ly_in_read(lybctx->in, meta_buf, LYB_META_BYTES);
empty->written = meta_buf[0];
empty->inner_chunks = meta_buf[1];
/* remember whether there is a following chunk or not */
empty->position = (empty->written == LYB_SIZE_MAX ? 1 : 0);
}
}
}
/**
* @brief Read a number.
*
* @param[in] num Destination buffer.
* @param[in] num_size Size of @p num.
* @param[in] bytes Number of bytes to read.
* @param[in] lybctx LYB context.
*/
static void
lyb_read_number(void *num, size_t num_size, size_t bytes, struct lylyb_ctx *lybctx)
{
uint64_t buf = 0;
lyb_read((uint8_t *)&buf, bytes, lybctx);
/* correct byte order */
buf = le64toh(buf);
switch (num_size) {
case sizeof(uint8_t):
*((uint8_t *)num) = buf;
break;
case sizeof(uint16_t):
*((uint16_t *)num) = buf;
break;
case sizeof(uint32_t):
*((uint32_t *)num) = buf;
break;
case sizeof(uint64_t):
*((uint64_t *)num) = buf;
break;
default:
LOGINT(lybctx->ctx);
}
}
/**
* @brief Read a string.
*
* @param[in] str Destination buffer, is allocated.
* @param[in] with_length Whether the string is preceded with its length or it ends at the end of this subtree.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_read_string(char **str, ly_bool with_length, struct lylyb_ctx *lybctx)
{
ly_bool next_chunk = 0;
size_t len = 0, cur_len;
*str = NULL;
if (with_length) {
lyb_read_number(&len, sizeof len, 2, lybctx);
} else {
/* read until the end of this subtree */
len = LYB_LAST_SUBTREE(lybctx).written;
if (LYB_LAST_SUBTREE(lybctx).position) {
next_chunk = 1;
}
}
*str = malloc((len + 1) * sizeof **str);
LY_CHECK_ERR_RET(!*str, LOGMEM(lybctx->ctx), LY_EMEM);
lyb_read((uint8_t *)*str, len, lybctx);
while (next_chunk) {
cur_len = LYB_LAST_SUBTREE(lybctx).written;
if (LYB_LAST_SUBTREE(lybctx).position) {
next_chunk = 1;
} else {
next_chunk = 0;
}
*str = ly_realloc(*str, (len + cur_len + 1) * sizeof **str);
LY_CHECK_ERR_RET(!*str, LOGMEM(lybctx->ctx), LY_EMEM);
lyb_read(((uint8_t *)*str) + len, cur_len, lybctx);
len += cur_len;
}
((char *)*str)[len] = '\0';
return LY_SUCCESS;
}
/**
* @brief Stop the current subtree - change LYB context state.
*
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_read_stop_subtree(struct lylyb_ctx *lybctx)
{
if (LYB_LAST_SUBTREE(lybctx).written) {
LOGINT_RET(lybctx->ctx);
}
LY_ARRAY_DECREMENT(lybctx->subtrees);
return LY_SUCCESS;
}
/**
* @brief Start a new subtree - change LYB context state but also read the expected metadata.
*
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_read_start_subtree(struct lylyb_ctx *lybctx)
{
uint8_t meta_buf[LYB_META_BYTES];
LY_ARRAY_COUNT_TYPE u;
u = LY_ARRAY_COUNT(lybctx->subtrees);
if (u == lybctx->subtree_size) {
LY_ARRAY_CREATE_RET(lybctx->ctx, lybctx->subtrees, u + LYB_SUBTREE_STEP, LY_EMEM);
lybctx->subtree_size = u + LYB_SUBTREE_STEP;
}
LY_CHECK_RET(ly_in_read(lybctx->in, meta_buf, LYB_META_BYTES));
LY_ARRAY_INCREMENT(lybctx->subtrees);
LYB_LAST_SUBTREE(lybctx).written = meta_buf[0];
LYB_LAST_SUBTREE(lybctx).inner_chunks = meta_buf[LYB_SIZE_BYTES];
LYB_LAST_SUBTREE(lybctx).position = (LYB_LAST_SUBTREE(lybctx).written == LYB_SIZE_MAX ? 1 : 0);
return LY_SUCCESS;
}
/**
* @brief Parse YANG model info.
*
* @param[in] lybctx LYB context.
* @param[out] mod Parsed module.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_model(struct lylyb_ctx *lybctx, uint32_t parse_options, const struct lys_module **mod)
{
LY_ERR ret = LY_SUCCESS;
char *mod_name = NULL, mod_rev[LY_REV_SIZE];
uint16_t rev;
/* model name */
ret = lyb_read_string(&mod_name, 1, lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* revision */
lyb_read_number(&rev, sizeof rev, 2, lybctx);
if (!mod_name[0]) {
/* opaq node, no module */
*mod = NULL;
goto cleanup;
}
if (rev) {
sprintf(mod_rev, "%04u-%02u-%02u", ((rev & LYB_REV_YEAR_MASK) >> LYB_REV_YEAR_SHIFT) + LYB_REV_YEAR_OFFSET,
(rev & LYB_REV_MONTH_MASK) >> LYB_REV_MONTH_SHIFT, rev & LYB_REV_DAY_MASK);
*mod = ly_ctx_get_module(lybctx->ctx, mod_name, mod_rev);
if ((parse_options & LYD_PARSE_LYB_MOD_UPDATE) && !(*mod)) {
/* try to use an updated module */
*mod = ly_ctx_get_module_implemented(lybctx->ctx, mod_name);
if (*mod && (!(*mod)->revision || (strcmp((*mod)->revision, mod_rev) < 0))) {
/* not an implemented module in a newer revision */
*mod = NULL;
}
}
} else {
*mod = ly_ctx_get_module_latest(lybctx->ctx, mod_name);
}
/* TODO data_clb supported?
if (lybctx->ctx->data_clb) {
if (!*mod) {
*mod = lybctx->ctx->data_clb(lybctx->ctx, mod_name, NULL, 0, lybctx->ctx->data_clb_data);
} else if (!(*mod)->implemented) {
*mod = lybctx->ctx->data_clb(lybctx->ctx, mod_name, (*mod)->ns, LY_MODCLB_NOT_IMPLEMENTED, lybctx->ctx->data_clb_data);
}
}*/
if (!*mod || !(*mod)->implemented) {
if (parse_options & LYD_PARSE_STRICT) {
if (!*mod) {
LOGERR(lybctx->ctx, LY_EINVAL, "Invalid context for LYB data parsing, missing module \"%s%s%s\".",
mod_name, rev ? "@" : "", rev ? mod_rev : "");
} else if (!(*mod)->implemented) {
LOGERR(lybctx->ctx, LY_EINVAL, "Invalid context for LYB data parsing, module \"%s%s%s\" not implemented.",
mod_name, rev ? "@" : "", rev ? mod_rev : "");
}
ret = LY_EINVAL;
goto cleanup;
}
}
cleanup:
free(mod_name);
return ret;
}
/**
* @brief Parse YANG node metadata.
*
* @param[in] lybctx LYB context.
* @param[out] meta Parsed metadata.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_metadata(struct lyd_lyb_ctx *lybctx, struct lyd_meta **meta)
{
LY_ERR ret = LY_SUCCESS;
ly_bool dynamic;
uint8_t i, count = 0;
char *meta_name = NULL, *meta_value;
const struct lys_module *mod;
/* read number of attributes stored */
lyb_read(&count, 1, lybctx->lybctx);
/* read attributes */
for (i = 0; i < count; ++i) {
ret = lyb_read_start_subtree(lybctx->lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* find model */
ret = lyb_parse_model(lybctx->lybctx, lybctx->parse_options, &mod);
LY_CHECK_GOTO(ret, cleanup);
if (!mod) {
/* skip it */
do {
lyb_read(NULL, LYB_LAST_SUBTREE(lybctx->lybctx).written, lybctx->lybctx);
} while (LYB_LAST_SUBTREE(lybctx->lybctx).written);
goto stop_subtree;
}
/* meta name */
ret = lyb_read_string(&meta_name, 1, lybctx->lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* meta value */
ret = lyb_read_string(&meta_value, 0, lybctx->lybctx);
LY_CHECK_GOTO(ret, cleanup);
dynamic = 1;
/* create metadata */
ret = lyd_parser_create_meta((struct lyd_ctx *)lybctx, NULL, meta, mod, meta_name, strlen(meta_name), meta_value,
ly_strlen(meta_value), &dynamic, LY_PREF_JSON, NULL, LYD_HINT_DATA);
/* free strings */
free(meta_name);
meta_name = NULL;
if (dynamic) {
free(meta_value);
dynamic = 0;
}
LY_CHECK_GOTO(ret, cleanup);
stop_subtree:
ret = lyb_read_stop_subtree(lybctx->lybctx);
LY_CHECK_GOTO(ret, cleanup);
}
cleanup:
free(meta_name);
if (ret) {
lyd_free_meta_siblings(*meta);
*meta = NULL;
}
return ret;
}
/**
* @brief Parse format-specific prefix data.
*
* @param[in] lybctx LYB context.
* @param[in] format Prefix data format.
* @param[out] prefix_data Parsed prefix data.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_prefix_data(struct lylyb_ctx *lybctx, LY_PREFIX_FORMAT format, void **prefix_data)
{
LY_ERR ret = LY_SUCCESS;
uint8_t count, i;
struct ly_set *set = NULL;
struct lyxml_ns *ns = NULL;
switch (format) {
case LY_PREF_XML:
/* read count */
lyb_read(&count, 1, lybctx);
if (!count) {
return LY_SUCCESS;
}
/* read all NS elements */
LY_CHECK_GOTO(ret = ly_set_new(&set), cleanup);
for (i = 0; i < count; ++i) {
ns = calloc(1, sizeof *ns);
/* prefix */
LY_CHECK_GOTO(ret = lyb_read_string(&ns->prefix, 1, lybctx), cleanup);
/* namespace */
LY_CHECK_GOTO(ret = lyb_read_string(&ns->uri, 1, lybctx), cleanup);
LY_CHECK_GOTO(ret = ly_set_add(set, ns, 1, NULL), cleanup);
ns = NULL;
}
*prefix_data = set;
break;
case LY_PREF_JSON:
/* nothing stored */
break;
default:
LOGINT(lybctx->ctx);
ret = LY_EINT;
break;
}
cleanup:
if (ret) {
ly_free_prefix_data(format, set);
if (ns) {
free(ns->prefix);
free(ns->uri);
free(ns);
}
}
return ret;
}
/**
* @brief Parse opaque attributes.
*
* @param[in] lybctx LYB context.
* @param[out] attr Parsed attributes.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_attributes(struct lylyb_ctx *lybctx, struct lyd_attr **attr)
{
LY_ERR ret = LY_SUCCESS;
uint8_t count, i;
struct lyd_attr *attr2;
char *prefix = NULL, *module_name = NULL, *name = NULL, *value = NULL;
ly_bool dynamic = 0;
LY_PREFIX_FORMAT format = 0;
void *val_prefix_data = NULL;
/* read count */
lyb_read(&count, 1, lybctx);
/* read attributes */
for (i = 0; i < count; ++i) {
ret = lyb_read_start_subtree(lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* prefix, may be empty */
ret = lyb_read_string(&prefix, 1, lybctx);
LY_CHECK_GOTO(ret, cleanup);
if (!prefix[0]) {
free(prefix);
prefix = NULL;
}
/* namespace, may be empty */
ret = lyb_read_string(&module_name, 1, lybctx);
LY_CHECK_GOTO(ret, cleanup);
if (!module_name[0]) {
free(module_name);
module_name = NULL;
}
/* name */
ret = lyb_read_string(&name, 1, lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* format */
lyb_read((uint8_t *)&format, 1, lybctx);
/* value prefixes */
ret = lyb_parse_prefix_data(lybctx, format, &val_prefix_data);
LY_CHECK_GOTO(ret, cleanup);
/* value */
ret = lyb_read_string(&value, 0, lybctx);
LY_CHECK_ERR_GOTO(ret, ly_free_prefix_data(format, val_prefix_data), cleanup);
dynamic = 1;
/* attr2 is always changed to the created attribute */
ret = lyd_create_attr(NULL, &attr2, lybctx->ctx, name, strlen(name), prefix, ly_strlen(prefix), module_name,
ly_strlen(module_name), value, ly_strlen(value), &dynamic, format, val_prefix_data, 0);
LY_CHECK_GOTO(ret, cleanup);
free(prefix);
prefix = NULL;
free(module_name);
module_name = NULL;
free(name);
name = NULL;
assert(!dynamic);
value = NULL;
if (!*attr) {
*attr = attr2;
}
ret = lyb_read_stop_subtree(lybctx);
LY_CHECK_GOTO(ret, cleanup);
}
cleanup:
free(prefix);
free(module_name);
free(name);
if (dynamic) {
free(value);
}
if (ret) {
lyd_free_attr_siblings(lybctx->ctx, *attr);
*attr = NULL;
}
return ret;
}
/**
* @brief Check whether a schema node matches a hash(es).
*
* @param[in] sibling Schema node to check.
* @param[in] hash Hash array to check.
* @param[in] hash_count Number of hashes in @p hash.
* @return non-zero if matches,
* @return 0 if not.
*/
static int
lyb_is_schema_hash_match(struct lysc_node *sibling, LYB_HASH *hash, uint8_t hash_count)
{
LYB_HASH sibling_hash;
uint8_t i;
/* compare all the hashes starting from collision ID 0 */
for (i = 0; i < hash_count; ++i) {
sibling_hash = lyb_hash(sibling, i);
if (sibling_hash != hash[i]) {
return 0;
}
}
return 1;
}
/**
* @brief Parse schema node hash.
*
* @param[in] lybctx LYB context.
* @param[in] sparent Schema parent, must be set if @p mod is not.
* @param[in] mod Module of the top-level node, must be set if @p sparent is not.
* @param[out] snode Parsed found schema node, may be NULL if opaque.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_schema_hash(struct lyd_lyb_ctx *lybctx, const struct lysc_node *sparent, const struct lys_module *mod,
const struct lysc_node **snode)
{
LY_ERR ret;
uint8_t i, j;
const struct lysc_node *sibling;
LYB_HASH hash[LYB_HASH_BITS - 1];
uint32_t getnext_opts;
*snode = NULL;
getnext_opts = lybctx->int_opts & LYD_INTOPT_REPLY ? LYS_GETNEXT_OUTPUT : 0;
/* read the first hash */
lyb_read(&hash[0], sizeof *hash, lybctx->lybctx);
if (!hash[0]) {
/* opaque node */
return LY_SUCCESS;
}
/* based on the first hash read all the other ones, if any */
for (i = 0; !(hash[0] & (LYB_HASH_COLLISION_ID >> i)); ++i) {
if (i > LYB_HASH_BITS) {
LOGINT_RET(lybctx->lybctx->ctx);
}
}
/* move the first hash on its accurate position */
hash[i] = hash[0];
/* read the rest of hashes */
for (j = i; j; --j) {
lyb_read(&hash[j - 1], sizeof *hash, lybctx->lybctx);
/* correct collision ID */
assert(hash[j - 1] & (LYB_HASH_COLLISION_ID >> (j - 1)));
/* preceded with zeros */
assert(!(hash[j - 1] & (LYB_HASH_MASK << (LYB_HASH_BITS - (j - 1)))));
}
/* find our node with matching hashes */
sibling = NULL;
while ((sibling = lys_getnext(sibling, sparent, mod ? mod->compiled : NULL, getnext_opts))) {
/* skip schema nodes from models not present during printing */
if (lyb_has_schema_model(sibling, lybctx->lybctx->models) &&
lyb_is_schema_hash_match((struct lysc_node *)sibling, hash, i + 1)) {
/* match found */
break;
}
}
if (!sibling && (lybctx->parse_options & LYD_PARSE_STRICT)) {
if (mod) {
LOGVAL(lybctx->lybctx->ctx, LYVE_REFERENCE, "Failed to find matching hash for a top-level node"
" from \"%s\".", mod->name);
} else {
LOGVAL(lybctx->lybctx->ctx, LYVE_REFERENCE, "Failed to find matching hash for a child node"
" of \"%s\".", sparent->name);
}
return LY_EVALID;
} else if (sibling && (ret = lyd_parser_check_schema((struct lyd_ctx *)lybctx, sibling))) {
return ret;
}
*snode = sibling;
return LY_SUCCESS;
}
/**
* @brief Read until the end of the current subtree.
*
* @param[in] lybctx LYB context.
*/
static void
lyb_skip_subtree(struct lylyb_ctx *lybctx)
{
do {
/* first skip any meta information inside */
ly_in_skip(lybctx->in, LYB_LAST_SUBTREE(lybctx).inner_chunks * LYB_META_BYTES);
/* then read data */
lyb_read(NULL, LYB_LAST_SUBTREE(lybctx).written, lybctx);
} while (LYB_LAST_SUBTREE(lybctx).written);
}
/**
* @brief Parse LYB subtree.
*
* @param[in] lybctx LYB context.
* @param[in] parent Data parent of the subtree, must be set if @p first is not.
* @param[in,out] first First top-level sibling, must be set if @p parent is not.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_subtree_r(struct lyd_lyb_ctx *lybctx, struct lyd_node_inner *parent, struct lyd_node **first)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_node *node = NULL, *tree;
const struct lys_module *mod;
const struct lysc_node *snode = NULL;
struct lyd_meta *meta = NULL, *m;
struct lyd_attr *attr = NULL, *a;
LYD_ANYDATA_VALUETYPE value_type;
char *value = NULL, *name = NULL, *prefix = NULL, *module_key = NULL;
ly_bool dynamic = 0;
LY_PREFIX_FORMAT format = 0;
void *val_prefix_data = NULL;
uint32_t prev_lo, flags;
const struct ly_ctx *ctx = lybctx->lybctx->ctx;
/* register a new subtree */
LY_CHECK_GOTO(ret = lyb_read_start_subtree(lybctx->lybctx), cleanup);
if (!parent) {
/* top-level, read module name */
ret = lyb_parse_model(lybctx->lybctx, lybctx->parse_options, &mod);
LY_CHECK_GOTO(ret, cleanup);
/* read hash, find the schema node starting from mod */
ret = lyb_parse_schema_hash(lybctx, NULL, mod, &snode);
LY_CHECK_GOTO(ret, cleanup);
} else {
/* read hash, find the schema node starting from parent schema */
ret = lyb_parse_schema_hash(lybctx, parent->schema, NULL, &snode);
LY_CHECK_GOTO(ret, cleanup);
}
if (!snode && !(lybctx->parse_options & LYD_PARSE_OPAQ)) {
/* unknown data, skip them */
lyb_skip_subtree(lybctx->lybctx);
goto stop_subtree;
}
/* create metadata/attributes */
if (snode) {
ret = lyb_parse_metadata(lybctx, &meta);
LY_CHECK_GOTO(ret, cleanup);
} else {
ret = lyb_parse_attributes(lybctx->lybctx, &attr);
LY_CHECK_GOTO(ret, cleanup);
}
/* read flags */
lyb_read_number(&flags, sizeof flags, sizeof flags, lybctx->lybctx);
if (!snode) {
/* parse prefix */
ret = lyb_read_string(&prefix, 1, lybctx->lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* parse module key */
ret = lyb_read_string(&module_key, 1, lybctx->lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* parse name */
ret = lyb_read_string(&name, 1, lybctx->lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* parse format */
lyb_read((uint8_t *)&format, 1, lybctx->lybctx);
/* parse value prefixes */
ret = lyb_parse_prefix_data(lybctx->lybctx, format, &val_prefix_data);
LY_CHECK_GOTO(ret, cleanup);
/* parse value */
ret = lyb_read_string(&value, 0, lybctx->lybctx);
LY_CHECK_ERR_GOTO(ret, ly_free_prefix_data(format, val_prefix_data), cleanup);
dynamic = 1;
/* create node */
ret = lyd_create_opaq(ctx, name, strlen(name), prefix, ly_strlen(prefix), module_key, ly_strlen(module_key),
value, strlen(value), &dynamic, format, val_prefix_data, 0, &node);
LY_CHECK_GOTO(ret, cleanup);
/* process children */
while (LYB_LAST_SUBTREE(lybctx->lybctx).written) {
ret = lyb_parse_subtree_r(lybctx, (struct lyd_node_inner *)node, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
} else if (snode->nodetype & LYD_NODE_TERM) {
/* parse value */
ret = lyb_read_string(&value, 0, lybctx->lybctx);
LY_CHECK_GOTO(ret, cleanup);
dynamic = 1;
/* create node */
ret = lyd_parser_create_term((struct lyd_ctx *)lybctx, snode, value, ly_strlen(value), &dynamic, LY_PREF_JSON,
NULL, LYD_HINT_DATA, &node);
if (dynamic) {
free(value);
dynamic = 0;
}
value = NULL;
LY_CHECK_GOTO(ret, cleanup);
} else if (snode->nodetype & LYD_NODE_INNER) {
/* create node */
ret = lyd_create_inner(snode, &node);
LY_CHECK_GOTO(ret, cleanup);
/* process children */
while (LYB_LAST_SUBTREE(lybctx->lybctx).written) {
ret = lyb_parse_subtree_r(lybctx, (struct lyd_node_inner *)node, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
if (!(lybctx->parse_options & LYD_PARSE_ONLY)) {
/* new node validation, autodelete CANNOT occur, all nodes are new */
ret = lyd_validate_new(lyd_node_children_p(node), snode, NULL, NULL);
LY_CHECK_GOTO(ret, cleanup);
/* add any missing default children */
ret = lyd_new_implicit_r(node, lyd_node_children_p(node), NULL, NULL, &lybctx->unres_node_type,
&lybctx->when_check, (lybctx->validate_options & LYD_VALIDATE_NO_STATE) ?
LYD_IMPLICIT_NO_STATE : 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
if (snode->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)) {
/* rememeber the RPC/action/notification */
lybctx->op_node = node;
}
} else if (snode->nodetype & LYD_NODE_ANY) {
/* parse value type */
lyb_read((uint8_t *)&value_type, sizeof value_type, lybctx->lybctx);
if (value_type == LYD_ANYDATA_DATATREE) {
/* invalid situation */
LOGINT(ctx);
goto cleanup;
}
/* read anydata content */
ret = lyb_read_string(&value, 0, lybctx->lybctx);
LY_CHECK_GOTO(ret, cleanup);
dynamic = 1;
if (value_type == LYD_ANYDATA_LYB) {
/* turn logging off */
prev_lo = ly_log_options(0);
/* try to parse LYB into a data tree */
if (lyd_parse_data_mem(ctx, value, LYD_LYB, LYD_PARSE_ONLY | LYD_PARSE_OPAQ | LYD_PARSE_STRICT, 0, &tree) == LY_SUCCESS) {
/* successfully parsed */
free(value);
value = (char *)tree;
value_type = LYD_ANYDATA_DATATREE;
}
/* turn logging on again */
ly_log_options(prev_lo);
}
/* create node */
ret = lyd_create_any(snode, value, value_type, 1, &node);
LY_CHECK_GOTO(ret, cleanup);
dynamic = 0;
value = NULL;
}
assert(node);
/* set flags */
node->flags = flags;
/* add metadata/attributes */
if (snode) {
LY_LIST_FOR(meta, m) {
m->parent = node;
}
node->meta = meta;
meta = NULL;
} else {
assert(!node->schema);
LY_LIST_FOR(attr, a) {
a->parent = (struct lyd_node_opaq *)node;
}
((struct lyd_node_opaq *)node)->attr = attr;
attr = NULL;
}
/* insert, keep first pointer correct */
lyd_insert_node(&parent->node, first, node);
while (!parent && (*first)->prev->next) {
*first = (*first)->prev;
}
node = NULL;
stop_subtree:
/* end the subtree */
ret = lyb_read_stop_subtree(lybctx->lybctx);
LY_CHECK_GOTO(ret, cleanup);
cleanup:
free(prefix);
free(module_key);
free(name);
if (dynamic) {
free(value);
}
lyd_free_meta_siblings(meta);
lyd_free_attr_siblings(ctx, attr);
lyd_free_tree(node);
return ret;
}
/**
* @brief Parse used YANG data models.
*
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_data_models(struct lylyb_ctx *lybctx, uint32_t parse_options)
{
LY_ERR ret;
uint32_t count;
LY_ARRAY_COUNT_TYPE u;
/* read model count */
lyb_read_number(&count, sizeof count, 2, lybctx);
if (count) {
LY_ARRAY_CREATE_RET(lybctx->ctx, lybctx->models, count, LY_EMEM);
/* read modules */
for (u = 0; u < count; ++u) {
ret = lyb_parse_model(lybctx, parse_options, &lybctx->models[u]);
LY_CHECK_RET(ret);
LY_ARRAY_INCREMENT(lybctx->models);
}
}
return LY_SUCCESS;
}
/**
* @brief Parse LYB magic number.
*
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_magic_number(struct lylyb_ctx *lybctx)
{
char magic_byte = 0;
lyb_read((uint8_t *)&magic_byte, 1, lybctx);
if (magic_byte != 'l') {
LOGERR(lybctx->ctx, LY_EINVAL, "Invalid first magic number byte \"0x%02x\".", magic_byte);
return LY_EINVAL;
}
lyb_read((uint8_t *)&magic_byte, 1, lybctx);
if (magic_byte != 'y') {
LOGERR(lybctx->ctx, LY_EINVAL, "Invalid second magic number byte \"0x%02x\".", magic_byte);
return LY_EINVAL;
}
lyb_read((uint8_t *)&magic_byte, 1, lybctx);
if (magic_byte != 'b') {
LOGERR(lybctx->ctx, LY_EINVAL, "Invalid third magic number byte \"0x%02x\".", magic_byte);
return LY_EINVAL;
}
return LY_SUCCESS;
}
/**
* @brief Parse LYB header.
*
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_parse_header(struct lylyb_ctx *lybctx)
{
uint8_t byte = 0;
/* version, future flags */
lyb_read((uint8_t *)&byte, sizeof byte, lybctx);
if ((byte & LYB_VERSION_MASK) != LYB_VERSION_NUM) {
LOGERR(lybctx->ctx, LY_EINVAL, "Invalid LYB format version \"0x%02x\", expected \"0x%02x\".",
byte & LYB_VERSION_MASK, LYB_VERSION_NUM);
return LY_EINVAL;
}
return LY_SUCCESS;
}
/**
* @param[in] ctx libyang context for logging
* @param[in] parent Parent node where to connect the parsed data, required for reply where the reply data are connected
* with the request operation
* @param[in] in Input structure.
* @param[in] parse_options Options for parser, see @ref dataparseroptions.
* @param[in] validate_options Options for the validation phase, see @ref datavalidationoptions.
* @param[in] data_type Internal data parser flag to distnguish type of the data to parse (RPC/Reply/Notification/regular data].
* @param[out] tree_p Parsed data tree. Note that NULL can be a valid result.
* @param[out] op_p Optional pointer to the actual operation. Useful for action and inner notifications.
* @param[out] lydctx_p Data parser context to finish validation.
*/
static LY_ERR
lyd_parse_lyb_(const struct ly_ctx *ctx, struct lyd_node_inner **parent, struct ly_in *in, uint32_t parse_options,
uint32_t validate_options, uint32_t data_type, struct lyd_node **tree_p, struct lyd_node **op_p,
struct lyd_ctx **lydctx_p)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_lyb_ctx *lybctx;
struct lyd_node *tree = NULL;
assert(!(parse_options & ~LYD_PARSE_OPTS_MASK));
assert(!(validate_options & ~LYD_VALIDATE_OPTS_MASK));
lybctx = calloc(1, sizeof *lybctx);
LY_CHECK_ERR_RET(!lybctx, LOGMEM(ctx), LY_EMEM);
lybctx->lybctx = calloc(1, sizeof *lybctx->lybctx);
LY_CHECK_ERR_GOTO(!lybctx->lybctx, LOGMEM(ctx); ret = LY_EMEM, cleanup);
lybctx->lybctx->in = in;
lybctx->lybctx->ctx = ctx;
lybctx->parse_options = parse_options;
lybctx->validate_options = validate_options;
lybctx->int_opts = data_type;
lybctx->free = lyd_lyb_ctx_free;
/* read magic number */
ret = lyb_parse_magic_number(lybctx->lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* read header */
ret = lyb_parse_header(lybctx->lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* read used models */
ret = lyb_parse_data_models(lybctx->lybctx, lybctx->parse_options);
LY_CHECK_GOTO(ret, cleanup);
/* read subtree(s) */
while (lybctx->lybctx->in->current[0]) {
ret = lyb_parse_subtree_r(lybctx, parent ? *parent : NULL, &tree);
LY_CHECK_GOTO(ret, cleanup);
}
/* read the last zero, parsing finished */
ly_in_skip(lybctx->lybctx->in, 1);
if (data_type == (LYD_INTOPT_RPC | LYD_INTOPT_REPLY)) {
/* make sure we have parsed some operation */
if (!lybctx->op_node) {
LOGVAL(ctx, LYVE_DATA, "Missing the \"rpc\"/\"action\" node.");
ret = LY_EVALID;
goto cleanup;
}
if (op_p) {
*op_p = lybctx->op_node;
}
assert(tree);
} else if (data_type == LYD_INTOPT_NOTIF) {
/* make sure we have parsed some notification */
if (!lybctx->op_node) {
LOGVAL(ctx, LYVE_DATA, "Missing the \"notification\" node.");
ret = LY_EVALID;
goto cleanup;
}
if (op_p) {
*op_p = lybctx->op_node;
}
assert(tree);
}
cleanup:
if (ret) {
lyd_lyb_ctx_free((struct lyd_ctx *)lybctx);
lyd_free_all(tree);
} else {
if (lydctx_p) {
*lydctx_p = (struct lyd_ctx *)lybctx;
} else {
lyd_lyb_ctx_free((struct lyd_ctx *)lybctx);
}
if (tree_p) {
*tree_p = tree;
}
}
return ret;
}
LY_ERR
lyd_parse_lyb_data(const struct ly_ctx *ctx, struct ly_in *in, uint32_t parse_options, uint32_t validate_options,
struct lyd_node **tree_p, struct lyd_ctx **lydctx_p)
{
return lyd_parse_lyb_(ctx, NULL, in, parse_options, validate_options, 0, tree_p, NULL, lydctx_p);
}
LY_ERR
lyd_parse_lyb_rpc(const struct ly_ctx *ctx, struct ly_in *in, struct lyd_node **tree_p, struct lyd_node **op_p)
{
return lyd_parse_lyb_(ctx, NULL, in, LYD_PARSE_ONLY | LYD_PARSE_STRICT, 0, LYD_INTOPT_RPC, tree_p, op_p, NULL);
}
LY_ERR
lyd_parse_lyb_notif(const struct ly_ctx *ctx, struct ly_in *in, struct lyd_node **tree_p, struct lyd_node **ntf_p)
{
return lyd_parse_lyb_(ctx, NULL, in, LYD_PARSE_ONLY | LYD_PARSE_STRICT, 0, LYD_INTOPT_NOTIF, tree_p, ntf_p, NULL);
}
LY_ERR
lyd_parse_lyb_reply(const struct ly_ctx *ctx, struct ly_in *in, struct lyd_node **tree_p, struct lyd_node **op_p)
{
return lyd_parse_lyb_(ctx, NULL, in, LYD_PARSE_ONLY | LYD_PARSE_STRICT, 0, LYD_INTOPT_REPLY, tree_p, op_p, NULL);
}
API int
lyd_lyb_data_length(const char *data)
{
LY_ERR ret = LY_SUCCESS;
struct lylyb_ctx *lybctx;
int count, i;
size_t len;
uint8_t buf[LYB_SIZE_MAX];
if (!data) {
return -1;
}
lybctx = calloc(1, sizeof *lybctx);
LY_CHECK_ERR_RET(!lybctx, LOGMEM(NULL), LY_EMEM);
ret = ly_in_new_memory(data, &lybctx->in);
LY_CHECK_GOTO(ret, cleanup);
/* read magic number */
ret = lyb_parse_magic_number(lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* read header */
ret = lyb_parse_header(lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* read model count */
lyb_read_number(&count, sizeof count, 2, lybctx);
/* read all models */
for (i = 0; i < count; ++i) {
/* module name length */
len = 0;
lyb_read_number(&len, sizeof len, 2, lybctx);
/* model name */
lyb_read(buf, len, lybctx);
/* revision */
lyb_read(buf, 2, lybctx);
}
while (lybctx->in->current[0]) {
/* register a new subtree */
ret = lyb_read_start_subtree(lybctx);
LY_CHECK_GOTO(ret, cleanup);
/* skip it */
lyb_skip_subtree(lybctx);
/* subtree finished */
ret = lyb_read_stop_subtree(lybctx);
LY_CHECK_GOTO(ret, cleanup);
}
/* read the last zero, parsing finished */
ly_in_skip(lybctx->in, 1);
cleanup:
count = lybctx->in->current - lybctx->in->start;
ly_in_free(lybctx->in, 0);
lylyb_ctx_free(lybctx);
return ret ? -1 : count;
}