blob: 600646e9f1915e769667d57dd49a1c03ec5334f6 [file] [log] [blame]
/**
* @file schema_compile.c
* @author Radek Krejci <rkrejci@cesnet.cz>
* @author Michal Vasko <mvasko@cesnet.cz>
* @brief Schema compilation.
*
* Copyright (c) 2015 - 2021 CESNET, z.s.p.o.
*
* This source code is licensed under BSD 3-Clause License (the "License").
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*/
#define _GNU_SOURCE
#include "schema_compile.h"
#include <assert.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "common.h"
#include "compat.h"
#include "context.h"
#include "dict.h"
#include "in.h"
#include "log.h"
#include "parser_schema.h"
#include "path.h"
#include "plugins.h"
#include "plugins_exts.h"
#include "plugins_exts_compile.h"
#include "plugins_internal.h"
#include "plugins_types.h"
#include "schema_compile_amend.h"
#include "schema_compile_node.h"
#include "schema_features.h"
#include "set.h"
#include "tree.h"
#include "tree_data.h"
#include "tree_schema.h"
#include "tree_schema_internal.h"
#include "xpath.h"
/**
* @brief Fill in the prepared compiled extensions definition structure according to the parsed extension definition.
*/
static LY_ERR
lys_compile_extension(struct lysc_ctx *ctx, const struct lys_module *ext_mod, struct lysp_ext *ext_p, struct lysc_ext **ext)
{
LY_ERR ret = LY_SUCCESS;
if (ext_p->compiled && (ext_p->compiled->refcount == 1)) {
/* context recompilation - all the extension instances were previously freed (the last link to the compiled extension
* remains from the parsed extension definition) and now we are recompiling them again, to have the up-to-date
* extension definition, we have to recompile it as well now */
lysc_extension_free(ctx->ctx, &ext_p->compiled);
}
if (!ext_p->compiled) {
lysc_update_path(ctx, NULL, "{extension}");
lysc_update_path(ctx, NULL, ext_p->name);
/* compile the extension definition */
ext_p->compiled = calloc(1, sizeof **ext);
ext_p->compiled->refcount = 1;
DUP_STRING_GOTO(ctx->ctx, ext_p->name, ext_p->compiled->name, ret, done);
DUP_STRING_GOTO(ctx->ctx, ext_p->argname, ext_p->compiled->argname, ret, done);
ext_p->compiled->module = (struct lys_module *)ext_mod;
COMPILE_EXTS_GOTO(ctx, ext_p->exts, ext_p->compiled->exts, *ext, ret, done);
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
/* find extension definition plugin */
ext_p->compiled->plugin = lyplg_find(LYPLG_EXTENSION, ext_p->compiled->module->name,
ext_p->compiled->module->revision, ext_p->compiled->name);
}
*ext = lysc_ext_dup(ext_p->compiled);
done:
if (ret) {
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
}
return ret;
}
LY_ERR
lys_compile_ext(struct lysc_ctx *ctx, struct lysp_ext_instance *ext_p, struct lysc_ext_instance *ext, void *parent,
const struct lys_module *ext_mod)
{
LY_ERR ret = LY_SUCCESS;
struct lysp_ext *ext_def;
ext->parent_stmt = ext_p->parent_stmt;
ext->parent_stmt_index = ext_p->parent_stmt_index;
ext->module = ctx->cur_mod;
ext->parent = parent;
lysc_update_path(ctx, LY_STMT_IS_NODE(ext->parent_stmt) ? ((struct lysc_node *)ext->parent)->module : NULL, "{extension}");
lysc_update_path(ctx, NULL, ext_p->name);
LY_CHECK_GOTO(ret = lysp_ext_find_definition(ctx->ctx, ext_p, &ext_mod, &ext_def), cleanup);
LY_CHECK_GOTO(ret = lys_compile_extension(ctx, ext_mod, ext_def, &ext->def), cleanup);
if (ext_def->argname) {
LY_CHECK_GOTO(ret = lysp_ext_instance_resolve_argument(ctx->ctx, ext_p, ext_def), cleanup);
}
DUP_STRING(ctx->ctx, ext_p->argument, ext->argument, ret);
LY_CHECK_RET(ret);
if (ext->def->plugin && ext->def->plugin->compile) {
if (ext->argument) {
lysc_update_path(ctx, ext->module, ext->argument);
}
ret = ext->def->plugin->compile(ctx, ext_p, ext);
if (ret == LY_ENOT) {
lysc_ext_instance_free(ctx->ctx, ext);
}
if (ext->argument) {
lysc_update_path(ctx, NULL, NULL);
}
LY_CHECK_GOTO(ret, cleanup);
}
cleanup:
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
return ret;
}
struct lysc_ext *
lysc_ext_dup(struct lysc_ext *orig)
{
++orig->refcount;
return orig;
}
LIBYANG_API_DEF LY_ERR
lysc_ext_substmt(const struct lysc_ext_instance *ext, enum ly_stmt substmt, void **instance_p,
enum ly_stmt_cardinality *cardinality_p)
{
LY_ARRAY_COUNT_TYPE u;
if (instance_p) {
*instance_p = NULL;
}
if (cardinality_p) {
*cardinality_p = 0;
}
LY_ARRAY_FOR(ext->substmts, u) {
if (LY_STMT_IS_DATA_NODE(substmt)) {
if (!LY_STMT_IS_DATA_NODE(ext->substmts[u].stmt)) {
continue;
}
} else if (LY_STMT_IS_OP(substmt)) {
if (!LY_STMT_IS_OP(ext->substmts[u].stmt)) {
continue;
}
} else if (ext->substmts[u].stmt != substmt) {
continue;
}
/* match */
if (cardinality_p) {
*cardinality_p = ext->substmts[u].cardinality;
}
if (instance_p) {
*instance_p = ext->substmts[u].storage;
}
return LY_SUCCESS;
}
return LY_ENOT;
}
static void
lysc_unres_must_free(struct lysc_unres_must *m)
{
LY_ARRAY_FREE(m->local_mods);
free(m);
}
static void
lysc_unres_dflt_free(const struct ly_ctx *ctx, struct lysc_unres_dflt *r)
{
assert(!r->dflt || !r->dflts);
if (r->dflt) {
lysp_qname_free((struct ly_ctx *)ctx, r->dflt);
free(r->dflt);
} else {
FREE_ARRAY((struct ly_ctx *)ctx, r->dflts, lysp_qname_free);
}
free(r);
}
void
lysc_update_path(struct lysc_ctx *ctx, struct lys_module *parent_module, const char *name)
{
int len;
uint8_t nextlevel = 0; /* 0 - no starttag, 1 - '/' starttag, 2 - '=' starttag + '}' endtag */
if (!name) {
/* removing last path segment */
if (ctx->path[ctx->path_len - 1] == '}') {
for ( ; ctx->path[ctx->path_len] != '=' && ctx->path[ctx->path_len] != '{'; --ctx->path_len) {}
if (ctx->path[ctx->path_len] == '=') {
ctx->path[ctx->path_len++] = '}';
} else {
/* not a top-level special tag, remove also preceiding '/' */
goto remove_nodelevel;
}
} else {
remove_nodelevel:
for ( ; ctx->path[ctx->path_len] != '/'; --ctx->path_len) {}
if (ctx->path_len == 0) {
/* top-level (last segment) */
ctx->path_len = 1;
}
}
/* set new terminating NULL-byte */
ctx->path[ctx->path_len] = '\0';
} else {
if (ctx->path_len > 1) {
if (!parent_module && (ctx->path[ctx->path_len - 1] == '}') && (ctx->path[ctx->path_len - 2] != '\'')) {
/* extension of the special tag */
nextlevel = 2;
--ctx->path_len;
} else {
/* there is already some path, so add next level */
nextlevel = 1;
}
} /* else the path is just initiated with '/', so do not add additional slash in case of top-level nodes */
if (nextlevel != 2) {
if ((parent_module && (parent_module == ctx->cur_mod)) || (!parent_module && (ctx->path_len > 1) && (name[0] == '{'))) {
/* module not changed, print the name unprefixed */
len = snprintf(&ctx->path[ctx->path_len], LYSC_CTX_BUFSIZE - ctx->path_len, "%s%s", nextlevel ? "/" : "", name);
} else {
len = snprintf(&ctx->path[ctx->path_len], LYSC_CTX_BUFSIZE - ctx->path_len, "%s%s:%s", nextlevel ? "/" : "", ctx->cur_mod->name, name);
}
} else {
len = snprintf(&ctx->path[ctx->path_len], LYSC_CTX_BUFSIZE - ctx->path_len, "='%s'}", name);
}
if (len >= LYSC_CTX_BUFSIZE - (int)ctx->path_len) {
/* output truncated */
ctx->path_len = LYSC_CTX_BUFSIZE - 1;
} else {
ctx->path_len += len;
}
}
LOG_LOCBACK(0, 0, 1, 0);
LOG_LOCSET(NULL, NULL, ctx->path, NULL);
}
/**
* @brief Compile information from the identity statement
*
* The backlinks to the identities derived from this one are supposed to be filled later via ::lys_compile_identity_bases().
*
* @param[in] ctx_sc Compile context - alternative to the combination of @p ctx and @p parsed_mod.
* @param[in] ctx libyang context.
* @param[in] parsed_mod Module with the identities.
* @param[in] identities_p Array of the parsed identity definitions to precompile.
* @param[in,out] identities Pointer to the storage of the (pre)compiled identities array where the new identities are
* supposed to be added. The storage is supposed to be initiated to NULL when the first parsed identities are going
* to be processed.
* @return LY_ERR value.
*/
static LY_ERR
lys_identity_precompile(struct lysc_ctx *ctx_sc, struct ly_ctx *ctx, struct lysp_module *parsed_mod,
struct lysp_ident *identities_p, struct lysc_ident **identities)
{
LY_ARRAY_COUNT_TYPE u;
struct lysc_ctx context = {0};
struct lysc_ident *ident;
LY_ERR ret = LY_SUCCESS;
assert(ctx_sc || ctx);
if (!ctx_sc) {
context.ctx = ctx;
context.cur_mod = parsed_mod ? parsed_mod->mod : NULL;
context.pmod = parsed_mod;
context.path_len = 1;
context.path[0] = '/';
ctx_sc = &context;
}
if (!identities_p) {
return LY_SUCCESS;
}
lysc_update_path(ctx_sc, NULL, "{identity}");
LY_ARRAY_FOR(identities_p, u) {
lysc_update_path(ctx_sc, NULL, identities_p[u].name);
/* add new compiled identity */
LY_ARRAY_NEW_RET(ctx_sc->ctx, *identities, ident, LY_EMEM);
DUP_STRING_GOTO(ctx_sc->ctx, identities_p[u].name, ident->name, ret, done);
DUP_STRING_GOTO(ctx_sc->ctx, identities_p[u].dsc, ident->dsc, ret, done);
DUP_STRING_GOTO(ctx_sc->ctx, identities_p[u].ref, ident->ref, ret, done);
ident->module = ctx_sc->cur_mod;
/* backlinks (derived) can be added no sooner than when all the identities in the current module are present */
COMPILE_EXTS_GOTO(ctx_sc, identities_p[u].exts, ident->exts, ident, ret, done);
ident->flags = identities_p[u].flags;
lysc_update_path(ctx_sc, NULL, NULL);
}
lysc_update_path(ctx_sc, NULL, NULL);
done:
return ret;
}
/**
* @brief Check circular dependency of identities - identity MUST NOT reference itself (via their base statement).
*
* The function works in the same way as lys_compile_feature_circular_check() with different structures and error messages.
*
* @param[in] ctx Compile context for logging.
* @param[in] ident The base identity (its derived list is being extended by the identity being currently processed).
* @param[in] derived The list of derived identities of the identity being currently processed (not the one provided as @p ident)
* @return LY_SUCCESS if everything is ok.
* @return LY_EVALID if the identity is derived from itself.
*/
static LY_ERR
lys_compile_identity_circular_check(struct lysc_ctx *ctx, struct lysc_ident *ident, struct lysc_ident **derived)
{
LY_ERR ret = LY_SUCCESS;
LY_ARRAY_COUNT_TYPE u, v;
struct ly_set recursion = {0};
struct lysc_ident *drv;
if (!derived) {
return LY_SUCCESS;
}
for (u = 0; u < LY_ARRAY_COUNT(derived); ++u) {
if (ident == derived[u]) {
LOGVAL(ctx->ctx, LYVE_REFERENCE,
"Identity \"%s\" is indirectly derived from itself.", ident->name);
ret = LY_EVALID;
goto cleanup;
}
ret = ly_set_add(&recursion, derived[u], 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
for (v = 0; v < recursion.count; ++v) {
drv = recursion.objs[v];
for (u = 0; u < LY_ARRAY_COUNT(drv->derived); ++u) {
if (ident == drv->derived[u]) {
LOGVAL(ctx->ctx, LYVE_REFERENCE,
"Identity \"%s\" is indirectly derived from itself.", ident->name);
ret = LY_EVALID;
goto cleanup;
}
ret = ly_set_add(&recursion, drv->derived[u], 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
}
cleanup:
ly_set_erase(&recursion, NULL);
return ret;
}
LY_ERR
lys_compile_identity_bases(struct lysc_ctx *ctx, const struct lysp_module *base_pmod, const char **bases_p,
struct lysc_ident *ident, struct lysc_ident ***bases)
{
LY_ARRAY_COUNT_TYPE u, v;
const char *s, *name;
const struct lys_module *mod;
struct lysc_ident **idref;
assert(ident || bases);
if ((LY_ARRAY_COUNT(bases_p) > 1) && (ctx->pmod->version < LYS_VERSION_1_1)) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Multiple bases in %s are allowed only in YANG 1.1 modules.", ident ? "identity" : "identityref type");
return LY_EVALID;
}
LY_ARRAY_FOR(bases_p, u) {
s = strchr(bases_p[u], ':');
if (s) {
/* prefixed identity */
name = &s[1];
mod = ly_resolve_prefix(ctx->ctx, bases_p[u], s - bases_p[u], LY_VALUE_SCHEMA, (void *)base_pmod);
} else {
name = bases_p[u];
mod = base_pmod->mod;
}
if (!mod) {
if (ident) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Invalid prefix used for base (%s) of identity \"%s\".", bases_p[u], ident->name);
} else {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Invalid prefix used for base (%s) of identityref.", bases_p[u]);
}
return LY_EVALID;
}
idref = NULL;
LY_ARRAY_FOR(mod->identities, v) {
if (!strcmp(name, mod->identities[v].name)) {
if (ident) {
if (ident == &mod->identities[v]) {
LOGVAL(ctx->ctx, LYVE_REFERENCE,
"Identity \"%s\" is derived from itself.", ident->name);
return LY_EVALID;
}
LY_CHECK_RET(lys_compile_identity_circular_check(ctx, &mod->identities[v], ident->derived));
/* we have match! store the backlink */
LY_ARRAY_NEW_RET(ctx->ctx, mod->identities[v].derived, idref, LY_EMEM);
*idref = ident;
} else {
/* we have match! store the found identity */
LY_ARRAY_NEW_RET(ctx->ctx, *bases, idref, LY_EMEM);
*idref = &mod->identities[v];
}
break;
}
}
if (!idref) {
if (ident) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Unable to find base (%s) of identity \"%s\".", bases_p[u], ident->name);
} else {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Unable to find base (%s) of identityref.", bases_p[u]);
}
return LY_EVALID;
}
}
return LY_SUCCESS;
}
/**
* @brief For the given array of identities, set the backlinks from all their base identities.
* @param[in] ctx Compile context, not only for logging but also to get the current module to resolve prefixes.
* @param[in] idents_p Array of identities definitions from the parsed schema structure.
* @param[in,out] idents Array of referencing identities to which the backlinks are supposed to be set.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_identities_derived(struct lysc_ctx *ctx, struct lysp_ident *idents_p, struct lysc_ident **idents)
{
LY_ARRAY_COUNT_TYPE u, v;
lysc_update_path(ctx, NULL, "{identity}");
for (u = 0; u < LY_ARRAY_COUNT(*idents); ++u) {
/* find matching parsed identity */
for (v = 0; v < LY_ARRAY_COUNT(idents_p); ++v) {
if (idents_p[v].name == (*idents)[u].name) {
break;
}
}
if ((v == LY_ARRAY_COUNT(idents_p)) || !idents_p[v].bases) {
/* identity not found (it may be from a submodule) or identity without bases */
continue;
}
lysc_update_path(ctx, NULL, (*idents)[u].name);
LY_CHECK_RET(lys_compile_identity_bases(ctx, ctx->pmod, idents_p[v].bases, &(*idents)[u], NULL));
lysc_update_path(ctx, NULL, NULL);
}
lysc_update_path(ctx, NULL, NULL);
return LY_SUCCESS;
}
static void *
lys_compile_extension_instance_storage(enum ly_stmt stmt, struct lysc_ext_substmt *substmts)
{
for (LY_ARRAY_COUNT_TYPE u = 0; substmts[u].stmt; ++u) {
if (substmts[u].stmt == stmt) {
return substmts[u].storage;
}
}
return NULL;
}
LY_ERR
lys_compile_extension_instance(struct lysc_ctx *ctx, const struct lysp_ext_instance *ext_p, struct lysc_ext_instance *ext)
{
LY_ERR ret = LY_SUCCESS, r;
LY_ARRAY_COUNT_TYPE u;
struct lysp_stmt *stmt;
void *parsed = NULL, **compiled = NULL;
/* check for invalid substatements */
for (stmt = ext_p->child; stmt; stmt = stmt->next) {
if (stmt->flags & (LYS_YIN_ATTR | LYS_YIN_ARGUMENT)) {
continue;
}
LY_ARRAY_FOR(ext->substmts, u) {
if (ext->substmts[u].stmt == stmt->kw) {
break;
}
}
if (u == LY_ARRAY_COUNT(ext->substmts)) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid keyword \"%s\" as a child of \"%s%s%s\" extension instance.",
stmt->stmt, ext_p->name, ext_p->argument ? " " : "", ext_p->argument ? ext_p->argument : "");
ret = LY_EVALID;
goto cleanup;
}
}
/* TODO store inherited data, e.g. status first, but mark them somehow to allow to overwrite them and not detect duplicity */
/* note into the compile context that we are processing extension now */
ctx->ext = ext;
/* keep order of the processing the same as the order in the defined substmts,
* the order is important for some of the statements depending on others (e.g. type needs status and units) */
LY_ARRAY_FOR(ext->substmts, u) {
uint64_t stmt_counter = 0;
for (stmt = ext_p->child; stmt; stmt = stmt->next) {
if (ext->substmts[u].stmt != stmt->kw) {
continue;
}
parsed = NULL;
stmt_counter++;
if (ext->substmts[u].storage) {
switch (stmt->kw) {
case LY_STMT_ACTION:
case LY_STMT_ANYDATA:
case LY_STMT_ANYXML:
case LY_STMT_CONTAINER:
case LY_STMT_CHOICE:
case LY_STMT_LEAF:
case LY_STMT_LEAF_LIST:
case LY_STMT_LIST:
case LY_STMT_NOTIFICATION:
case LY_STMT_RPC:
case LY_STMT_USES:
if (!ext_p->parsed) {
struct lysp_ext_instance *unconst_ext_p;
r = lysp_stmt_parse(ctx, stmt, &parsed, NULL);
LY_CHECK_ERR_GOTO(r, ret = r, cleanup);
unconst_ext_p = (struct lysp_ext_instance *)ext_p;
unconst_ext_p->parsed = parsed;
} else {
struct lysp_node *node, *last_node = NULL;
/* get last parsed node */
LY_LIST_FOR(ext_p->parsed, node) {
last_node = node;
}
/* create and link sibling */
r = lysp_stmt_parse(ctx, stmt, &parsed, NULL);
LY_CHECK_ERR_GOTO(r, ret = r, cleanup);
last_node->next = parsed;
}
/* set storage as an alternative document root in the compile context */
r = lys_compile_node(ctx, parsed, NULL, 0, NULL);
LY_CHECK_ERR_GOTO(r, ret = r, cleanup);
break;
case LY_STMT_DESCRIPTION:
case LY_STMT_REFERENCE:
case LY_STMT_UNITS: {
const char **str_p;
if (ext->substmts[u].cardinality < LY_STMT_CARD_SOME) {
/* single item */
if (*((const char **)ext->substmts[u].storage)) {
LOGVAL(ctx->ctx, LY_VCODE_DUPSTMT, stmt->stmt);
ret = LY_EVALID;
goto cleanup;
}
str_p = (const char **)ext->substmts[u].storage;
} else {
/* sized array */
const char ***strings_array = (const char ***)ext->substmts[u].storage;
LY_ARRAY_NEW_GOTO(ctx->ctx, *strings_array, str_p, ret, cleanup);
}
r = lydict_insert(ctx->ctx, stmt->arg, 0, str_p);
LY_CHECK_ERR_GOTO(r, ret = r, cleanup);
break;
}
case LY_STMT_IF_FEATURE: {
ly_bool enabled;
r = lysp_stmt_parse(ctx, stmt, &parsed, NULL);
LY_CHECK_ERR_GOTO(r, ret = r, cleanup);
r = lys_eval_iffeatures(ctx->ctx, parsed, &enabled);
FREE_ARRAY(ctx->ctx, (struct lysp_qname *)parsed, lysp_qname_free);
LY_CHECK_ERR_GOTO(r, ret = r, cleanup);
if (!enabled) {
/* it is disabled, remove the whole extension instance */
return LY_ENOT;
}
break;
}
case LY_STMT_STATUS:
assert(ext->substmts[u].cardinality < LY_STMT_CARD_SOME);
LY_CHECK_ERR_GOTO(r = lysp_stmt_parse(ctx, stmt, &ext->substmts[u].storage, /* TODO */ NULL), ret = r, cleanup);
break;
case LY_STMT_TYPE: {
uint16_t *flags = lys_compile_extension_instance_storage(LY_STMT_STATUS, ext->substmts);
const char **units = lys_compile_extension_instance_storage(LY_STMT_UNITS, ext->substmts);
if (ext->substmts[u].cardinality < LY_STMT_CARD_SOME) {
/* single item */
if (*(struct lysc_type **)ext->substmts[u].storage) {
LOGVAL(ctx->ctx, LY_VCODE_DUPSTMT, stmt->stmt);
ret = LY_EVALID;
goto cleanup;
}
compiled = ext->substmts[u].storage;
} else {
/* sized array */
struct lysc_type ***types = (struct lysc_type ***)ext->substmts[u].storage, **type = NULL;
LY_ARRAY_NEW_GOTO(ctx->ctx, *types, type, ret, cleanup);
compiled = (void *)type;
}
r = lysp_stmt_parse(ctx, stmt, &parsed, NULL);
LY_CHECK_ERR_GOTO(r, ret = r, cleanup);
r = lys_compile_type(ctx, NULL, flags ? *flags : 0, ext_p->name, parsed, (struct lysc_type **)compiled,
units && !*units ? units : NULL, NULL);
lysp_type_free(ctx->ctx, parsed);
free(parsed);
LY_CHECK_ERR_GOTO(r, ret = r, cleanup);
break;
}
/* TODO support other substatements (parse stmt to lysp and then compile lysp to lysc),
* also note that in many statements their extensions are not taken into account */
default:
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Statement \"%s\" is not supported as an extension (found in \"%s%s%s\") substatement.",
stmt->stmt, ext_p->name, ext_p->argument ? " " : "", ext_p->argument ? ext_p->argument : "");
ret = LY_EVALID;
goto cleanup;
}
}
}
if (((ext->substmts[u].cardinality == LY_STMT_CARD_MAND) || (ext->substmts[u].cardinality == LY_STMT_CARD_SOME)) && !stmt_counter) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Missing mandatory keyword \"%s\" as a child of \"%s%s%s\".",
ly_stmt2str(ext->substmts[u].stmt), ext_p->name, ext_p->argument ? " " : "", ext_p->argument ? ext_p->argument : "");
ret = LY_EVALID;
goto cleanup;
}
}
cleanup:
ctx->ext = NULL;
return ret;
}
/**
* @brief Check when for cyclic dependencies.
*
* @param[in] set Set with all the referenced nodes.
* @param[in] node Node whose "when" referenced nodes are in @p set.
* @return LY_ERR value
*/
static LY_ERR
lys_compile_unres_when_cyclic(struct lyxp_set *set, const struct lysc_node *node)
{
struct lyxp_set tmp_set;
struct lyxp_set_scnode *xp_scnode;
uint32_t i, j;
LY_ARRAY_COUNT_TYPE u;
LY_ERR ret = LY_SUCCESS;
memset(&tmp_set, 0, sizeof tmp_set);
/* prepare in_ctx of the set */
for (i = 0; i < set->used; ++i) {
xp_scnode = &set->val.scnodes[i];
if (xp_scnode->in_ctx != LYXP_SET_SCNODE_START_USED) {
/* check node when, skip the context node (it was just checked) */
xp_scnode->in_ctx = LYXP_SET_SCNODE_ATOM_CTX;
}
}
for (i = 0; i < set->used; ++i) {
xp_scnode = &set->val.scnodes[i];
if (xp_scnode->in_ctx != LYXP_SET_SCNODE_ATOM_CTX) {
/* already checked */
continue;
}
if ((xp_scnode->type != LYXP_NODE_ELEM) || !lysc_node_when(xp_scnode->scnode)) {
/* no when to check */
xp_scnode->in_ctx = LYXP_SET_SCNODE_ATOM_NODE;
continue;
}
node = xp_scnode->scnode;
do {
struct lysc_when **when_list, *when;
LOG_LOCSET(node, NULL, NULL, NULL);
when_list = lysc_node_when(node);
LY_ARRAY_FOR(when_list, u) {
when = when_list[u];
ret = lyxp_atomize(set->ctx, when->cond, node->module, LY_VALUE_SCHEMA_RESOLVED, when->prefixes,
when->context, &tmp_set, LYXP_SCNODE_SCHEMA);
if (ret != LY_SUCCESS) {
LOGVAL(set->ctx, LYVE_SEMANTICS, "Invalid when condition \"%s\".", when->cond->expr);
LOG_LOCBACK(1, 0, 0, 0);
goto cleanup;
}
for (j = 0; j < tmp_set.used; ++j) {
/* skip roots'n'stuff */
if (tmp_set.val.scnodes[j].type == LYXP_NODE_ELEM) {
/* try to find this node in our set */
uint32_t idx;
if (lyxp_set_scnode_contains(set, tmp_set.val.scnodes[j].scnode, LYXP_NODE_ELEM, -1, &idx) &&
(set->val.scnodes[idx].in_ctx == LYXP_SET_SCNODE_START_USED)) {
LOGVAL(set->ctx, LYVE_SEMANTICS, "When condition cyclic dependency on the node \"%s\".",
tmp_set.val.scnodes[j].scnode->name);
ret = LY_EVALID;
LOG_LOCBACK(1, 0, 0, 0);
goto cleanup;
}
/* needs to be checked, if in both sets, will be ignored */
tmp_set.val.scnodes[j].in_ctx = LYXP_SET_SCNODE_ATOM_CTX;
} else {
/* no when, nothing to check */
tmp_set.val.scnodes[j].in_ctx = LYXP_SET_SCNODE_ATOM_NODE;
}
}
/* merge this set into the global when set */
lyxp_set_scnode_merge(set, &tmp_set);
}
/* check when of non-data parents as well */
node = node->parent;
LOG_LOCBACK(1, 0, 0, 0);
} while (node && (node->nodetype & (LYS_CASE | LYS_CHOICE)));
/* this node when was checked (xp_scnode could have been reallocd) */
set->val.scnodes[i].in_ctx = LYXP_SET_SCNODE_ATOM_NODE;
}
cleanup:
lyxp_set_free_content(&tmp_set);
return ret;
}
LY_ERR
lysc_check_status(struct lysc_ctx *ctx, uint16_t flags1, void *mod1, const char *name1, uint16_t flags2, void *mod2,
const char *name2)
{
uint16_t flg1, flg2;
flg1 = (flags1 & LYS_STATUS_MASK) ? (flags1 & LYS_STATUS_MASK) : LYS_STATUS_CURR;
flg2 = (flags2 & LYS_STATUS_MASK) ? (flags2 & LYS_STATUS_MASK) : LYS_STATUS_CURR;
if ((flg1 < flg2) && (mod1 == mod2)) {
if (ctx) {
LOGVAL(ctx->ctx, LYVE_REFERENCE, "A %s definition \"%s\" is not allowed to reference %s definition \"%s\".",
flg1 == LYS_STATUS_CURR ? "current" : "deprecated", name1,
flg2 == LYS_STATUS_OBSLT ? "obsolete" : "deprecated", name2);
}
return LY_EVALID;
}
return LY_SUCCESS;
}
LY_ERR
lys_compile_expr_implement(const struct ly_ctx *ctx, const struct lyxp_expr *expr, LY_VALUE_FORMAT format,
void *prefix_data, ly_bool implement, struct lys_glob_unres *unres, const struct lys_module **mod_p)
{
uint32_t i;
const char *ptr, *start, **imp_f, *all_f[] = {"*", NULL};
const struct lys_module *mod;
assert(implement || mod_p);
for (i = 0; i < expr->used; ++i) {
if ((expr->tokens[i] != LYXP_TOKEN_NAMETEST) && (expr->tokens[i] != LYXP_TOKEN_LITERAL)) {
/* token cannot have a prefix */
continue;
}
start = expr->expr + expr->tok_pos[i];
if (!(ptr = ly_strnchr(start, ':', expr->tok_len[i]))) {
/* token without a prefix */
continue;
}
if (!(mod = ly_resolve_prefix(ctx, start, ptr - start, format, prefix_data))) {
/* unknown prefix, do not care right now */
continue;
}
/* unimplemented module found */
if (!mod->implemented && !implement) {
/* should not be implemented now */
*mod_p = mod;
break;
}
if (!mod->implemented) {
/* implement if not implemented */
imp_f = (ctx->flags & LY_CTX_ENABLE_IMP_FEATURES) ? all_f : NULL;
LY_CHECK_RET(lys_implement((struct lys_module *)mod, imp_f, unres));
}
if (!mod->compiled) {
/* compile if not implemented before or only marked for compilation */
LY_CHECK_RET(lys_compile((struct lys_module *)mod, &unres->ds_unres));
}
}
return LY_SUCCESS;
}
/**
* @brief Check when expressions of a node on a complete compiled schema tree.
*
* @param[in] ctx Compile context.
* @param[in] node Node to check.
* @param[in,out] unres Global unres structure.
* @return LY_ERECOMPILE
* @return LY_ERR value
*/
static LY_ERR
lys_compile_unres_when(struct lysc_ctx *ctx, const struct lysc_node *node, struct lys_glob_unres *unres)
{
struct lyxp_set tmp_set;
uint32_t i, opts;
LY_ARRAY_COUNT_TYPE u;
struct lysc_when **whens = NULL;
LY_ERR ret = LY_SUCCESS;
const struct lys_module *mod;
LOG_LOCSET(node, NULL, NULL, NULL);
memset(&tmp_set, 0, sizeof tmp_set);
opts = LYXP_SCNODE_SCHEMA | ((node->flags & LYS_IS_OUTPUT) ? LYXP_SCNODE_OUTPUT : 0);
whens = lysc_node_when(node);
LY_ARRAY_FOR(whens, u) {
/* first check whether all the referenced modules are implemented */
mod = NULL;
ret = lys_compile_expr_implement(ctx->ctx, whens[u]->cond, LY_VALUE_SCHEMA_RESOLVED, whens[u]->prefixes,
ctx->ctx->flags & LY_CTX_REF_IMPLEMENTED, unres, &mod);
if (ret) {
goto cleanup;
} else if (mod) {
LOGWRN(ctx->ctx, "When condition \"%s\" check skipped because referenced module \"%s\" is not implemented.",
whens[u]->cond->expr, mod->name);
continue;
}
/* check "when" */
ret = lyxp_atomize(ctx->ctx, whens[u]->cond, node->module, LY_VALUE_SCHEMA_RESOLVED, whens[u]->prefixes,
whens[u]->context, &tmp_set, opts);
if (ret) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Invalid when condition \"%s\".", whens[u]->cond->expr);
goto cleanup;
}
ctx->path[0] = '\0';
lysc_path(node, LYSC_PATH_LOG, ctx->path, LYSC_CTX_BUFSIZE);
for (i = 0; i < tmp_set.used; ++i) {
/* skip roots'n'stuff */
if ((tmp_set.val.scnodes[i].type == LYXP_NODE_ELEM) &&
(tmp_set.val.scnodes[i].in_ctx != LYXP_SET_SCNODE_START_USED)) {
struct lysc_node *schema = tmp_set.val.scnodes[i].scnode;
/* XPath expression cannot reference "lower" status than the node that has the definition */
ret = lysc_check_status(ctx, whens[u]->flags, node->module, node->name, schema->flags, schema->module,
schema->name);
LY_CHECK_GOTO(ret, cleanup);
/* check dummy node children/value accessing */
if (lysc_data_parent(schema) == node) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS, "When condition is accessing its own conditional node children.");
ret = LY_EVALID;
goto cleanup;
} else if ((schema == node) && (tmp_set.val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_VAL)) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS, "When condition is accessing its own conditional node value.");
ret = LY_EVALID;
goto cleanup;
}
}
}
/* check cyclic dependencies */
ret = lys_compile_unres_when_cyclic(&tmp_set, node);
LY_CHECK_GOTO(ret, cleanup);
lyxp_set_free_content(&tmp_set);
}
cleanup:
lyxp_set_free_content(&tmp_set);
LOG_LOCBACK(1, 0, 0, 0);
return ret;
}
/**
* @brief Check must expressions of a node on a complete compiled schema tree.
*
* @param[in] ctx Compile context.
* @param[in] node Node to check.
* @param[in] local_mods Sized array of local modules for musts of @p node at the same index.
* @param[in,out] unres Global unres structure.
* @return LY_ERECOMPILE
* @return LY_ERR value
*/
static LY_ERR
lys_compile_unres_must(struct lysc_ctx *ctx, const struct lysc_node *node, const struct lysp_module **local_mods,
struct lys_glob_unres *unres)
{
struct lyxp_set tmp_set;
uint32_t i, opts;
LY_ARRAY_COUNT_TYPE u;
struct lysc_must *musts = NULL;
LY_ERR ret = LY_SUCCESS;
const struct lys_module *mod;
uint16_t flg;
LOG_LOCSET(node, NULL, NULL, NULL);
memset(&tmp_set, 0, sizeof tmp_set);
opts = LYXP_SCNODE_SCHEMA | ((node->flags & LYS_IS_OUTPUT) ? LYXP_SCNODE_OUTPUT : 0);
musts = lysc_node_musts(node);
LY_ARRAY_FOR(musts, u) {
/* first check whether all the referenced modules are implemented */
mod = NULL;
ret = lys_compile_expr_implement(ctx->ctx, musts[u].cond, LY_VALUE_SCHEMA_RESOLVED, musts[u].prefixes,
ctx->ctx->flags & LY_CTX_REF_IMPLEMENTED, unres, &mod);
if (ret) {
goto cleanup;
} else if (mod) {
LOGWRN(ctx->ctx, "Must condition \"%s\" check skipped because referenced module \"%s\" is not implemented.",
musts[u].cond->expr, mod->name);
continue;
}
/* check "must" */
ret = lyxp_atomize(ctx->ctx, musts[u].cond, node->module, LY_VALUE_SCHEMA_RESOLVED, musts[u].prefixes, node,
&tmp_set, opts);
if (ret) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Invalid must restriction \"%s\".", musts[u].cond->expr);
goto cleanup;
}
ctx->path[0] = '\0';
lysc_path(node, LYSC_PATH_LOG, ctx->path, LYSC_CTX_BUFSIZE);
for (i = 0; i < tmp_set.used; ++i) {
/* skip roots'n'stuff */
if (tmp_set.val.scnodes[i].type == LYXP_NODE_ELEM) {
/* XPath expression cannot reference "lower" status than the node that has the definition */
if (local_mods[u]->mod == node->module) {
/* use flags of the context node since the definition is local */
flg = node->flags;
} else {
/* definition is foreign (deviation, refine), always current */
flg = LYS_STATUS_CURR;
}
ret = lysc_check_status(ctx, flg, local_mods[u]->mod, node->name, tmp_set.val.scnodes[i].scnode->flags,
tmp_set.val.scnodes[i].scnode->module, tmp_set.val.scnodes[i].scnode->name);
LY_CHECK_GOTO(ret, cleanup);
}
}
lyxp_set_free_content(&tmp_set);
}
cleanup:
lyxp_set_free_content(&tmp_set);
LOG_LOCBACK(1, 0, 0, 0);
return ret;
}
/**
* @brief Remove all disabled bits/enums from a sized array.
*
* @param[in] ctx Context with the dictionary.
* @param[in] items Sized array of bits/enums.
*/
static void
lys_compile_unres_disabled_bitenum_remove(struct ly_ctx *ctx, struct lysc_type_bitenum_item *items)
{
LY_ARRAY_COUNT_TYPE u = 0, last_u;
while (u < LY_ARRAY_COUNT(items)) {
if (items[u].flags & LYS_DISABLED) {
/* free the disabled item */
lysc_enum_item_free(ctx, &items[u]);
/* replace it with the following items */
last_u = LY_ARRAY_COUNT(items) - 1;
if (u < last_u) {
memmove(items + u, items + u + 1, (last_u - u) * sizeof *items);
}
/* one item less */
LY_ARRAY_DECREMENT(items);
continue;
}
++u;
}
}
/**
* @brief Find and remove all disabled bits/enums in a leaf/leaf-list type.
*
* @param[in] ctx Compile context.
* @param[in] leaf Leaf/leaf-list to check.
* @return LY_ERR value
*/
static LY_ERR
lys_compile_unres_disabled_bitenum(struct lysc_ctx *ctx, struct lysc_node_leaf *leaf)
{
struct lysc_type **t;
LY_ARRAY_COUNT_TYPE u, count;
struct lysc_type_enum *ent;
if (leaf->type->basetype == LY_TYPE_UNION) {
t = ((struct lysc_type_union *)leaf->type)->types;
count = LY_ARRAY_COUNT(t);
} else {
t = &leaf->type;
count = 1;
}
for (u = 0; u < count; ++u) {
if ((t[u]->basetype == LY_TYPE_BITS) || (t[u]->basetype == LY_TYPE_ENUM)) {
/* remove all disabled items */
ent = (struct lysc_type_enum *)(t[u]);
lys_compile_unres_disabled_bitenum_remove(ctx->ctx, ent->enums);
if (!LY_ARRAY_COUNT(ent->enums)) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS, "%s type of node \"%s\" without any (or all disabled) valid values.",
(ent->basetype == LY_TYPE_BITS) ? "Bits" : "Enumeration", leaf->name);
return LY_EVALID;
}
}
}
return LY_SUCCESS;
}
/**
* @brief Check leafref for its target existence on a complete compiled schema tree.
*
* @param[in] ctx Compile context.
* @param[in] node Context node for the leafref.
* @param[in] lref Leafref to check/resolve.
* @param[in] local_mod Local module for the leafref type.
* @param[in,out] unres Global unres structure.
* @return LY_ERECOMPILE if context recompilation is needed,
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_unres_leafref(struct lysc_ctx *ctx, const struct lysc_node *node, struct lysc_type_leafref *lref,
const struct lysp_module *local_mod, struct lys_glob_unres *unres)
{
const struct lysc_node *target = NULL;
struct ly_path *p;
struct lysc_type *type;
uint16_t flg;
assert(node->nodetype & (LYS_LEAF | LYS_LEAFLIST));
/* first implement all the modules in the path */
LY_CHECK_RET(lys_compile_expr_implement(ctx->ctx, lref->path, LY_VALUE_SCHEMA_RESOLVED, lref->prefixes, 1, unres, NULL));
/* try to find the target, current module is that of the context node (RFC 7950 6.4.1 second bullet) */
LY_CHECK_RET(ly_path_compile_leafref(ctx->ctx, node, NULL, lref->path,
(node->flags & LYS_IS_OUTPUT) ? LY_PATH_OPER_OUTPUT : LY_PATH_OPER_INPUT, LY_PATH_TARGET_MANY,
LY_VALUE_SCHEMA_RESOLVED, lref->prefixes, &p));
/* get the target node */
target = p[LY_ARRAY_COUNT(p) - 1].node;
ly_path_free(node->module->ctx, p);
if (!(target->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGVAL(ctx->ctx, LYVE_REFERENCE, "Invalid leafref path \"%s\" - target node is %s instead of leaf or leaf-list.",
lref->path->expr, lys_nodetype2str(target->nodetype));
return LY_EVALID;
}
/* check status */
ctx->path[0] = '\0';
lysc_path(node, LYSC_PATH_LOG, ctx->path, LYSC_CTX_BUFSIZE);
ctx->path_len = strlen(ctx->path);
if (node->module == local_mod->mod) {
/* use flags of the context node since the definition is local */
flg = node->flags;
} else {
/* definition is foreign (deviation), always current */
flg = LYS_STATUS_CURR;
}
if (lysc_check_status(ctx, flg, local_mod->mod, node->name, target->flags, target->module, target->name)) {
return LY_EVALID;
}
ctx->path_len = 1;
ctx->path[1] = '\0';
/* check config */
if (lref->require_instance) {
if ((node->flags & LYS_CONFIG_W) && (target->flags & LYS_CONFIG_R)) {
LOGVAL(ctx->ctx, LYVE_REFERENCE, "Invalid leafref path \"%s\" - target is supposed"
" to represent configuration data (as the leafref does), but it does not.", lref->path->expr);
return LY_EVALID;
}
}
/* check for circular chain of leafrefs */
for (type = ((struct lysc_node_leaf *)target)->type;
type && (type->basetype == LY_TYPE_LEAFREF);
type = ((struct lysc_type_leafref *)type)->realtype) {
if (type == (struct lysc_type *)lref) {
/* circular chain detected */
LOGVAL(ctx->ctx, LYVE_REFERENCE, "Invalid leafref path \"%s\" - circular chain of leafrefs detected.",
lref->path->expr);
return LY_EVALID;
}
}
/* store the type */
lref->realtype = ((struct lysc_node_leaf *)target)->type;
++lref->realtype->refcount;
return LY_SUCCESS;
}
/**
* @brief Compile default value(s) for leaf or leaf-list expecting a complete compiled schema tree.
*
* @param[in] ctx Compile context.
* @param[in] node Leaf or leaf-list to compile the default value(s) for.
* @param[in] type Type of the default value.
* @param[in] dflt Default value.
* @param[in] dflt_pmod Parsed module of the @p dflt to resolve possible prefixes.
* @param[in,out] storage Storage for the compiled default value.
* @param[in,out] unres Global unres structure for newly implemented modules.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_unres_dflt(struct lysc_ctx *ctx, struct lysc_node *node, struct lysc_type *type, const char *dflt,
const struct lysp_module *dflt_pmod, struct lyd_value *storage, struct lys_glob_unres *unres)
{
LY_ERR ret;
uint32_t options;
struct ly_err_item *err = NULL;
options = (ctx->ctx->flags & LY_CTX_REF_IMPLEMENTED) ? LYPLG_TYPE_STORE_IMPLEMENT : 0;
ret = type->plugin->store(ctx->ctx, type, dflt, strlen(dflt), options, LY_VALUE_SCHEMA, (void *)dflt_pmod,
LYD_HINT_SCHEMA, node, storage, unres, &err);
if (ret == LY_ERECOMPILE) {
/* fine, but we need to recompile */
return LY_ERECOMPILE;
} else if (ret == LY_EINCOMPLETE) {
/* we have no data so we will not be resolving it */
ret = LY_SUCCESS;
}
if (ret) {
LOG_LOCSET(node, NULL, NULL, NULL);
if (err) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Invalid default - value does not fit the type (%s).", err->msg);
ly_err_free(err);
} else {
LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Invalid default - value does not fit the type.");
}
LOG_LOCBACK(1, 0, 0, 0);
return ret;
}
LY_ATOMIC_INC_BARRIER(((struct lysc_type *)storage->realtype)->refcount);
return LY_SUCCESS;
}
/**
* @brief Compile default value of a leaf expecting a complete compiled schema tree.
*
* @param[in] ctx Compile context.
* @param[in] leaf Leaf that the default value is for.
* @param[in] dflt Default value to compile.
* @param[in,out] unres Global unres structure for newly implemented modules.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_unres_leaf_dlft(struct lysc_ctx *ctx, struct lysc_node_leaf *leaf, struct lysp_qname *dflt,
struct lys_glob_unres *unres)
{
LY_ERR ret;
assert(!leaf->dflt);
if (leaf->flags & (LYS_MAND_TRUE | LYS_KEY)) {
/* ignore default values for keys and mandatory leaves */
return LY_SUCCESS;
}
/* allocate the default value */
leaf->dflt = calloc(1, sizeof *leaf->dflt);
LY_CHECK_ERR_RET(!leaf->dflt, LOGMEM(ctx->ctx), LY_EMEM);
/* store the default value */
ret = lys_compile_unres_dflt(ctx, &leaf->node, leaf->type, dflt->str, dflt->mod, leaf->dflt, unres);
if (ret) {
free(leaf->dflt);
leaf->dflt = NULL;
}
return ret;
}
/**
* @brief Compile default values of a leaf-list expecting a complete compiled schema tree.
*
* @param[in] ctx Compile context.
* @param[in] llist Leaf-list that the default value(s) are for.
* @param[in] dflt Default value to compile, in case of a single value.
* @param[in] dflts Sized array of default values, in case of more values.
* @param[in,out] unres Global unres structure for newly implemented modules.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_unres_llist_dflts(struct lysc_ctx *ctx, struct lysc_node_leaflist *llist, struct lysp_qname *dflt,
struct lysp_qname *dflts, struct lys_glob_unres *unres)
{
LY_ERR ret;
LY_ARRAY_COUNT_TYPE orig_count, u, v;
assert(dflt || dflts);
/* in case there were already some defaults and we are adding new by deviations */
orig_count = LY_ARRAY_COUNT(llist->dflts);
/* allocate new items */
LY_ARRAY_CREATE_RET(ctx->ctx, llist->dflts, orig_count + (dflts ? LY_ARRAY_COUNT(dflts) : 1), LY_EMEM);
/* fill each new default value */
if (dflts) {
LY_ARRAY_FOR(dflts, u) {
llist->dflts[orig_count + u] = calloc(1, sizeof **llist->dflts);
ret = lys_compile_unres_dflt(ctx, &llist->node, llist->type, dflts[u].str, dflts[u].mod,
llist->dflts[orig_count + u], unres);
LY_CHECK_ERR_RET(ret, free(llist->dflts[orig_count + u]), ret);
LY_ARRAY_INCREMENT(llist->dflts);
}
} else {
llist->dflts[orig_count] = calloc(1, sizeof **llist->dflts);
ret = lys_compile_unres_dflt(ctx, &llist->node, llist->type, dflt->str, dflt->mod,
llist->dflts[orig_count], unres);
LY_CHECK_ERR_RET(ret, free(llist->dflts[orig_count]), ret);
LY_ARRAY_INCREMENT(llist->dflts);
}
/* check default value uniqueness */
if (llist->flags & LYS_CONFIG_W) {
/* configuration data values must be unique - so check the default values */
for (u = orig_count; u < LY_ARRAY_COUNT(llist->dflts); ++u) {
for (v = 0; v < u; ++v) {
if (!llist->dflts[u]->realtype->plugin->compare(llist->dflts[u], llist->dflts[v])) {
lysc_update_path(ctx, llist->parent ? llist->parent->module : NULL, llist->name);
LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Configuration leaf-list has multiple defaults of the same value \"%s\".",
llist->dflts[u]->realtype->plugin->print(ctx->ctx, llist->dflts[u], LY_VALUE_CANON, NULL, NULL, NULL));
lysc_update_path(ctx, NULL, NULL);
return LY_EVALID;
}
}
}
}
return LY_SUCCESS;
}
/**
* @brief Iteratively get all leafrefs from @p node
* if the node is of type union, otherwise just return the leafref.
*
* @param[in] node Node that may contain the leafref.
* @param[in,out] index Value that is passed between function calls.
* For each new node, initialize value of the @p index to 0, otherwise
* do not modify the value between calls.
* @return Pointer to the leafref or next leafref, otherwise NULL.
*/
static struct lysc_type_leafref *
lys_type_leafref_next(const struct lysc_node *node, uint64_t *index)
{
struct lysc_type_leafref *ret = NULL;
struct lysc_type_union *uni;
struct lysc_type *leaf_type;
assert(node->nodetype & LYD_NODE_TERM);
leaf_type = ((struct lysc_node_leaf *)node)->type;
if (leaf_type->basetype == LY_TYPE_UNION) {
uni = (struct lysc_type_union *)leaf_type;
/* find next union leafref */
while (*index < LY_ARRAY_COUNT(uni->types)) {
if (uni->types[*index]->basetype == LY_TYPE_LEAFREF) {
ret = (struct lysc_type_leafref *)uni->types[*index];
++(*index);
break;
}
++(*index);
}
} else {
/* return just the single leafref */
if (*index == 0) {
++(*index);
assert(leaf_type->basetype == LY_TYPE_LEAFREF);
ret = (struct lysc_type_leafref *)leaf_type;
}
}
return ret;
}
/**
* @brief Finish dependency set compilation by resolving all the unres sets.
*
* @param[in] ctx libyang context.
* @param[in] unres Global unres structure with the sets to resolve.
* @return LY_SUCCESS on success.
* @return LY_ERECOMPILE if the dep set needs to be recompiled.
* @return LY_ERR value on error.
*/
static LY_ERR
lys_compile_unres_depset(struct ly_ctx *ctx, struct lys_glob_unres *unres)
{
LY_ERR ret = LY_SUCCESS;
struct lysc_node *node;
struct lysc_type *typeiter;
struct lysc_type_leafref *lref;
struct lysc_ctx cctx;
struct lys_depset_unres *ds_unres;
struct ly_path *path;
LY_ARRAY_COUNT_TYPE v;
struct lysc_unres_leafref *l;
uint32_t i, processed_leafrefs = 0;
ds_unres = &unres->ds_unres;
/* fake compile context */
resolve_all:
memset(&cctx, 0, sizeof cctx);
cctx.ctx = ctx;
cctx.path_len = 1;
cctx.path[0] = '/';
/* for leafref, we need 2 rounds - first detects circular chain by storing the first referred type (which
* can be also leafref, in case it is already resolved, go through the chain and check that it does not
* point to the starting leafref type). The second round stores the first non-leafref type for later data validation.
* Also do the same check for set of the disabled leafrefs, but without the second round. */
while (ds_unres->disabled_leafrefs.count) {
/* remember index, it can change before we get to free this item */
i = ds_unres->disabled_leafrefs.count - 1;
l = ds_unres->disabled_leafrefs.objs[i];
cctx.cur_mod = l->node->module;
cctx.pmod = l->node->module->parsed;
LOG_LOCSET(l->node, NULL, NULL, NULL);
v = 0;
while ((ret == LY_SUCCESS) && (lref = lys_type_leafref_next(l->node, &v))) {
ret = lys_compile_unres_leafref(&cctx, l->node, lref, l->local_mod, unres);
}
LOG_LOCBACK(1, 0, 0, 0);
LY_CHECK_RET(ret);
ly_set_rm_index(&ds_unres->disabled_leafrefs, i, free);
}
for (i = processed_leafrefs; i < ds_unres->leafrefs.count; ++i) {
l = ds_unres->leafrefs.objs[i];
cctx.cur_mod = l->node->module;
cctx.pmod = l->node->module->parsed;
LOG_LOCSET(l->node, NULL, NULL, NULL);
v = 0;
while ((ret == LY_SUCCESS) && (lref = lys_type_leafref_next(l->node, &v))) {
ret = lys_compile_unres_leafref(&cctx, l->node, lref, l->local_mod, unres);
}
LOG_LOCBACK(1, 0, 0, 0);
LY_CHECK_RET(ret);
}
for (i = processed_leafrefs; i < ds_unres->leafrefs.count; ++i) {
l = ds_unres->leafrefs.objs[i];
/* store pointer to the real type */
v = 0;
while ((lref = lys_type_leafref_next(l->node, &v))) {
for (typeiter = lref->realtype;
typeiter->basetype == LY_TYPE_LEAFREF;
typeiter = ((struct lysc_type_leafref *)typeiter)->realtype) {}
lysc_type_free(ctx, lref->realtype);
lref->realtype = typeiter;
++lref->realtype->refcount;
}
/* If 'goto' will be used on the 'resolve_all' label, then
* the current leafref will not be processed again.
*/
processed_leafrefs++;
}
/* check when */
while (ds_unres->whens.count) {
i = ds_unres->whens.count - 1;
node = ds_unres->whens.objs[i];
cctx.cur_mod = node->module;
cctx.pmod = node->module->parsed;
LOG_LOCSET(node, NULL, NULL, NULL);
ret = lys_compile_unres_when(&cctx, node, unres);
LOG_LOCBACK(1, 0, 0, 0);
LY_CHECK_RET(ret);
ly_set_rm_index(&ds_unres->whens, i, NULL);
}
/* check must */
while (ds_unres->musts.count) {
i = ds_unres->musts.count - 1;
struct lysc_unres_must *m = ds_unres->musts.objs[i];
cctx.cur_mod = m->node->module;
cctx.pmod = m->node->module->parsed;
LOG_LOCSET(m->node, NULL, NULL, NULL);
ret = lys_compile_unres_must(&cctx, m->node, m->local_mods, unres);
LOG_LOCBACK(1, 0, 0, 0);
LY_CHECK_RET(ret);
lysc_unres_must_free(m);
ly_set_rm_index(&ds_unres->musts, i, NULL);
}
/* remove disabled enums/bits */
while (ds_unres->disabled_bitenums.count) {
i = ds_unres->disabled_bitenums.count - 1;
node = ds_unres->disabled_bitenums.objs[i];
cctx.cur_mod = node->module;
cctx.pmod = node->module->parsed;
LOG_LOCSET(node, NULL, NULL, NULL);
ret = lys_compile_unres_disabled_bitenum(&cctx, (struct lysc_node_leaf *)node);
LOG_LOCBACK(1, 0, 0, 0);
LY_CHECK_RET(ret);
ly_set_rm_index(&ds_unres->disabled_bitenums, i, NULL);
}
/* finish incomplete default values compilation */
while (ds_unres->dflts.count) {
i = ds_unres->dflts.count - 1;
struct lysc_unres_dflt *r = ds_unres->dflts.objs[i];
cctx.cur_mod = r->leaf->module;
cctx.pmod = r->leaf->module->parsed;
LOG_LOCSET(&r->leaf->node, NULL, NULL, NULL);
if (r->leaf->nodetype == LYS_LEAF) {
ret = lys_compile_unres_leaf_dlft(&cctx, r->leaf, r->dflt, unres);
} else {
ret = lys_compile_unres_llist_dflts(&cctx, r->llist, r->dflt, r->dflts, unres);
}
LOG_LOCBACK(1, 0, 0, 0);
LY_CHECK_RET(ret);
lysc_unres_dflt_free(ctx, r);
ly_set_rm_index(&ds_unres->dflts, i, NULL);
}
/* some unres items may have been added */
if ((processed_leafrefs != ds_unres->leafrefs.count) || ds_unres->disabled_leafrefs.count ||
ds_unres->whens.count || ds_unres->musts.count || ds_unres->dflts.count) {
goto resolve_all;
}
/* finally, remove all disabled nodes */
for (i = 0; i < ds_unres->disabled.count; ++i) {
node = ds_unres->disabled.snodes[i];
if (node->flags & LYS_KEY) {
LOG_LOCSET(node, NULL, NULL, NULL);
LOGVAL(ctx, LYVE_REFERENCE, "Key \"%s\" is disabled.", node->name);
LOG_LOCBACK(1, 0, 0, 0);
return LY_EVALID;
}
lysc_node_free(ctx, node, 1);
}
/* also check if the leafref target has not been disabled */
for (i = 0; i < ds_unres->leafrefs.count; ++i) {
l = ds_unres->leafrefs.objs[i];
cctx.cur_mod = l->node->module;
cctx.pmod = l->node->module->parsed;
v = 0;
while ((lref = lys_type_leafref_next(l->node, &v))) {
if (!lref->require_instance) {
/* the target may be disabled without consequences */
continue;
}
ret = ly_path_compile_leafref(cctx.ctx, l->node, NULL, lref->path,
(l->node->flags & LYS_IS_OUTPUT) ? LY_PATH_OPER_OUTPUT : LY_PATH_OPER_INPUT, LY_PATH_TARGET_MANY,
LY_VALUE_SCHEMA_RESOLVED, lref->prefixes, &path);
ly_path_free(l->node->module->ctx, path);
assert(ret != LY_ERECOMPILE);
if (ret) {
LOG_LOCSET(l->node, NULL, NULL, NULL);
LOGVAL(ctx, LYVE_REFERENCE, "Target of leafref \"%s\" cannot be referenced because it is disabled.",
l->node->name);
LOG_LOCBACK(1, 0, 0, 0);
return LY_EVALID;
}
}
}
return LY_SUCCESS;
}
/**
* @brief Erase dep set unres.
*
* @param[in] ctx libyang context.
* @param[in] unres Global unres structure with the sets to resolve.
*/
static void
lys_compile_unres_depset_erase(const struct ly_ctx *ctx, struct lys_glob_unres *unres)
{
uint32_t i;
ly_set_erase(&unres->ds_unres.whens, NULL);
for (i = 0; i < unres->ds_unres.musts.count; ++i) {
lysc_unres_must_free(unres->ds_unres.musts.objs[i]);
}
ly_set_erase(&unres->ds_unres.musts, NULL);
ly_set_erase(&unres->ds_unres.leafrefs, free);
for (i = 0; i < unres->ds_unres.dflts.count; ++i) {
lysc_unres_dflt_free(ctx, unres->ds_unres.dflts.objs[i]);
}
ly_set_erase(&unres->ds_unres.dflts, NULL);
ly_set_erase(&unres->ds_unres.disabled, NULL);
ly_set_erase(&unres->ds_unres.disabled_leafrefs, free);
ly_set_erase(&unres->ds_unres.disabled_bitenums, NULL);
}
/**
* @brief Compile all flagged modules in a dependency set, recursively if recompilation is needed.
*
* @param[in] ctx libyang context.
* @param[in] dep_set Dependency set to compile.
* @param[in,out] unres Global unres to use.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_depset_r(struct ly_ctx *ctx, struct ly_set *dep_set, struct lys_glob_unres *unres)
{
LY_ERR ret = LY_SUCCESS;
struct lys_module *mod;
uint32_t i;
for (i = 0; i < dep_set->count; ++i) {
mod = dep_set->objs[i];
if (!mod->to_compile) {
/* skip */
continue;
}
assert(mod->implemented);
/* free the compiled module, if any */
lysc_module_free(mod->compiled);
mod->compiled = NULL;
/* (re)compile the module */
LY_CHECK_GOTO(ret = lys_compile(mod, &unres->ds_unres), cleanup);
}
/* resolve dep set unres */
ret = lys_compile_unres_depset(ctx, unres);
if (ret == LY_ERECOMPILE) {
/* new module is implemented, discard current dep set unres and recompile the whole dep set */
lys_compile_unres_depset_erase(ctx, unres);
return lys_compile_depset_r(ctx, dep_set, unres);
} else if (ret) {
/* error */
goto cleanup;
}
/* success, unset the flags of all the modules in the dep set */
for (i = 0; i < dep_set->count; ++i) {
mod = dep_set->objs[i];
mod->to_compile = 0;
}
cleanup:
lys_compile_unres_depset_erase(ctx, unres);
return ret;
}
/**
* @brief Check if-feature of all features of all modules in a dep set.
*
* @param[in] dep_set Dep set to check.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_depset_check_features(struct ly_set *dep_set)
{
struct lys_module *mod;
uint32_t i;
for (i = 0; i < dep_set->count; ++i) {
mod = dep_set->objs[i];
if (!mod->to_compile) {
/* skip */
continue;
}
/* check features of this module */
LY_CHECK_RET(lys_check_features(mod->parsed));
}
return LY_SUCCESS;
}
LY_ERR
lys_compile_depset_all(struct ly_ctx *ctx, struct lys_glob_unres *unres)
{
uint32_t i;
for (i = 0; i < unres->dep_sets.count; ++i) {
LY_CHECK_RET(lys_compile_depset_check_features(unres->dep_sets.objs[i]));
LY_CHECK_RET(lys_compile_depset_r(ctx, unres->dep_sets.objs[i], unres));
}
return LY_SUCCESS;
}
/**
* @brief Finish compilation of all the module unres sets in a compile context.
*
* @param[in] ctx Compile context with unres sets.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_unres_mod(struct lysc_ctx *ctx)
{
struct lysc_augment *aug;
struct lysc_deviation *dev;
struct lys_module *orig_mod = ctx->cur_mod;
uint32_t i;
/* check that all augments were applied */
for (i = 0; i < ctx->augs.count; ++i) {
aug = ctx->augs.objs[i];
ctx->cur_mod = aug->aug_pmod->mod;
lysc_update_path(ctx, NULL, "{augment}");
lysc_update_path(ctx, NULL, aug->nodeid->expr);
LOGVAL(ctx->ctx, LYVE_REFERENCE, "Augment target node \"%s\" from module \"%s\" was not found.",
aug->nodeid->expr, LYSP_MODULE_NAME(aug->aug_pmod));
ctx->cur_mod = orig_mod;
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
}
if (ctx->augs.count) {
return LY_ENOTFOUND;
}
/* check that all deviations were applied */
for (i = 0; i < ctx->devs.count; ++i) {
dev = ctx->devs.objs[i];
lysc_update_path(ctx, NULL, "{deviation}");
lysc_update_path(ctx, NULL, dev->nodeid->expr);
LOGVAL(ctx->ctx, LYVE_REFERENCE, "Deviation(s) target node \"%s\" from module \"%s\" was not found.",
dev->nodeid->expr, LYSP_MODULE_NAME(dev->dev_pmods[0]));
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
}
if (ctx->devs.count) {
return LY_ENOTFOUND;
}
return LY_SUCCESS;
}
/**
* @brief Erase all the module unres sets in a compile context.
*
* @param[in] ctx Compile context with unres sets.
* @param[in] error Whether the compilation finished with an error or not.
*/
static void
lys_compile_unres_mod_erase(struct lysc_ctx *ctx, ly_bool error)
{
uint32_t i;
ly_set_erase(&ctx->groupings, NULL);
ly_set_erase(&ctx->tpdf_chain, NULL);
if (!error) {
/* there can be no leftover deviations or augments */
LY_CHECK_ERR_RET(ctx->augs.count, LOGINT(ctx->ctx), );
LY_CHECK_ERR_RET(ctx->devs.count, LOGINT(ctx->ctx), );
ly_set_erase(&ctx->augs, NULL);
ly_set_erase(&ctx->devs, NULL);
ly_set_erase(&ctx->uses_augs, NULL);
ly_set_erase(&ctx->uses_rfns, NULL);
} else {
for (i = 0; i < ctx->augs.count; ++i) {
lysc_augment_free(ctx->ctx, ctx->augs.objs[i]);
}
ly_set_erase(&ctx->augs, NULL);
for (i = 0; i < ctx->devs.count; ++i) {
lysc_deviation_free(ctx->ctx, ctx->devs.objs[i]);
}
ly_set_erase(&ctx->devs, NULL);
for (i = 0; i < ctx->uses_augs.count; ++i) {
lysc_augment_free(ctx->ctx, ctx->uses_augs.objs[i]);
}
ly_set_erase(&ctx->uses_augs, NULL);
for (i = 0; i < ctx->uses_rfns.count; ++i) {
lysc_refine_free(ctx->ctx, ctx->uses_rfns.objs[i]);
}
ly_set_erase(&ctx->uses_rfns, NULL);
}
}
LY_ERR
lys_compile(struct lys_module *mod, struct lys_depset_unres *unres)
{
struct lysc_ctx ctx = {0};
struct lysc_module *mod_c = NULL;
struct lysp_module *sp;
struct lysp_submodule *submod;
struct lysp_node *pnode;
struct lysp_node_grp *grp;
LY_ARRAY_COUNT_TYPE u;
LY_ERR ret = LY_SUCCESS;
LY_CHECK_ARG_RET(NULL, mod, mod->parsed, !mod->compiled, mod->ctx, LY_EINVAL);
assert(mod->implemented && mod->to_compile);
sp = mod->parsed;
ctx.ctx = mod->ctx;
ctx.cur_mod = mod;
ctx.pmod = sp;
ctx.path_len = 1;
ctx.path[0] = '/';
ctx.unres = unres;
++mod->ctx->change_count;
mod->compiled = mod_c = calloc(1, sizeof *mod_c);
LY_CHECK_ERR_RET(!mod_c, LOGMEM(mod->ctx), LY_EMEM);
mod_c->mod = mod;
/* compile augments and deviations of our module from other modules so they can be applied during compilation */
LY_CHECK_GOTO(ret = lys_precompile_own_augments(&ctx), cleanup);
LY_CHECK_GOTO(ret = lys_precompile_own_deviations(&ctx), cleanup);
/* data nodes */
LY_LIST_FOR(sp->data, pnode) {
LY_CHECK_GOTO(ret = lys_compile_node(&ctx, pnode, NULL, 0, NULL), cleanup);
}
/* top-level RPCs */
LY_LIST_FOR((struct lysp_node *)sp->rpcs, pnode) {
LY_CHECK_GOTO(ret = lys_compile_node(&ctx, pnode, NULL, 0, NULL), cleanup);
}
/* top-level notifications */
LY_LIST_FOR((struct lysp_node *)sp->notifs, pnode) {
LY_CHECK_GOTO(ret = lys_compile_node(&ctx, pnode, NULL, 0, NULL), cleanup);
}
/* extension instances */
COMPILE_EXTS_GOTO(&ctx, sp->exts, mod_c->exts, mod_c, ret, cleanup);
/* the same for submodules */
LY_ARRAY_FOR(sp->includes, u) {
submod = sp->includes[u].submodule;
ctx.pmod = (struct lysp_module *)submod;
LY_LIST_FOR(submod->data, pnode) {
ret = lys_compile_node(&ctx, pnode, NULL, 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
LY_LIST_FOR((struct lysp_node *)submod->rpcs, pnode) {
ret = lys_compile_node(&ctx, pnode, NULL, 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
LY_LIST_FOR((struct lysp_node *)submod->notifs, pnode) {
ret = lys_compile_node(&ctx, pnode, NULL, 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
COMPILE_EXTS_GOTO(&ctx, submod->exts, mod_c->exts, mod_c, ret, cleanup);
}
ctx.pmod = sp;
/* validate non-instantiated groupings from the parsed schema,
* without it we would accept even the schemas with invalid grouping specification */
ctx.compile_opts |= LYS_COMPILE_GROUPING;
LY_LIST_FOR(sp->groupings, grp) {
if (!(grp->flags & LYS_USED_GRP)) {
LY_CHECK_GOTO(ret = lys_compile_grouping(&ctx, NULL, grp), cleanup);
}
}
LY_LIST_FOR(sp->data, pnode) {
LY_LIST_FOR((struct lysp_node_grp *)lysp_node_groupings(pnode), grp) {
if (!(grp->flags & LYS_USED_GRP)) {
LY_CHECK_GOTO(ret = lys_compile_grouping(&ctx, pnode, grp), cleanup);
}
}
}
LY_ARRAY_FOR(sp->includes, u) {
submod = sp->includes[u].submodule;
ctx.pmod = (struct lysp_module *)submod;
LY_LIST_FOR(submod->groupings, grp) {
if (!(grp->flags & LYS_USED_GRP)) {
LY_CHECK_GOTO(ret = lys_compile_grouping(&ctx, NULL, grp), cleanup);
}
}
LY_LIST_FOR(submod->data, pnode) {
LY_LIST_FOR((struct lysp_node_grp *)lysp_node_groupings(pnode), grp) {
if (!(grp->flags & LYS_USED_GRP)) {
LY_CHECK_GOTO(ret = lys_compile_grouping(&ctx, pnode, grp), cleanup);
}
}
}
}
ctx.pmod = sp;
LOG_LOCBACK(0, 0, 1, 0);
/* finish compilation for all unresolved module items in the context */
LY_CHECK_GOTO(ret = lys_compile_unres_mod(&ctx), cleanup);
cleanup:
LOG_LOCBACK(0, 0, 1, 0);
lys_compile_unres_mod_erase(&ctx, ret);
if (ret) {
lysc_module_free(mod_c);
mod->compiled = NULL;
}
return ret;
}
LY_ERR
lys_compile_identities(struct lys_module *mod)
{
struct lysc_ctx ctx = {0};
struct lysp_submodule *submod;
LY_ARRAY_COUNT_TYPE u;
/* pre-compile identities of the module and any submodules */
LY_CHECK_RET(lys_identity_precompile(NULL, mod->ctx, mod->parsed, mod->parsed->identities, &mod->identities));
LY_ARRAY_FOR(mod->parsed->includes, u) {
submod = mod->parsed->includes[u].submodule;
LY_CHECK_RET(lys_identity_precompile(NULL, mod->ctx, (struct lysp_module *)submod, submod->identities, &mod->identities));
}
/* prepare context */
ctx.ctx = mod->ctx;
ctx.cur_mod = mod;
ctx.pmod = mod->parsed;
ctx.path_len = 1;
ctx.path[0] = '/';
if (mod->parsed->identities) {
LY_CHECK_RET(lys_compile_identities_derived(&ctx, mod->parsed->identities, &mod->identities));
}
lysc_update_path(&ctx, NULL, "{submodule}");
LY_ARRAY_FOR(mod->parsed->includes, u) {
submod = mod->parsed->includes[u].submodule;
if (submod->identities) {
ctx.pmod = (struct lysp_module *)submod;
lysc_update_path(&ctx, NULL, submod->name);
LY_CHECK_RET(lys_compile_identities_derived(&ctx, submod->identities, &mod->identities));
lysc_update_path(&ctx, NULL, NULL);
}
}
lysc_update_path(&ctx, NULL, NULL);
return LY_SUCCESS;
}
/**
* @brief Check whether a module does not have any (recursive) compiled import.
*
* @param[in] mod Module to examine.
* @return LY_SUCCESS on success.
* @return LY_ERECOMPILE on required recompilation of the dep set.
* @return LY_ERR on error.
*/
static LY_ERR
lys_has_compiled_import_r(struct lys_module *mod)
{
LY_ARRAY_COUNT_TYPE u;
struct lys_module *m;
LY_ARRAY_FOR(mod->parsed->imports, u) {
m = mod->parsed->imports[u].module;
if (!m->implemented) {
continue;
}
if (!m->to_compile) {
/* module was not/will not be compiled in this compilation (so disabled nodes are not present) */
m->to_compile = 1;
return LY_ERECOMPILE;
}
/* recursive */
LY_CHECK_RET(lys_has_compiled_import_r(m));
}
return LY_SUCCESS;
}
LY_ERR
lys_implement(struct lys_module *mod, const char **features, struct lys_glob_unres *unres)
{
LY_ERR ret;
struct lys_module *m;
assert(!mod->implemented);
/* check collision with other implemented revision */
m = ly_ctx_get_module_implemented(mod->ctx, mod->name);
if (m) {
assert(m != mod);
if (!strcmp(mod->name, "yang") && (strcmp(m->revision, mod->revision) > 0)) {
/* special case for newer internal module, continue */
LOGVRB("Internal module \"%s@%s\" is already implemented in revision \"%s\", using it instead.",
mod->name, mod->revision ? mod->revision : "<none>", m->revision ? m->revision : "<none>");
} else {
LOGERR(mod->ctx, LY_EDENIED, "Module \"%s@%s\" is already implemented in revision \"%s\".",
mod->name, mod->revision ? mod->revision : "<none>", m->revision ? m->revision : "<none>");
return LY_EDENIED;
}
}
/* set features */
ret = lys_set_features(mod->parsed, features);
if (ret && (ret != LY_EEXIST)) {
return ret;
}
/*
* mark the module implemented, which means
* 1) to (re)compile it only ::lys_compile() call is needed
* 2) its compilation will never cause new modules to be implemented (::lys_compile() does not return ::LY_ERECOMPILE)
* but there can be some unres items added that do
*/
mod->implemented = 1;
/* this module is compiled in this compilation */
mod->to_compile = 1;
/* add the module into newly implemented module set */
LY_CHECK_RET(ly_set_add(&unres->implementing, mod, 1, NULL));
/* mark target modules with our augments and deviations */
LY_CHECK_RET(lys_precompile_augments_deviations(mod, unres));
/* check whether this module may reference any modules compiled previously */
LY_CHECK_RET(lys_has_compiled_import_r(mod));
return LY_SUCCESS;
}