blob: b0618ff87f4e83dbeeeb8f845fe95a9e1326b065 [file] [log] [blame]
/**
* @file tree_data.c
* @author Radek Krejci <rkrejci@cesnet.cz>
* @brief Manipulation with libyang data structures
*
* Copyright (c) 2015 CESNET, z.s.p.o.
*
* This source code is licensed under BSD 3-Clause License (the "License").
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*/
#define _GNU_SOURCE
#include <assert.h>
#include <ctype.h>
#include <limits.h>
#include <stdarg.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include "libyang.h"
#include "common.h"
#include "context.h"
#include "tree_data.h"
#include "parser.h"
#include "resolve.h"
#include "xml_internal.h"
#include "tree_internal.h"
#include "validation.h"
#include "xpath.h"
static struct lyd_node *
lyd_parse_(struct ly_ctx *ctx, const struct lys_node *parent, const char *data, LYD_FORMAT format, int options)
{
struct lyxml_elem *xml, *xmlnext;
struct lyd_node *result = NULL;
int xmlopt = LYXML_PARSE_MULTIROOT;
if (!ctx || !data) {
LOGERR(LY_EINVAL, "%s: Invalid parameter.", __func__);
return NULL;
}
if (options & LYD_OPT_NOSIBLINGS) {
xmlopt = 0;
}
switch (format) {
case LYD_XML:
case LYD_XML_FORMAT:
xml = lyxml_parse_mem(ctx, data, xmlopt);
if (ly_errno) {
return NULL;
}
result = lyd_parse_xml(ctx, &xml, options, parent);
LY_TREE_FOR_SAFE(xml, xmlnext, xml) {
lyxml_free(ctx, xml);
}
break;
case LYD_JSON:
result = lyd_parse_json(ctx, parent, data, options);
break;
default:
/* error */
return NULL;
}
if (!result && !ly_errno) {
/* is empty data tree really valid ? */
lyd_validate(NULL, options, ctx);
}
return result;
}
static struct lyd_node *
lyd_parse_data_(struct ly_ctx *ctx, const char *data, LYD_FORMAT format, int options, va_list ap)
{
const struct lys_node *rpc = NULL;
if (lyp_check_options(options)) {
LOGERR(LY_EINVAL, "%s: Invalid options (multiple data type flags set).", __func__);
return NULL;
}
if (options & LYD_OPT_RPCREPLY) {
rpc = va_arg(ap, struct lys_node*);
if (!rpc || (rpc->nodetype != LYS_RPC)) {
LOGERR(LY_EINVAL, "%s: Invalid parameter.", __func__);
return NULL;
}
}
return lyd_parse_(ctx, rpc, data, format, options);
}
API struct lyd_node *
lyd_parse_mem(struct ly_ctx *ctx, const char *data, LYD_FORMAT format, int options, ...)
{
va_list ap;
struct lyd_node *result;
va_start(ap, options);
result = lyd_parse_data_(ctx, data, format, options, ap);
va_end(ap);
return result;
}
API struct lyd_node *
lyd_parse_fd(struct ly_ctx *ctx, int fd, LYD_FORMAT format, int options, ...)
{
struct lyd_node *ret;
struct stat sb;
char *data;
va_list ap;
if (!ctx || (fd == -1)) {
LOGERR(LY_EINVAL, "%s: Invalid parameter.", __func__);
return NULL;
}
if (fstat(fd, &sb) == -1) {
LOGERR(LY_ESYS, "Failed to stat the file descriptor (%s).", strerror(errno));
return NULL;
}
data = mmap(NULL, sb.st_size + 1, PROT_READ, MAP_PRIVATE, fd, 0);
if (data == MAP_FAILED) {
LOGERR(LY_ESYS, "Mapping file descriptor into memory failed.");
return NULL;
}
va_start(ap, options);
ret = lyd_parse_data_(ctx, data, format, options, ap);
va_end(ap);
munmap(data, sb.st_size);
return ret;
}
API struct lyd_node *
lyd_parse_path(struct ly_ctx *ctx, const char *path, LYD_FORMAT format, int options, ...)
{
int fd;
struct lyd_node *ret;
va_list ap;
if (!ctx || !path) {
LOGERR(LY_EINVAL, "%s: Invalid parameter.", __func__);
return NULL;
}
fd = open(path, O_RDONLY);
if (fd == -1) {
LOGERR(LY_ESYS, "Failed to open data file \"%s\" (%s).", path, strerror(errno));
return NULL;
}
va_start(ap, options);
ret = lyd_parse_fd(ctx, fd, format, options);
va_end(ap);
close(fd);
return ret;
}
static struct lyd_node *
_lyd_new(struct lyd_node *parent, const struct lys_node *schema)
{
struct lyd_node *ret;
ret = calloc(1, sizeof *ret);
if (!ret) {
LOGMEM;
return NULL;
}
ret->schema = (struct lys_node *)schema;
ret->validity = LYD_VAL_NOT;
ret->prev = ret;
if (parent) {
if (lyd_insert(parent, ret)) {
lyd_free(ret);
return NULL;
}
}
return ret;
}
API struct lyd_node *
lyd_new(struct lyd_node *parent, const struct lys_module *module, const char *name)
{
const struct lys_node *snode = NULL, *siblings;
if ((!parent && !module) || !name) {
ly_errno = LY_EINVAL;
return NULL;
}
if (!parent) {
siblings = module->data;
} else {
if (!parent->schema) {
return NULL;
}
siblings = parent->schema->child;
}
if (lys_get_data_sibling(module, siblings, name, LYS_CONTAINER | LYS_LIST | LYS_NOTIF | LYS_RPC, &snode)
|| !snode) {
return NULL;
}
return _lyd_new(parent, snode);
}
static struct lyd_node *
lyd_create_leaf(const struct lys_node *schema, const char *val_str)
{
struct lyd_node_leaf_list *ret;
ret = calloc(1, sizeof *ret);
if (!ret) {
LOGMEM;
return NULL;
}
ret->schema = (struct lys_node *)schema;
ret->validity = LYD_VAL_NOT;
ret->prev = (struct lyd_node *)ret;
ret->value_type = ((struct lys_node_leaf *)schema)->type.base;
ret->value_str = lydict_insert(schema->module->ctx, val_str, 0);
/* resolve the type correctly */
if (lyp_parse_value(ret, NULL, 1, NULL, 0)) {
lyd_free((struct lyd_node *)ret);
ly_errno = LY_EINVAL;
return NULL;
}
return (struct lyd_node *)ret;
}
static struct lyd_node *
_lyd_new_leaf(struct lyd_node *parent, const struct lys_node *schema, const char *val_str)
{
struct lyd_node *ret;
ret = lyd_create_leaf(schema, val_str);
if (!ret) {
return NULL;
}
/* connect to parent */
if (parent) {
if (lyd_insert(parent, ret)) {
lyd_free(ret);
return NULL;
}
}
if (ret->schema->flags & LYS_UNIQUE) {
/* locate the first parent list */
for (parent = ret->parent; parent && parent->schema->nodetype != LYS_LIST; parent = parent->parent);
/* set flag for future validation */
if (parent) {
parent->validity |= LYD_VAL_UNIQUE;
}
}
return ret;
}
API struct lyd_node *
lyd_new_leaf(struct lyd_node *parent, const struct lys_module *module, const char *name, const char *val_str)
{
const struct lys_node *snode = NULL, *siblings;
if ((!parent && !module) || !name) {
ly_errno = LY_EINVAL;
return NULL;
}
if (!parent) {
siblings = module->data;
} else {
if (!parent->schema) {
ly_errno = LY_EINVAL;
return NULL;
}
siblings = parent->schema->child;
}
if (lys_get_data_sibling(module, siblings, name, LYS_LEAFLIST | LYS_LEAF, &snode) || !snode) {
ly_errno = LY_EINVAL;
return NULL;
}
return _lyd_new_leaf(parent, snode, val_str);
}
API int
lyd_change_leaf(struct lyd_node_leaf_list *leaf, const char *val_str)
{
const char *backup;
struct lyd_node *parent;
if (!leaf) {
ly_errno = LY_EINVAL;
return EXIT_FAILURE;
}
backup = leaf->value_str;
leaf->value_str = val_str;
/* resolve the type correctly */
if (lyp_parse_value(leaf, NULL, 1, NULL, 0)) {
leaf->value_str = backup;
ly_errno = LY_EINVAL;
return EXIT_FAILURE;
}
/* value is correct, finish the changes in leaf */
lydict_remove(leaf->schema->module->ctx, backup);
leaf->value_str = lydict_insert(leaf->schema->module->ctx, val_str, 0);
if (leaf->schema->flags & LYS_UNIQUE) {
/* locate the first parent list */
for (parent = leaf->parent; parent && parent->schema->nodetype != LYS_LIST; parent = parent->parent);
/* set flag for future validation */
if (parent) {
parent->validity |= LYD_VAL_UNIQUE;
}
}
return EXIT_SUCCESS;
}
static struct lyd_node *
lyd_create_anyxml(const struct lys_node *schema, const char *val_xml)
{
struct lyd_node_anyxml *ret;
struct lyxml_elem *root;
char *xml;
ret = calloc(1, sizeof *ret);
if (!ret) {
LOGMEM;
return NULL;
}
ret->schema = (struct lys_node *)schema;
ret->validity = LYD_VAL_NOT;
ret->prev = (struct lyd_node *)ret;
/* store the anyxml data together with the anyxml element */
if (asprintf(&xml, "<%s>%s</%s>", schema->name, (val_xml ? val_xml : ""), schema->name) == -1) {
LOGMEM;
lyd_free((struct lyd_node *)ret);
return NULL;
}
root = lyxml_parse_mem(schema->module->ctx, xml, 0);
free(xml);
if (!root) {
lyd_free((struct lyd_node *)ret);
return NULL;
}
ret->value = root;
return (struct lyd_node *)ret;
}
static struct lyd_node *
_lyd_new_anyxml(struct lyd_node *parent, const struct lys_node *schema, const char *val_xml)
{
struct lyd_node *ret;
ret = lyd_create_anyxml(schema, val_xml);
if (!ret) {
return NULL;
}
/* connect to parent */
if (parent) {
if (lyd_insert(parent, ret)) {
lyd_free(ret);
return NULL;
}
}
return ret;
}
API struct lyd_node *
lyd_new_anyxml(struct lyd_node *parent, const struct lys_module *module, const char *name, const char *val_xml)
{
const struct lys_node *siblings, *snode;
if ((!parent && !module) || !name) {
ly_errno = LY_EINVAL;
return NULL;
}
if (!parent) {
siblings = module->data;
} else {
if (!parent->schema) {
return NULL;
}
siblings = parent->schema->child;
}
if (lys_get_data_sibling(module, siblings, name, LYS_ANYXML, &snode) || !snode) {
return NULL;
}
return _lyd_new_anyxml(parent, snode, val_xml);
}
API struct lyd_node *
lyd_output_new(const struct lys_node *schema)
{
struct lyd_node *ret;
if (!schema || !(schema->nodetype & (LYS_CONTAINER | LYS_LIST))
|| !lys_parent(schema) || (lys_parent(schema)->nodetype != LYS_OUTPUT)) {
ly_errno = LY_EINVAL;
return NULL;
}
ret = calloc(1, sizeof *ret);
if (!ret) {
LOGMEM;
return NULL;
}
ret->schema = (struct lys_node *)schema;
ret->validity = LYD_VAL_NOT;
ret->prev = ret;
return ret;
}
API struct lyd_node *
lyd_output_new_leaf(const struct lys_node *schema, const char *val_str)
{
if (!schema || (schema->nodetype != LYS_LEAF)
|| !lys_parent(schema) || (lys_parent(schema)->nodetype != LYS_OUTPUT)) {
ly_errno = LY_EINVAL;
return NULL;
}
return lyd_create_leaf(schema, val_str);
}
API struct lyd_node *
lyd_output_new_anyxml(const struct lys_node *schema, const char *val_xml)
{
if (!schema || (schema->nodetype != LYS_ANYXML)
|| !lys_parent(schema) || (lys_parent(schema)->nodetype != LYS_OUTPUT)) {
ly_errno = LY_EINVAL;
return NULL;
}
return lyd_create_anyxml(schema, val_xml);
}
static int
lyd_new_path_list_keys(struct lyd_node *list, const char *list_name, const char *predicate, int *parsed)
{
const char *name, *value;
char *key_val;
int r, i, nam_len, val_len, has_predicate = 1;
struct lys_node_list *slist;
slist = (struct lys_node_list *)list->schema;
for (i = 0; i < slist->keys_size; ++i) {
if (!has_predicate) {
LOGVAL(LYE_PATH_MISSKEY, 0, LY_VLOG_NONE, NULL, list_name);
return -1;
}
if ((r = parse_schema_list_predicate(predicate, &name, &nam_len, &value, &val_len, &has_predicate)) < 1) {
LOGVAL(LYE_PATH_INCHAR, 0, LY_VLOG_NONE, NULL, predicate[-r], &predicate[-r]);
return -1;
}
*parsed += r;
predicate += r;
if (strncmp(slist->keys[i]->name, name, nam_len) || slist->keys[i]->name[nam_len]) {
LOGVAL(LYE_PATH_INKEY, 0, LY_VLOG_NONE, NULL, name[0], name);
return -1;
}
key_val = malloc((val_len + 1) * sizeof(char));
if (!key_val) {
LOGMEM;
return -1;
}
strncpy(key_val, value, val_len);
key_val[val_len] = '\0';
if (!_lyd_new_leaf(list, (const struct lys_node *)slist->keys[i], key_val)) {
free(key_val);
return -1;
}
free(key_val);
}
return 0;
}
API struct lyd_node *
lyd_new_path(struct lyd_node *data_tree, struct ly_ctx *ctx, const char *path, const char *value, int options)
{
char module_name[LY_MODULE_NAME_MAX_LEN + 1];
const char *mod_name, *name, *node_mod_name;
struct lyd_node *ret = NULL, *node, *parent = NULL;
const struct lys_node *schild, *sparent;
const struct lys_node_list *slist;
const struct lys_module *module, *prev_mod;
int r, i, parsed = 0, mod_name_len, nam_len, is_relative = -1;
if (!path || (!data_tree && !ctx) || ((options & LYD_PATH_OPT_UPDATE) && !value)
|| (data_tree && (data_tree->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_ANYXML)))) {
ly_errno = LY_EINVAL;
return NULL;
}
if (data_tree) {
parent = resolve_partial_json_data_nodeid(path, data_tree, &parsed);
if (!parent) {
return NULL;
}
path += parsed;
if (parsed) {
/* if we parsed something we have a relative path for sure, otherwise we don't know */
is_relative = 1;
}
if (!path[0]) {
/* the node exists */
if (!(options & LYD_PATH_OPT_UPDATE) || (parent->schema->nodetype != LYS_LEAF)) {
LOGVAL(LYE_PATH_EXISTS, 0, LY_VLOG_NONE, NULL);
return NULL;
}
/* update leaf value */
r = lyd_change_leaf((struct lyd_node_leaf_list *)parent, value);
if (r) {
return NULL;
}
return parent;
}
sparent = parent->schema;
module = lys_node_module(sparent);
prev_mod = module;
}
if ((r = parse_schema_nodeid(path, &mod_name, &mod_name_len, &name, &nam_len, &is_relative, NULL)) < 1) {
LOGVAL(LYE_PATH_INCHAR, 0, LY_VLOG_NONE, NULL, path[-r], &path[-r]);
return NULL;
}
path += r;
/* we are starting from scratch, absolute path */
if (!data_tree) {
if (!mod_name) {
LOGVAL(LYE_PATH_MISSMOD, 0, LY_VLOG_NONE, NULL, name);
return NULL;
} else if (mod_name_len > LY_MODULE_NAME_MAX_LEN) {
LOGINT;
return NULL;
}
strncpy(module_name, mod_name, mod_name_len);
module_name[mod_name_len] = '\0';
module = ly_ctx_get_module(ctx, module_name, NULL);
if (!module) {
LOGVAL(LYE_PATH_INMOD, 0, LY_VLOG_NONE, NULL, mod_name);
return NULL;
}
mod_name = NULL;
mod_name_len = 0;
prev_mod = module;
sparent = NULL;
}
/* create nodes in a loop */
while (1) {
/* find the schema node */
schild = NULL;
while ((schild = lys_getnext(schild, sparent, module, 0))) {
if (schild->nodetype & (LYS_CONTAINER | LYS_LEAF | LYS_LEAFLIST | LYS_LIST | LYS_ANYXML | LYS_NOTIF | LYS_RPC)) {
/* module comparison */
if (mod_name) {
node_mod_name = lys_node_module(schild)->name;
if (strncmp(node_mod_name, mod_name, mod_name_len) || node_mod_name[mod_name_len]) {
continue;
}
} else if (lys_node_module(schild) != prev_mod) {
continue;
}
/* name check */
if (!strncmp(schild->name, name, nam_len) && !schild->name[nam_len]) {
break;
}
}
}
if (!schild) {
LOGVAL(LYE_PATH_INNODE, 0, LY_VLOG_NONE, NULL, name);
lyd_free(ret);
return NULL;
}
/* we have the right schema node */
switch (schild->nodetype) {
case LYS_CONTAINER:
case LYS_LIST:
case LYS_NOTIF:
case LYS_RPC:
node = _lyd_new(is_relative ? parent : NULL, schild);
break;
case LYS_LEAF:
case LYS_LEAFLIST:
if (path[0]) {
LOGVAL(LYE_PATH_INCHAR, 0, LY_VLOG_NONE, NULL, path[0], path);
return NULL;
}
node = _lyd_new_leaf(is_relative ? parent : NULL, schild, value);
break;
case LYS_ANYXML:
if (path[0]) {
LOGVAL(LYE_PATH_INCHAR, 0, LY_VLOG_NONE, NULL, path[0], path);
return NULL;
}
node = _lyd_new_anyxml(is_relative ? parent : NULL, schild, value);
break;
default:
LOGINT;
node = NULL;
break;
}
if (!node) {
lyd_free(ret);
return NULL;
}
if (!ret) {
ret = node;
}
/* special case when we are creating a sibling of a top-level data node */
if (!is_relative) {
if (data_tree) {
assert(data_tree == parent);
if (lyd_insert_before(data_tree, node)) {
lyd_free(ret);
return NULL;
}
}
is_relative = 1;
}
parsed = 0;
if ((schild->nodetype == LYS_LIST) && lyd_new_path_list_keys(node, name, path, &parsed)) {
lyd_free(ret);
return NULL;
}
path += parsed;
if (!path[0]) {
/* we are done */
return ret;
} else if (!(options & LYD_PATH_OPT_RECURSIVE)) {
/* we were supposed to be done */
LOGVAL(LYE_PATH_MISSPAR, 0, LY_VLOG_NONE, NULL, (mod_name ? mod_name : name));
return NULL;
}
/* prepare for another iteration */
parent = node;
sparent = schild;
prev_mod = lys_node_module(schild);
/* parse another node */
if ((r = parse_schema_nodeid(path, &mod_name, &mod_name_len, &name, &nam_len, &is_relative, NULL)) < 1) {
LOGVAL(LYE_PATH_INCHAR, 0, LY_VLOG_NONE, NULL, path[-r], &path[-r]);
lyd_free(ret);
return NULL;
}
path += r;
/* if a key of a list was supposed to be created, it is created as a part of the list instance
* creation and can cause several corner cases that can simply be avoided by forbidding this */
if ((schild->nodetype == LYS_LIST) && !mod_name) {
slist = (const struct lys_node_list *)schild;
for (i = 0; i < slist->keys_size; ++i) {
if (!strncmp(slist->keys[i]->name, name, nam_len) && !slist->keys[i]->name[nam_len]) {
LOGVAL(LYE_PATH_EXISTS, 0, LY_VLOG_NONE, NULL);
lyd_free(ret);
return NULL;
}
}
}
}
return ret;
}
static void
lyd_insert_setinvalid(struct lyd_node *node)
{
struct lyd_node *next, *elem, *parent_list;
assert(node);
/* overall validity of the node itself */
node->validity = LYD_VAL_NOT;
/* explore changed unique leafs */
/* first, get know if there is a list in parents chain */
for (parent_list = node->parent;
parent_list && parent_list->schema->nodetype != LYS_LIST;
parent_list = parent_list->parent);
if (parent_list && !(parent_list->validity & LYD_VAL_UNIQUE)) {
/* there is a list, so check if we inserted a leaf supposed to be unique */
for (elem = node; elem; elem = next) {
if (elem->schema->nodetype == LYS_LIST) {
/* stop searching to the depth, children would be unique to a list in subtree */
goto nextsibling;
}
if (elem->schema->nodetype == LYS_LEAF && (elem->schema->flags & LYS_UNIQUE)) {
/* set flag to list for future validation */
parent_list->validity |= LYD_VAL_UNIQUE;
break;
}
if (elem->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_ANYXML)) {
goto nextsibling;
}
/* select next elem to process */
/* go into children */
next = elem->child;
/* got through siblings */
if (!next) {
nextsibling:
next = elem->next;
if (!next) {
/* no children */
if (elem == node) {
/* we are done, back in start node */
break;
}
/* try siblings */
next = elem->next;
}
}
/* go back to parents */
while (!next) {
if (elem->parent == node) {
/* we are done, back in start node */
break;
}
/* parent was actually already processed, so go to the parent's sibling */
next = elem->parent->next;
}
}
}
}
API int
lyd_insert(struct lyd_node *parent, struct lyd_node *node)
{
struct lys_node *sparent;
struct lyd_node *iter;
int invalid = 0;
if (!node || !parent) {
ly_errno = LY_EINVAL;
return EXIT_FAILURE;
}
/* check placing the node to the appropriate place according to the schema */
for (sparent = lys_parent(node->schema);
sparent && !(sparent->nodetype & (LYS_CONTAINER | LYS_LIST | LYS_RPC | LYS_OUTPUT | LYS_NOTIF));
sparent = lys_parent(sparent));
if (sparent != parent->schema) {
return EXIT_FAILURE;
}
if (node->parent != parent || lyp_is_rpc(node->schema)) {
/* it is not just moving under a parent node or it is in an RPC where
* nodes order matters, so the validation will be necessary */
invalid = 1;
}
if (node->parent || node->prev->next) {
lyd_unlink(node);
}
if (!parent->child) {
/* add as the only child of the parent */
parent->child = node;
} else {
/* add as the last child of the parent */
parent->child->prev->next = node;
node->prev = parent->child->prev;
for (iter = node; iter->next; iter = iter->next);
parent->child->prev = iter;
}
LY_TREE_FOR(node, iter) {
iter->parent = parent;
if (invalid) {
lyd_insert_setinvalid(iter);
}
}
return EXIT_SUCCESS;
}
static int
lyd_insert_sibling(struct lyd_node *sibling, struct lyd_node *node, int before)
{
struct lys_node *par1, *par2;
struct lyd_node *iter;
int invalid = 0;
if (sibling == node) {
return EXIT_SUCCESS;
}
/* check placing the node to the appropriate place according to the schema */
for (par1 = lys_parent(sibling->schema);
par1 && !(par1->nodetype & (LYS_CONTAINER | LYS_LIST | LYS_INPUT | LYS_OUTPUT | LYS_NOTIF));
par1 = lys_parent(par1));
for (par2 = lys_parent(node->schema);
par2 && !(par2->nodetype & (LYS_CONTAINER | LYS_LIST | LYS_INPUT | LYS_OUTPUT | LYS_NOTIF));
par2 = lys_parent(par2));
if (par1 != par2) {
ly_errno = LY_EINVAL;
return EXIT_FAILURE;
}
if (node->parent != sibling->parent || !node->parent || lyp_is_rpc(node->schema)) {
/* a) it is not just moving under a parent node or
* b) it is top-level where we don't know if it is the same tree, or
* c) it is in an RPC where nodes order matters,
* so the validation will be necessary */
if (!node->parent) {
/* b) search in siblings */
for (iter = node->prev; iter != node; iter = iter->prev) {
if (iter == sibling) {
break;
}
}
if (iter == node) {
/* node and siblings are not currently in the same data tree */
invalid = 1;
}
} else { /* a) and c) */
invalid = 1;
}
}
if (node->parent || node->next || node->prev->next) {
lyd_unlink(node);
}
node->parent = sibling->parent;
if (invalid) {
lyd_insert_setinvalid(node);
}
if (before) {
if (sibling->prev->next) {
/* adding into the list */
sibling->prev->next = node;
} else if (sibling->parent) {
/* at the beginning */
sibling->parent->child = node;
}
node->prev = sibling->prev;
sibling->prev = node;
node->next = sibling;
} else {
if (sibling->next) {
/* adding into a middle - fix the prev pointer of the node after inserted nodes */
node->next = sibling->next;
sibling->next->prev = node;
} else {
/* at the end - fix the prev pointer of the first node */
if (sibling->parent) {
sibling->parent->child->prev = node;
} else {
for (iter = sibling; iter->prev->next; iter = iter->prev);
iter->prev = node;
}
}
sibling->next = node;
node->prev = sibling;
}
return EXIT_SUCCESS;
}
API int
lyd_insert_before(struct lyd_node *sibling, struct lyd_node *node)
{
if (!node || !sibling || lyd_insert_sibling(sibling, node, 1)) {
ly_errno = LY_EINVAL;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
API int
lyd_insert_after(struct lyd_node *sibling, struct lyd_node *node)
{
if (!node || !sibling || lyd_insert_sibling(sibling, node, 0)) {
ly_errno = LY_EINVAL;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
API int
lyd_validate(struct lyd_node *node, int options, ...)
{
struct lyd_node *root, *next1, *next2, *iter, *to_free = NULL;
const struct lys_node *schema;
struct ly_ctx *ctx;
int i;
va_list ap;
ly_errno = 0;
if (!node) {
/* TODO what about LYD_OPT_NOTIF, LYD_OPT_RPC and LYD_OPT_RPCREPLY ? */
if (options & (LYD_OPT_FILTER | LYD_OPT_EDIT | LYD_OPT_GET | LYD_OPT_GETCONFIG)) {
return EXIT_SUCCESS;
}
/* LYD_OPT_DATA || LYD_OPT_CONFIG */
/* get context with schemas from the variable arguments */
va_start(ap, options);
ctx = va_arg(ap, struct ly_ctx*);
if (!ctx) {
LOGERR(LY_EINVAL, "%s: Invalid variable argument.", __func__);
va_end(ap);
return EXIT_FAILURE;
}
/* check for missing mandatory elements according to schemas in context */
for (i = 0; i < ctx->models.used; i++) {
if (!ctx->models.list[i]->data) {
continue;
}
schema = ly_check_mandatory(NULL, ctx->models.list[i]->data);
if (schema) {
if (schema->nodetype & (LYS_LIST | LYS_LEAFLIST)) {
LOGVAL(LYE_TOOMANY, 0, LY_VLOG_LYS, schema, schema->name, schema->parent ? schema->parent->name : "module");
LOGVAL(LYE_SPEC, 0, 0, NULL,
"Number of \"%s\" instances in \"%s\" does not follow min-elements constraint.",
schema->name, schema->parent ? schema->parent->name : ctx->models.list[i]->name);
} else {
LOGVAL(LYE_MISSELEM, 0, LY_VLOG_LYS, schema,
schema->name, schema->parent ? schema->parent->name : ctx->models.list[i]->name);
}
va_end(ap);
return EXIT_FAILURE;
}
}
va_end(ap);
return EXIT_SUCCESS;
}
if (!(options & LYD_OPT_NOSIBLINGS)) {
/* check that the node is the first sibling */
while(node->prev->next) {
node = node->prev;
}
}
LY_TREE_FOR_SAFE(node, next1, root) {
LY_TREE_DFS_BEGIN(root, next2, iter) {
if (to_free) {
lyd_free(to_free);
to_free = NULL;
}
if (lyv_data_context(iter, options, 0, NULL)) {
return EXIT_FAILURE;
}
if (lyv_data_value(iter, options)) {
return EXIT_FAILURE;
}
if (lyv_data_content(iter, options, 0, NULL)) {
if (ly_errno) {
return EXIT_FAILURE;
} else {
/* safe deferred removal */
to_free = iter;
next2 = NULL;
goto nextsiblings;
}
}
/* validation successful */
iter->validity = LYD_VAL_OK;
/* where go next? - modified LY_TREE_DFS_END */
if (iter->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_ANYXML)) {
next2 = NULL;
} else {
next2 = iter->child;
}
nextsiblings:
if (!next2) {
/* no children */
if (iter == root) {
/* we are done */
break;
}
/* try siblings */
next2 = iter->next;
}
while (!next2) {
iter = iter->parent;
/* parent is already processed, go to its sibling */
if (iter->parent == root->parent) {
/* we are done */
break;
}
next2 = iter->next;
} /* end of modified LY_TREE_DFS_END */
}
if (to_free) {
if (node == to_free) {
/* we shouldn't be here */
assert(0);
}
lyd_free(to_free);
to_free = NULL;
}
if (options & LYD_OPT_NOSIBLINGS) {
break;
}
}
return EXIT_SUCCESS;
}
/* create an attribute copy */
static struct lyd_attr *
lyd_dup_attr(struct ly_ctx *ctx, struct lyd_node *parent, struct lyd_attr *attr)
{
struct lyd_attr *ret;
/* allocate new attr */
if (!parent->attr) {
parent->attr = malloc(sizeof *parent->attr);
ret = parent->attr;
} else {
for (ret = parent->attr; ret->next; ret = ret->next);
ret->next = malloc(sizeof *ret);
ret = ret->next;
}
if (!ret) {
LOGMEM;
return NULL;
}
/* fill new attr except */
ret->next = NULL;
ret->module = attr->module;
ret->name = lydict_insert(ctx, attr->name, 0);
ret->value = lydict_insert(ctx, attr->value, 0);
return ret;
}
API int
lyd_unlink(struct lyd_node *node)
{
struct lyd_node *iter, *next;
struct ly_set *set, *data;
unsigned int i, j;
if (!node) {
ly_errno = LY_EINVAL;
return EXIT_FAILURE;
}
/* fix leafrefs */
LY_TREE_DFS_BEGIN(node, next, iter) {
/* the node is target of a leafref */
if ((iter->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST)) && iter->schema->child) {
set = (struct ly_set *)iter->schema->child;
for (i = 0; i < set->number; i++) {
data = lyd_get_node2(iter, set->set.s[i]);
if (data) {
for (j = 0; j < data->number; j++) {
if (((struct lyd_node_leaf_list *)data->set.d[j])->value.leafref == iter) {
/* remove reference to the node we are going to replace */
((struct lyd_node_leaf_list *)data->set.d[j])->value.leafref = NULL;
}
}
ly_set_free(data);
}
}
}
LY_TREE_DFS_END(node, next, iter)
}
/* unlink from siblings */
if (node->prev->next) {
node->prev->next = node->next;
}
if (node->next) {
node->next->prev = node->prev;
} else {
/* unlinking the last node */
if (node->parent) {
iter = node->parent->child;
} else {
iter = node->prev;
while (iter->prev != node) {
iter = iter->prev;
}
}
/* update the "last" pointer from the first node */
iter->prev = node->prev;
}
/* unlink from parent */
if (node->parent) {
if (node->parent->child == node) {
/* the node is the first child */
node->parent->child = node->next;
}
node->parent = NULL;
}
node->next = NULL;
node->prev = node;
return EXIT_SUCCESS;
}
API struct lyd_node *
lyd_dup(const struct lyd_node *node, int recursive)
{
const struct lyd_node *next, *elem;
struct lyd_node *ret, *parent, *new_node;
struct lyd_attr *attr;
struct lyd_node_leaf_list *new_leaf;
struct lyd_node_anyxml *new_axml;
struct lys_type *type;
if (!node) {
ly_errno = LY_EINVAL;
return NULL;
}
ret = NULL;
parent = NULL;
/* LY_TREE_DFS */
for (elem = next = node; elem; elem = next) {
/* fill specific part */
switch (elem->schema->nodetype) {
case LYS_LEAF:
case LYS_LEAFLIST:
new_leaf = malloc(sizeof *new_leaf);
new_node = (struct lyd_node *)new_leaf;
if (!new_node) {
LOGMEM;
return NULL;
}
new_leaf->value = ((struct lyd_node_leaf_list *)elem)->value;
new_leaf->value_str = lydict_insert(elem->schema->module->ctx,
((struct lyd_node_leaf_list *)elem)->value_str, 0);
new_leaf->value_type = ((struct lyd_node_leaf_list *)elem)->value_type;
/* bits type must be treated specially */
if (new_leaf->value_type == LY_TYPE_BITS) {
for (type = &((struct lys_node_leaf *)elem->schema)->type; type->der->module; type = &type->der->type) {
if (type->base != LY_TYPE_BITS) {
LOGINT;
lyd_free(new_node);
lyd_free(ret);
return NULL;
}
}
new_leaf->value.bit = malloc(type->info.bits.count * sizeof *new_leaf->value.bit);
if (!new_leaf->value.bit) {
LOGMEM;
lyd_free(new_node);
lyd_free(ret);
return NULL;
}
memcpy(new_leaf->value.bit, ((struct lyd_node_leaf_list *)elem)->value.bit,
type->info.bits.count * sizeof *new_leaf->value.bit);
}
break;
case LYS_ANYXML:
new_axml = malloc(sizeof *new_axml);
new_node = (struct lyd_node *)new_axml;
if (!new_node) {
LOGMEM;
return NULL;
}
new_axml->value = lyxml_dup_elem(elem->schema->module->ctx, ((struct lyd_node_anyxml *)elem)->value,
NULL, 1);
break;
case LYS_CONTAINER:
case LYS_LIST:
case LYS_NOTIF:
case LYS_RPC:
new_node = malloc(sizeof *new_node);
if (!new_node) {
LOGMEM;
return NULL;
}
new_node->child = NULL;
break;
default:
lyd_free(ret);
LOGINT;
return NULL;
}
/* fill common part */
new_node->schema = elem->schema;
new_node->attr = NULL;
LY_TREE_FOR(elem->attr, attr) {
lyd_dup_attr(elem->schema->module->ctx, new_node, attr);
}
new_node->next = NULL;
new_node->prev = new_node;
new_node->parent = NULL;
new_node->validity = LYD_VAL_NOT;
if (!ret) {
ret = new_node;
}
if (parent) {
if (lyd_insert(parent, new_node)) {
lyd_free(ret);
LOGINT;
return NULL;
}
}
if (!recursive) {
break;
}
/* LY_TREE_DFS_END */
/* select element for the next run - children first */
next = elem->child;
/* child exception for lyd_node_leaf and lyd_node_leaflist */
if (elem->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_ANYXML)) {
next = NULL;
}
if (!next) {
/* no children, so try siblings */
next = elem->next;
} else {
parent = new_node;
}
while (!next) {
/* no siblings, go back through parents */
elem = elem->parent;
if (elem->parent == node->parent) {
break;
}
if (!parent) {
lyd_free(ret);
LOGINT;
return NULL;
}
parent = parent->parent;
/* parent is already processed, go to its sibling */
next = elem->next;
}
}
return ret;
}
API void
lyd_free_attr(struct ly_ctx *ctx, struct lyd_node *parent, struct lyd_attr *attr, int recursive)
{
struct lyd_attr *iter;
if (!ctx || !attr) {
return;
}
if (parent) {
if (parent->attr == attr) {
if (recursive) {
parent->attr = NULL;
} else {
parent->attr = attr->next;
}
} else {
for (iter = parent->attr; iter->next != attr; iter = iter->next);
if (iter->next) {
if (recursive) {
iter->next = NULL;
} else {
iter->next = attr->next;
}
}
}
}
if (!recursive) {
attr->next = NULL;
}
for(iter = attr; iter; ) {
attr = iter;
iter = iter->next;
lydict_remove(ctx, attr->name);
lydict_remove(ctx, attr->value);
free(attr);
}
}
struct lyd_node *
lyd_attr_parent(struct lyd_node *root, struct lyd_attr *attr)
{
struct lyd_node *next, *elem;
struct lyd_attr *node_attr;
LY_TREE_DFS_BEGIN(root, next, elem) {
for (node_attr = elem->attr; node_attr; node_attr = node_attr->next) {
if (node_attr == attr) {
return elem;
}
}
LY_TREE_DFS_END(root, next, elem)
}
return NULL;
}
API struct lyd_attr *
lyd_insert_attr(struct lyd_node *parent, const char *name, const char *value)
{
struct lyd_attr *a, *iter;
struct ly_ctx *ctx;
const struct lys_module *module;
const char *p;
char *aux;
if (!parent || !name || !value) {
return NULL;
}
ctx = parent->schema->module->ctx;
if ((p = strchr(name, ':'))) {
/* search for the namespace */
aux = strndup(name, p - name);
if (!aux) {
LOGMEM;
return NULL;
}
module = ly_ctx_get_module(ctx, aux, NULL);
free(aux);
name = p + 1;
if (!module) {
/* module not found */
LOGERR(LY_EINVAL, "Attribute prefix does not match any schema in the context.");
return NULL;
}
} else {
/* no prefix -> module is the same as for the parent */
module = parent->schema->module;
}
a = malloc(sizeof *a);
if (!a) {
LOGMEM;
return NULL;
}
a->module = (struct lys_module *)module;
a->next = NULL;
a->name = lydict_insert(ctx, name, 0);
a->value = lydict_insert(ctx, value, 0);
if (!parent->attr) {
parent->attr = a;
} else {
for (iter = parent->attr; iter->next; iter = iter->next);
iter->next = a;
}
return a;
}
API void
lyd_free(struct lyd_node *node)
{
struct lyd_node *next, *iter;
if (!node) {
return;
}
if (!(node->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_ANYXML))) {
/* free children */
LY_TREE_FOR_SAFE(node->child, next, iter) {
lyd_free(iter);
}
} else if (node->schema->nodetype == LYS_ANYXML) {
lyxml_free(node->schema->module->ctx, ((struct lyd_node_anyxml *)node)->value);
} else { /* LYS_LEAF | LYS_LEAFLIST */
/* free value */
switch (((struct lyd_node_leaf_list *)node)->value_type) {
case LY_TYPE_BINARY:
case LY_TYPE_STRING:
lydict_remove(node->schema->module->ctx, ((struct lyd_node_leaf_list *)node)->value.string);
break;
case LY_TYPE_BITS:
if (((struct lyd_node_leaf_list *)node)->value.bit) {
free(((struct lyd_node_leaf_list *)node)->value.bit);
}
break;
default:
lydict_remove(node->schema->module->ctx, ((struct lyd_node_leaf_list *)node)->value_str);
break;
}
}
lyd_unlink(node);
lyd_free_attr(node->schema->module->ctx, node, node->attr, 1);
free(node);
}
API void
lyd_free_withsiblings(struct lyd_node *node)
{
struct lyd_node *iter, *aux;
if (!node) {
return;
}
/* optimization - avoid freeing (unlinking) the last node of the siblings list */
/* so, first, free the node's predecessors to the beginning of the list ... */
for(iter = node->prev; iter->next; iter = aux) {
aux = iter->prev;
lyd_free(iter);
}
/* ... then, the node is the first in the siblings list, so free them all */
LY_TREE_FOR_SAFE(node, aux, iter) {
lyd_free(iter);
}
}
int
lyd_compare(struct lyd_node *first, struct lyd_node *second, int unique)
{
struct lys_node_list *slist;
const struct lys_node *snode = NULL;
struct lyd_node *diter;
const char *val1, *val2;
int i, j;
assert(first);
assert(second);
if (first->schema != second->schema) {
return 1;
}
switch (first->schema->nodetype) {
case LYS_LEAFLIST:
/* compare values */
if (ly_strequal(((struct lyd_node_leaf_list *)first)->value_str,
((struct lyd_node_leaf_list *)second)->value_str, 1)) {
return 0;
}
return 1;
case LYS_LIST:
slist = (struct lys_node_list *)first->schema;
if (unique) {
/* compare unique leafs */
for (i = 0; i < slist->unique_size; i++) {
for (j = 0; j < slist->unique[i].expr_size; j++) {
/* first */
diter = resolve_data_descendant_schema_nodeid(slist->unique[i].expr[j], first->child);
if (diter) {
val1 = ((struct lyd_node_leaf_list *)diter)->value_str;
} else {
/* use default value */
if (resolve_descendant_schema_nodeid(slist->unique[i].expr[j], first->schema->child, LYS_LEAF, &snode)) {
/* error, but unique expression was checked when the schema was parsed */
return -1;
}
val1 = ((struct lys_node_leaf *)snode)->dflt;
}
/* second */
diter = resolve_data_descendant_schema_nodeid(slist->unique[i].expr[j], second->child);
if (diter) {
val2 = ((struct lyd_node_leaf_list *)diter)->value_str;
} else {
/* use default value */
if (resolve_descendant_schema_nodeid(slist->unique[i].expr[j], second->schema->child, LYS_LEAF, &snode)) {
/* error, but unique expression was checked when the schema was parsed */
return -1;
}
val2 = ((struct lys_node_leaf *)snode)->dflt;
}
if (!ly_strequal(val1, val2, 1)) {
break;
}
}
if (j && j == slist->unique[i].expr_size) {
/* all unique leafs are the same in this set */
return 0;
}
}
}
if (second->validity == LYD_VAL_UNIQUE) {
/* only unique part changed somewhere, so it is no need to check keys */
return 0;
}
/* compare keys */
for (i = 0; i < slist->keys_size; i++) {
snode = (struct lys_node *)slist->keys[i];
val1 = val2 = NULL;
LY_TREE_FOR(first->child, diter) {
if (diter->schema == snode) {
val1 = ((struct lyd_node_leaf_list *)diter)->value_str;
break;
}
}
LY_TREE_FOR(second->child, diter) {
if (diter->schema == snode) {
val2 = ((struct lyd_node_leaf_list *)diter)->value_str;
break;
}
}
if (!ly_strequal(val1, val2, 1)) {
return 1;
}
}
return 0;
default:
/* no additional check is needed */
return 0;
}
}
API struct ly_set *
lyd_get_node(const struct lyd_node *data, const char *expr)
{
struct lyxp_set xp_set;
struct ly_set *set;
uint16_t i;
if (!data || !expr) {
ly_errno = LY_EINVAL;
return NULL;
}
memset(&xp_set, 0, sizeof xp_set);
if (lyxp_eval(expr, data, &xp_set, 0, 0) != EXIT_SUCCESS) {
return NULL;
}
set = ly_set_new();
if (!set) {
LOGMEM;
return NULL;
}
if (xp_set.type == LYXP_SET_NODE_SET) {
for (i = 0; i < xp_set.used; ++i) {
if ((xp_set.node_type[i] == LYXP_NODE_ELEM) || (xp_set.node_type[i] == LYXP_NODE_TEXT)) {
if (ly_set_add(set, xp_set.value.nodes[i])) {
ly_set_free(set);
set = NULL;
break;
}
}
}
}
lyxp_set_cast(&xp_set, LYXP_SET_EMPTY, data, 0);
return set;
}
API struct ly_set *
lyd_get_node2(const struct lyd_node *data, const struct lys_node *schema)
{
struct ly_set *ret, *ret_aux, *spath;
const struct lys_node *siter;
struct lyd_node *iter;
unsigned int i, j;
if (!data || !schema ||
!(schema->nodetype & (LYS_CONTAINER | LYS_LEAF | LYS_LIST | LYS_ANYXML | LYS_NOTIF | LYS_RPC))) {
ly_errno = LY_EINVAL;
return NULL;
}
ret = ly_set_new();
spath = ly_set_new();
if (!ret || !spath) {
LOGMEM;
goto error;
}
/* find data root */
while (data->parent) {
/* vertical move (up) */
data = data->parent;
}
while (data->prev->next) {
/* horizontal move (left) */
data = data->prev;
}
/* build schema path */
for (siter = schema; siter; ) {
if (siter->nodetype == LYS_AUGMENT) {
siter = ((struct lys_node_augment *)siter)->target;
continue;
} else if (siter->nodetype == LYS_OUTPUT) {
/* done for RPC reply */
break;
} else if (siter->nodetype & (LYS_CONTAINER | LYS_LEAF | LYS_LIST | LYS_ANYXML | LYS_NOTIF | LYS_RPC)) {
/* standard data node */
ly_set_add(spath, (void*)siter);
} /* else skip the rest node types */
siter = siter->parent;
}
if (!spath->number) {
/* no valid path */
goto error;
}
/* start searching */
LY_TREE_FOR((struct lyd_node *)data, iter) {
if (iter->schema == spath->set.s[spath->number - 1]) {
ly_set_add(ret, iter);
}
}
for (i = spath->number - 1; i; i--) {
if (!ret->number) {
/* nothing found */
break;
}
ret_aux = ly_set_new();
if (!ret_aux) {
LOGMEM;
goto error;
}
for (j = 0; j < ret->number; j++) {
LY_TREE_FOR(ret->set.d[j]->child, iter) {
if (iter->schema == spath->set.s[i - 1]) {
ly_set_add(ret_aux, iter);
}
}
}
ly_set_free(ret);
ret = ret_aux;
}
ly_set_free(spath);
return ret;
error:
ly_set_free(ret);
ly_set_free(spath);
return NULL;
}
API struct ly_set *
lyd_get_list_keys(const struct lyd_node *list)
{
struct lyd_node *key;
struct lys_node_list *slist;
struct ly_set *set;
unsigned int i;
if (!list || (list->schema->nodetype != LYS_LIST)) {
ly_errno = LY_EINVAL;
return NULL;
}
slist = (struct lys_node_list *)list->schema;
set = ly_set_new();
if (!set) {
LOGMEM;
return NULL;
}
for (i = 0; i < slist->keys_size; ++i) {
key = resolve_data_descendant_schema_nodeid(slist->keys[i]->name, list->child);
if (key) {
ly_set_add(set, key);
}
}
return set;
}
API struct ly_set *
ly_set_new(void)
{
return calloc(1, sizeof(struct ly_set));
}
API void
ly_set_free(struct ly_set *set)
{
if (!set) {
return;
}
free(set->set.g);
free(set);
}
API int
ly_set_add(struct ly_set *set, void *node)
{
unsigned int i;
void **new;
if (!set || !node) {
ly_errno = LY_EINVAL;
return EXIT_FAILURE;
}
/* search for duplication */
for (i = 0; i < set->number; i++) {
if (set->set.g[i] == node) {
/* already in set */
return EXIT_SUCCESS;
}
}
if (set->size == set->number) {
new = realloc(set->set.g, (set->size + 8) * sizeof *(set->set.g));
if (!new) {
LOGMEM;
return EXIT_FAILURE;
}
set->size += 8;
set->set.g = new;
}
set->set.g[set->number++] = node;
return EXIT_SUCCESS;
}
API int
ly_set_rm_index(struct ly_set *set, unsigned int index)
{
if (!set || (index + 1) > set->number) {
ly_errno = LY_EINVAL;
return EXIT_FAILURE;
}
if (index == set->number - 1) {
/* removing last item in set */
set->set.g[index] = NULL;
} else {
/* removing item somewhere in a middle, so put there the last item */
set->set.g[index] = set->set.g[set->number - 1];
set->set.g[set->number - 1] = NULL;
}
set->number--;
return EXIT_SUCCESS;
}
API int
ly_set_rm(struct ly_set *set, void *node)
{
unsigned int i;
if (!set || !node) {
ly_errno = LY_EINVAL;
return EXIT_FAILURE;
}
/* get index */
for (i = 0; i < set->number; i++) {
if (set->set.g[i] == node) {
break;
}
}
if (i == set->number) {
/* node is not in set */
ly_errno = LY_EINVAL;
return EXIT_FAILURE;
}
return ly_set_rm_index(set, i);
}