| /** |
| * @file validation.c |
| * @author Michal Vasko <mvasko@cesnet.cz> |
| * @brief Validation |
| * |
| * Copyright (c) 2019 CESNET, z.s.p.o. |
| * |
| * This source code is licensed under BSD 3-Clause License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * https://opensource.org/licenses/BSD-3-Clause |
| */ |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| #include "common.h" |
| #include "xpath.h" |
| #include "tree_data_internal.h" |
| #include "tree_schema_internal.h" |
| |
| /** |
| * @brief Evaluate a single "when" condition. |
| * |
| * @param[in] when When to evaluate. |
| * @param[in] node Node whose existence depends on this when. |
| * @param[in] trees Array of all data trees. |
| * @return LY_ERR value (LY_EINCOMPLETE if a referenced node does not have its when evaluated) |
| */ |
| static LY_ERR |
| lyd_val_when(struct lysc_when *when, struct lyd_node *node, const struct lyd_node **trees) |
| { |
| LY_ERR ret; |
| const struct lyd_node *ctx_node; |
| struct lyxp_set xp_set; |
| |
| memset(&xp_set, 0, sizeof xp_set); |
| |
| if (when->context == node->schema) { |
| ctx_node = node; |
| } else { |
| assert((!when->context && !node->parent) || (when->context == node->parent->schema)); |
| ctx_node = (struct lyd_node *)node->parent; |
| } |
| |
| /* evaluate when */ |
| ret = lyxp_eval(when->cond, LYD_UNKNOWN, when->module, ctx_node, ctx_node ? LYXP_NODE_ELEM : LYXP_NODE_ROOT_CONFIG, |
| trees, &xp_set, LYXP_SCHEMA); |
| lyxp_set_cast(&xp_set, LYXP_SET_BOOLEAN); |
| |
| /* return error or LY_EINCOMPLETE for dependant unresolved when */ |
| LY_CHECK_RET(ret); |
| |
| /* take action based on the result */ |
| if (!xp_set.val.bool) { |
| if (node->flags & LYD_WHEN_TRUE) { |
| /* autodelete */ |
| lyd_free_tree(node); |
| } else { |
| /* invalid data */ |
| LOGVAL(node->schema->module->ctx, LY_VLOG_LYD, node, LY_VCODE_NOWHEN, when->cond->expr); |
| ret = LY_EVALID; |
| } |
| } else { |
| /* remember that when evaluated to true */ |
| node->flags |= LYD_WHEN_TRUE; |
| } |
| |
| return ret; |
| } |
| |
| LY_ERR |
| lyd_validate_unres(struct ly_set *node_types, struct ly_set *attr_types, struct ly_set *node_when, LYD_FORMAT format, |
| ly_clb_resolve_prefix get_prefix_clb, void *parser_data, const struct lyd_node **trees) |
| { |
| LY_ERR ret = LY_SUCCESS; |
| uint32_t u; |
| |
| /* finish incompletely validated terminal values */ |
| for (u = 0; node_types && (u < node_types->count); u++) { |
| struct lyd_node_term *node = (struct lyd_node_term *)node_types->objs[u]; |
| |
| /* validate and store the value of the node */ |
| ret = lyd_value_parse(node, node->value.original, strlen(node->value.original), 0, 1, get_prefix_clb, |
| parser_data, format, trees); |
| LY_CHECK_RET(ret); |
| } |
| |
| /* ... and attribute values */ |
| for (u = 0; attr_types && (u < attr_types->count); u++) { |
| struct lyd_attr *attr = (struct lyd_attr *)attr_types->objs[u]; |
| |
| /* validate and store the value of the node */ |
| ret = lyd_value_parse_attr(attr, attr->value.original, strlen(attr->value.original), 0, 1, get_prefix_clb, |
| parser_data, format, trees); |
| LY_CHECK_RET(ret); |
| } |
| |
| /* no when conditions */ |
| if (!node_when || !node_when->count) { |
| return ret; |
| } |
| |
| /* evaluate all when conditions */ |
| uint32_t prev_count; |
| do { |
| prev_count = node_when->count; |
| u = 0; |
| while (u < node_when->count) { |
| /* evaluate all when expressions that affect this node's existence */ |
| struct lyd_node *node = (struct lyd_node *)node_when->objs[u]; |
| const struct lysc_node *schema = node->schema; |
| int unres_when = 0; |
| |
| do { |
| uint32_t i; |
| LY_ARRAY_FOR(schema->when, i) { |
| ret = lyd_val_when(schema->when[i], node, trees); |
| if (ret) { |
| break; |
| } |
| } |
| if (ret == LY_EINCOMPLETE) { |
| /* could not evaluate this when */ |
| unres_when = 1; |
| break; |
| } else if (ret) { |
| /* error */ |
| return ret; |
| } |
| schema = schema->parent; |
| } while (schema && (schema->nodetype & (LYS_CASE | LYS_CHOICE))); |
| |
| if (unres_when) { |
| /* keep in set and go to the next node */ |
| ++u; |
| } else { |
| /* remove this node from the set */ |
| ly_set_rm_index(node_when, u, NULL); |
| } |
| } |
| |
| /* there must have been some when conditions resolved */ |
| } while (prev_count > node_when->count); |
| |
| /* there could have been no cyclic when dependencies, checked during compilation */ |
| assert(!node_when->count); |
| |
| return ret; |
| } |
| |
| static const struct lys_module * |
| lyd_val_next_module(const struct lys_module **modules, int mod_count, struct ly_ctx *ctx, uint32_t *i) |
| { |
| if (modules && mod_count) { |
| return modules[(*i)++]; |
| } |
| |
| return ly_ctx_get_module_iter(ctx, i); |
| } |
| |
| static LY_ERR |
| lyd_validate_mandatory(const struct lysc_node *snode, struct lyd_node *sibling) |
| { |
| struct lyd_node *node; |
| int is_choice = 0; |
| |
| if (snode->nodetype == LYS_CHOICE) { |
| is_choice = 1; |
| } |
| |
| LY_LIST_FOR(sibling, node) { |
| if (is_choice) { |
| if (node->schema->parent && (node->schema->parent->nodetype & LYS_CASE) && (node->schema->parent->parent == snode)) { |
| /* case data instance found */ |
| return LY_SUCCESS; |
| } |
| } else { |
| if (node->schema == snode) { |
| /* data instance found */ |
| return LY_SUCCESS; |
| } |
| } |
| } |
| |
| /* node instance not found */ |
| LOGVAL(snode->module->ctx, LY_VLOG_LYSC, snode, LY_VCODE_NOMAND, snode->name); |
| return LY_EVALID; |
| } |
| |
| static LY_ERR |
| lyd_validate_minmax(const struct lysc_node *snode, uint32_t min, uint32_t max, struct lyd_node *sibling) |
| { |
| uint32_t count = 0; |
| struct lyd_node *iter; |
| |
| LY_LIST_FOR(sibling, iter) { |
| if (iter->schema == snode) { |
| ++count; |
| } |
| } |
| |
| if (min && (count < min)) { |
| LOGVAL(snode->module->ctx, LY_VLOG_LYSC, snode, LY_VCODE_NOMIN, snode->name); |
| return LY_EVALID; |
| } else if (max && (count > max)) { |
| LOGVAL(snode->module->ctx, LY_VLOG_LYSC, snode, LY_VCODE_NOMAX, snode->name); |
| return LY_EVALID; |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| static struct lyd_node * |
| lyd_val_uniq_find_leaf(const struct lysc_node_leaf *uniq_leaf, struct lyd_node *list) |
| { |
| struct ly_set *set; |
| struct lyd_node *node = NULL; |
| |
| set = lyd_find_instance(lyd_node_children(list), (struct lysc_node *)uniq_leaf); |
| if (set && set->count) { |
| /* we were looking for a leaf */ |
| assert(set->count == 1); |
| node = set->objs[0]; |
| } |
| ly_set_free(set, NULL); |
| return node; |
| } |
| |
| /* |
| * actions (cb_data): |
| * 0 - compare all uniques |
| * n - compare n-th unique |
| */ |
| static int |
| lyd_val_uniq_list_equal(void *val1_p, void *val2_p, int UNUSED(mod), void *cb_data) |
| { |
| struct ly_ctx *ctx; |
| struct lysc_node_list *slist; |
| struct lyd_node *diter, *first, *second; |
| struct lyd_value *val1, *val2; |
| char *path1, *path2, *uniq_str, *ptr; |
| uint32_t i, j, action; |
| |
| assert(val1_p && val2_p); |
| |
| first = *((struct lyd_node **)val1_p); |
| second = *((struct lyd_node **)val2_p); |
| action = (uintptr_t)cb_data; |
| |
| assert(first && (first->schema->nodetype == LYS_LIST)); |
| assert(second && (second->schema == first->schema)); |
| |
| ctx = first->schema->module->ctx; |
| |
| slist = (struct lysc_node_list *)first->schema; |
| |
| /* compare unique leaves */ |
| if (action > 0) { |
| i = action - 1; |
| if (i < LY_ARRAY_SIZE(slist->uniques)) { |
| goto uniquecheck; |
| } |
| } |
| LY_ARRAY_FOR(slist->uniques, i) { |
| uniquecheck: |
| LY_ARRAY_FOR(slist->uniques[i], j) { |
| /* first */ |
| diter = lyd_val_uniq_find_leaf(slist->uniques[i][j], first); |
| if (diter) { |
| val1 = &((struct lyd_node_term *)diter)->value; |
| } else { |
| /* use default value */ |
| val1 = slist->uniques[i][j]->dflt; |
| } |
| |
| /* second */ |
| diter = lyd_val_uniq_find_leaf(slist->uniques[i][j], second); |
| if (diter) { |
| val2 = &((struct lyd_node_term *)diter)->value; |
| } else { |
| /* use default value */ |
| val2 = slist->uniques[i][j]->dflt; |
| } |
| |
| if (!val1 || !val2 || val1->realtype->plugin->compare(val1, val2)) { |
| /* values differ or either one is not set */ |
| break; |
| } |
| } |
| if (j && (j == LY_ARRAY_SIZE(slist->uniques[i]))) { |
| /* all unique leafs are the same in this set, create this nice error */ |
| path1 = lyd_path(first, LYD_PATH_LOG, NULL, 0); |
| path2 = lyd_path(second, LYD_PATH_LOG, NULL, 0); |
| |
| /* use buffer to rebuild the unique string */ |
| uniq_str = malloc(1024); |
| uniq_str[0] = '\0'; |
| ptr = uniq_str; |
| LY_ARRAY_FOR(slist->uniques[i], j) { |
| if (j) { |
| strcpy(ptr, " "); |
| ++ptr; |
| } |
| ptr = lysc_path_until((struct lysc_node *)slist->uniques[i][j], (struct lysc_node *)slist, LYSC_PATH_LOG, |
| ptr, 1024 - (ptr - uniq_str)); |
| if (!ptr) { |
| /* path will be incomplete, whatever */ |
| break; |
| } |
| |
| ptr += strlen(ptr); |
| } |
| LOGVAL(ctx, LY_VLOG_LYD, second, LY_VCODE_NOUNIQ, uniq_str, path1, path2); |
| |
| free(path1); |
| free(path2); |
| free(uniq_str); |
| return 1; |
| } |
| |
| if (action > 0) { |
| /* done */ |
| return 0; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static LY_ERR |
| lyd_validate_unique(const struct lysc_node *snode, struct lysc_node_leaf ***uniques, struct lyd_node *sibling) |
| { |
| struct lyd_node *diter; |
| struct ly_set *set; |
| uint32_t i, j, n = 0; |
| LY_ERR ret = LY_SUCCESS; |
| uint32_t hash, u, usize = 0; |
| int dynamic; |
| const char *str; |
| struct hash_table **uniqtables = NULL; |
| struct lyd_value *val; |
| struct ly_ctx *ctx = snode->module->ctx; |
| |
| assert(uniques); |
| |
| /* get all list instances */ |
| set = lyd_find_instance(sibling, snode); |
| LY_CHECK_RET(!set, LY_EINT); |
| |
| if (set->count == 2) { |
| /* simple comparison */ |
| if (lyd_val_uniq_list_equal(&set->objs[0], &set->objs[1], 0, (void *)0)) { |
| /* instance duplication */ |
| ret = LY_EVALID; |
| goto cleanup; |
| } |
| } else if (set->count > 2) { |
| /* use hashes for comparison */ |
| /* first, allocate the table, the size depends on number of items in the set */ |
| for (u = 31; u > 0; u--) { |
| usize = set->count << u; |
| usize = usize >> u; |
| if (usize == set->count) { |
| break; |
| } |
| } |
| LY_CHECK_ERR_GOTO(!u, LOGINT(ctx); ret = LY_EINT, cleanup); |
| u = 32 - u; |
| usize = 1 << u; |
| |
| uniqtables = malloc(LY_ARRAY_SIZE(uniques) * sizeof *uniqtables); |
| LY_CHECK_ERR_GOTO(!uniqtables, LOGMEM(ctx); ret = LY_EMEM, cleanup); |
| n = LY_ARRAY_SIZE(uniques); |
| for (j = 0; j < n; j++) { |
| uniqtables[j] = lyht_new(usize, sizeof(struct lyd_node *), lyd_val_uniq_list_equal, (void *)(j + 1L), 0); |
| LY_CHECK_ERR_GOTO(!uniqtables[j], LOGMEM(ctx); ret = LY_EMEM, cleanup); |
| } |
| |
| for (u = 0; u < set->count; u++) { |
| /* loop for unique - get the hash for the instances */ |
| for (i = 0; i < n; i++) { |
| val = NULL; |
| for (j = hash = 0; j < LY_ARRAY_SIZE(uniques[i]); j++) { |
| diter = lyd_val_uniq_find_leaf(uniques[i][j], set->objs[u]); |
| if (diter) { |
| val = &((struct lyd_node_term *)diter)->value; |
| } else { |
| /* use default value */ |
| val = uniques[i][j]->dflt; |
| } |
| if (!val) { |
| /* unique item not present nor has default value */ |
| break; |
| } |
| |
| /* get canonical string value */ |
| str = val->realtype->plugin->print(val, LYD_JSON, json_print_get_prefix, NULL, &dynamic); |
| hash = dict_hash_multi(hash, str, strlen(str)); |
| if (dynamic) { |
| free((char *)str); |
| } |
| } |
| if (!val) { |
| /* skip this list instance since its unique set is incomplete */ |
| continue; |
| } |
| |
| /* finish the hash value */ |
| hash = dict_hash_multi(hash, NULL, 0); |
| |
| /* insert into the hashtable */ |
| ret = lyht_insert(uniqtables[i], &set->objs[u], hash, NULL); |
| if (ret == LY_EEXIST) { |
| /* instance duplication */ |
| ret = LY_EVALID; |
| } |
| LY_CHECK_GOTO(ret != LY_SUCCESS, cleanup); |
| } |
| } |
| } |
| |
| cleanup: |
| ly_set_free(set, NULL); |
| for (j = 0; j < n; j++) { |
| if (!uniqtables[j]) { |
| /* failed when allocating uniquetables[j], following j are not allocated */ |
| break; |
| } |
| lyht_free(uniqtables[j]); |
| } |
| free(uniqtables); |
| |
| return ret; |
| } |
| |
| static LY_ERR |
| lyd_validate_cases(const struct lysc_node_case *cases, struct lyd_node *sibling) |
| { |
| /* TODO check there are nodes only from a single case, |
| * what if not? validation error or autodelete */ |
| return LY_SUCCESS; |
| } |
| |
| static LY_ERR |
| lyd_validate_siblings_schema_r(struct lyd_node *sibling, const struct lysc_node *sparent, const struct lysc_module *mod, |
| int options) |
| { |
| const struct lysc_node *snode = NULL; |
| struct lysc_node_list *slist; |
| |
| /* disabled nodes are skipped by lys_getnext */ |
| while ((snode = lys_getnext(snode, sparent, mod, LYS_GETNEXT_WITHCHOICE | LYS_GETNEXT_WITHCASE))) { |
| /* check min-elements and max-elements */ |
| if (snode->nodetype & (LYS_LIST | LYS_LEAFLIST)) { |
| slist = (struct lysc_node_list *)snode; |
| if (slist->min || slist->max) { |
| LY_CHECK_RET(lyd_validate_minmax(snode, slist->min, slist->max, sibling)); |
| } |
| |
| /* check generic mandatory existence */ |
| } else if (snode->flags & LYS_MAND_TRUE) { |
| LY_CHECK_RET(lyd_validate_mandatory(snode, sibling)); |
| } |
| |
| /* check unique */ |
| if (snode->nodetype == LYS_LIST) { |
| slist = (struct lysc_node_list *)snode; |
| if (slist->uniques) { |
| LY_CHECK_RET(lyd_validate_unique(snode, slist->uniques, sibling)); |
| } |
| } |
| |
| /* check case duplicites */ |
| if (snode->nodetype == LYS_CHOICE) { |
| LY_CHECK_RET(lyd_validate_cases(((struct lysc_node_choice *)snode)->cases, sibling)); |
| } |
| |
| if (snode->nodetype & (LYS_CHOICE | LYS_CASE)) { |
| /* go recursively for schema-only nodes */ |
| LY_CHECK_RET(lyd_validate_siblings_schema_r(sibling, snode, mod, options)); |
| } |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| static LY_ERR |
| lyd_validate_siblings_r(struct lyd_node *sibling, const struct lysc_node *sparent, const struct lysc_module *mod, int options) |
| { |
| struct lyd_node *node; |
| |
| /* validate all restrictions of nodes themselves */ |
| LY_LIST_FOR(sibling, node) { |
| /* TODO node's must */ |
| /* TODO node instance duplicites */ |
| /* TODO node status */ |
| /* TODO node's if-features */ |
| /* TODO node list keys */ |
| /* node value including if-feature is checked by plugins */ |
| } |
| |
| /* validate schema-based restrictions */ |
| LY_CHECK_RET(lyd_validate_siblings_schema_r(sibling, sparent, mod, options)); |
| |
| LY_LIST_FOR(sibling, node) { |
| /* validate all children recursively */ |
| LY_CHECK_RET(lyd_validate_siblings_r((struct lyd_node *)lyd_node_children(node), node->schema, mod, options)); |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| LY_ERR |
| lyd_validate_data(const struct lyd_node **trees, const struct lys_module **modules, int mod_count, struct ly_ctx *ctx, |
| int options) |
| { |
| uint32_t i = 0, j; |
| const struct lys_module *mod; |
| struct lyd_node *tree; |
| |
| if (options & LYD_OPT_VAL_DATA_ONLY) { |
| if (trees) { |
| for (j = 0; j < LY_ARRAY_SIZE(trees); ++j) { |
| tree = (struct lyd_node *)trees[j]; |
| |
| /* validate all top-level nodes and then inner nodes recursively */ |
| LY_CHECK_RET(lyd_validate_siblings_r(tree, NULL, tree->schema->module->compiled, options)); |
| } |
| } |
| } else { |
| while ((mod = lyd_val_next_module(modules, mod_count, ctx, &i))) { |
| if (!mod->implemented) { |
| continue; |
| } |
| |
| /* find data of this module, if any */ |
| tree = NULL; |
| if (trees) { |
| for (j = 0; j < LY_ARRAY_SIZE(trees); ++j) { |
| if (trees[j]->schema->module == mod) { |
| tree = (struct lyd_node *)trees[j]; |
| break; |
| } |
| } |
| } |
| |
| /* validate all top-level nodes and then inner nodes recursively */ |
| LY_CHECK_RET(lyd_validate_siblings_r(tree, NULL, mod->compiled, options)); |
| } |
| } |
| |
| return LY_SUCCESS; |
| } |