blob: 14b558a644e3810d1be1cb78352ffe32a9b8f36f [file] [log] [blame]
/**
* @file tree_data_common.c
* @author Radek Krejci <rkrejci@cesnet.cz>
* @author Michal Vasko <mvasko@cesnet.cz>
* @brief Parsing and validation common functions for data trees
*
* Copyright (c) 2015 - 2024 CESNET, z.s.p.o.
*
* This source code is licensed under BSD 3-Clause License (the "License").
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*/
#define _GNU_SOURCE /* asprintf, strdup */
#include <assert.h>
#include <ctype.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "compat.h"
#include "context.h"
#include "dict.h"
#include "hash_table.h"
#include "log.h"
#include "ly_common.h"
#include "lyb.h"
#include "metadata.h"
#include "parser_data.h"
#include "plugins_exts.h"
#include "printer_data.h"
#include "set.h"
#include "tree.h"
#include "tree_data.h"
#include "tree_data_internal.h"
#include "tree_edit.h"
#include "tree_schema.h"
#include "tree_schema_internal.h"
#include "validation.h"
#include "xml.h"
#include "xpath.h"
/**
* @brief Callback for checking first instance hash table values equivalence.
*
* @param[in] val1_p If not @p mod, pointer to the first instance.
* @param[in] val2_p If not @p mod, pointer to the found dup inst item.
*/
static ly_bool
lyht_dup_inst_ht_equal_cb(void *val1_p, void *val2_p, ly_bool mod, void *UNUSED(cb_data))
{
if (mod) {
struct lyd_dup_inst **item1 = val1_p, **item2 = val2_p;
/* equal on 2 dup inst items */
return *item1 == *item2 ? 1 : 0;
} else {
struct lyd_node **first_inst = val1_p;
struct lyd_dup_inst **item = val2_p;
/* equal on dup inst item and a first instance */
return (*item)->set->dnodes[0] == *first_inst ? 1 : 0;
}
}
/**
* @brief Find an entry in duplicate instance cache for an instance. Create it if it does not exist.
*
* @param[in] first_inst First instance of the cache entry.
* @param[in] dup_inst_ht Duplicate instance cache hash table.
* @return Instance cache entry.
*/
static struct lyd_dup_inst *
lyd_dup_inst_get(const struct lyd_node *first_inst, struct ly_ht **dup_inst_ht)
{
struct lyd_dup_inst **item_p, *item;
if (*dup_inst_ht) {
/* find the item of the first instance */
if (!lyht_find(*dup_inst_ht, &first_inst, first_inst->hash, (void **)&item_p)) {
return *item_p;
}
} else {
/* create the hash table */
*dup_inst_ht = lyht_new(2, sizeof item, lyht_dup_inst_ht_equal_cb, NULL, 1);
LY_CHECK_RET(!*dup_inst_ht, NULL);
}
/* first instance has no dup inst item, create it */
item = calloc(1, sizeof *item);
LY_CHECK_RET(!item, NULL);
/* add into the hash table */
if (lyht_insert(*dup_inst_ht, &item, first_inst->hash, NULL)) {
return NULL;
}
return item;
}
LY_ERR
lyd_dup_inst_next(struct lyd_node **inst, const struct lyd_node *siblings, struct ly_ht **dup_inst_ht)
{
struct lyd_dup_inst *dup_inst;
if (!*inst) {
/* no match, inst is unchanged */
return LY_SUCCESS;
}
/* there can be more exact same instances (even if not allowed in invalid data) and we must make sure we do not
* match a single node more times */
dup_inst = lyd_dup_inst_get(*inst, dup_inst_ht);
LY_CHECK_ERR_RET(!dup_inst, LOGMEM(LYD_CTX(siblings)), LY_EMEM);
if (!dup_inst->used) {
/* we did not cache these instances yet, do so */
lyd_find_sibling_dup_inst_set(siblings, *inst, &dup_inst->set);
assert(dup_inst->set->count && (dup_inst->set->dnodes[0] == *inst));
}
if (dup_inst->used == dup_inst->set->count) {
if (lysc_is_dup_inst_list((*inst)->schema)) {
/* we have used all the instances */
*inst = NULL;
} /* else just keep using the last (ideally only) instance */
} else {
assert(dup_inst->used < dup_inst->set->count);
/* use another instance */
*inst = dup_inst->set->dnodes[dup_inst->used];
++dup_inst->used;
}
return LY_SUCCESS;
}
/**
* @brief Callback for freeing first instance hash table values.
*/
static void
lyht_dup_inst_ht_free_cb(void *val_p)
{
struct lyd_dup_inst **item = val_p;
ly_set_free((*item)->set, NULL);
free(*item);
}
void
lyd_dup_inst_free(struct ly_ht *dup_inst_ht)
{
lyht_free(dup_inst_ht, lyht_dup_inst_ht_free_cb);
}
struct lyd_node *
lys_getnext_data(const struct lyd_node *last, const struct lyd_node *sibling, const struct lysc_node **slast,
const struct lysc_node *parent, const struct lysc_module *module)
{
const struct lysc_node *siter = NULL;
struct lyd_node *match = NULL;
assert(parent || module);
assert(!last || (slast && *slast));
if (slast) {
siter = *slast;
}
if (last && last->next && (last->next->schema == siter)) {
/* return next data instance */
return last->next;
}
/* find next schema node data instance */
while ((siter = lys_getnext(siter, parent, module, 0))) {
if (!lyd_find_sibling_val(sibling, siter, NULL, 0, &match)) {
break;
}
}
if (slast) {
*slast = siter;
}
return match;
}
struct lyd_node **
lyd_node_child_p(struct lyd_node *node)
{
assert(node);
if (!node->schema) {
return &((struct lyd_node_opaq *)node)->child;
} else {
switch (node->schema->nodetype) {
case LYS_CONTAINER:
case LYS_LIST:
case LYS_RPC:
case LYS_ACTION:
case LYS_NOTIF:
return &((struct lyd_node_inner *)node)->child;
default:
return NULL;
}
}
}
LIBYANG_API_DEF LY_ERR
lyxp_vars_set(struct lyxp_var **vars, const char *name, const char *value)
{
LY_ERR ret = LY_SUCCESS;
char *var_name = NULL, *var_value = NULL;
struct lyxp_var *item;
if (!vars || !name || !value) {
return LY_EINVAL;
}
/* if variable is already defined then change its value */
if (*vars && !lyxp_vars_find(NULL, *vars, name, 0, &item)) {
var_value = strdup(value);
LY_CHECK_RET(!var_value, LY_EMEM);
/* update value */
free(item->value);
item->value = var_value;
} else {
var_name = strdup(name);
var_value = strdup(value);
LY_CHECK_ERR_GOTO(!var_name || !var_value, ret = LY_EMEM, error);
/* add new variable */
LY_ARRAY_NEW_GOTO(NULL, *vars, item, ret, error);
item->name = var_name;
item->value = var_value;
}
return LY_SUCCESS;
error:
free(var_name);
free(var_value);
return ret;
}
LIBYANG_API_DEF void
lyxp_vars_free(struct lyxp_var *vars)
{
LY_ARRAY_COUNT_TYPE u;
if (!vars) {
return;
}
LY_ARRAY_FOR(vars, u) {
free(vars[u].name);
free(vars[u].value);
}
LY_ARRAY_FREE(vars);
}
LIBYANG_API_DEF struct lyd_node *
lyd_child_no_keys(const struct lyd_node *node)
{
struct lyd_node **children;
if (!node) {
return NULL;
}
if (!node->schema) {
/* opaq node */
return ((struct lyd_node_opaq *)node)->child;
}
children = lyd_node_child_p((struct lyd_node *)node);
if (children) {
struct lyd_node *child = *children;
while (child && child->schema && (child->schema->flags & LYS_KEY)) {
child = child->next;
}
return child;
} else {
return NULL;
}
}
LIBYANG_API_DEF const struct lys_module *
lyd_owner_module(const struct lyd_node *node)
{
const struct lyd_node_opaq *opaq;
if (!node) {
return NULL;
}
while (!node->schema && node->parent) {
node = lyd_parent(node);
}
if (!node->schema) {
/* top-level opaque node */
opaq = (struct lyd_node_opaq *)node;
switch (opaq->format) {
case LY_VALUE_XML:
if (opaq->name.module_ns) {
return ly_ctx_get_module_implemented_ns(LYD_CTX(node), opaq->name.module_ns);
}
break;
case LY_VALUE_JSON:
if (opaq->name.module_name) {
return ly_ctx_get_module_implemented(LYD_CTX(node), opaq->name.module_name);
}
break;
default:
return NULL;
}
return NULL;
}
return lysc_owner_module(node->schema);
}
LIBYANG_API_DEF const struct lys_module *
lyd_node_module(const struct lyd_node *node)
{
const struct lyd_node_opaq *opaq;
while (node) {
/* data node */
if (node->schema) {
return node->schema->module;
}
/* opaque node */
opaq = (struct lyd_node_opaq *)node;
switch (opaq->format) {
case LY_VALUE_XML:
if (opaq->name.module_ns) {
return ly_ctx_get_module_implemented_ns(LYD_CTX(node), opaq->name.module_ns);
}
break;
case LY_VALUE_JSON:
if (opaq->name.module_name) {
return ly_ctx_get_module_implemented(LYD_CTX(node), opaq->name.module_name);
}
break;
default:
break;
}
node = lyd_parent(node);
}
return NULL;
}
void
lyd_first_module_sibling(struct lyd_node **node, const struct lys_module *mod)
{
int cmp;
struct lyd_node *first;
const struct lys_module *own_mod;
assert(node && mod);
if (!*node) {
return;
}
first = *node;
own_mod = lyd_owner_module(first);
cmp = own_mod ? strcmp(own_mod->name, mod->name) : 1;
if (cmp > 0) {
/* there may be some preceding data */
while (first->prev->next) {
first = first->prev;
if (lyd_owner_module(first) == mod) {
cmp = 0;
break;
}
}
}
if (cmp == 0) {
/* there may be some preceding data belonging to this module */
while (first->prev->next) {
if (lyd_owner_module(first->prev) != mod) {
break;
}
first = first->prev;
}
}
if (cmp < 0) {
/* there may be some following data */
LY_LIST_FOR(first, first) {
if (lyd_owner_module(first) == mod) {
cmp = 0;
break;
}
}
}
if (cmp == 0) {
/* we have found the first module data node */
*node = first;
}
}
const struct lys_module *
lyd_mod_next_module(struct lyd_node *tree, const struct lys_module *module, const struct ly_ctx *ctx, uint32_t *i,
struct lyd_node **first)
{
struct lyd_node *iter;
const struct lys_module *mod;
/* get the next module */
if (module) {
if (*i) {
mod = NULL;
} else {
mod = module;
++(*i);
}
} else {
do {
mod = ly_ctx_get_module_iter(ctx, i);
} while (mod && !mod->implemented);
}
/* find its data */
*first = NULL;
if (mod) {
LY_LIST_FOR(tree, iter) {
if (lyd_owner_module(iter) == mod) {
*first = iter;
break;
}
}
}
return mod;
}
const struct lys_module *
lyd_data_next_module(struct lyd_node **next, struct lyd_node **first)
{
const struct lys_module *mod;
if (!*next) {
/* all data traversed */
*first = NULL;
return NULL;
}
*first = *next;
/* prepare next */
mod = lyd_owner_module(*next);
LY_LIST_FOR(*next, *next) {
if (lyd_owner_module(*next) != mod) {
break;
}
}
return mod;
}
/**
* @brief Log generated error item and use log location information if not in the error item.
*
* @param[in] ctx Context to use.
* @param[in] node Optional data node to log.
* @param[in] scnode Optional schema node to log.
* @param[in] eitem Error item to log.
*/
static void
ly_err_print_build_path(const struct ly_ctx *ctx, const struct lyd_node *node, const struct lysc_node *scnode,
struct ly_err_item *eitem)
{
if (eitem->data_path || eitem->schema_path || eitem->line) {
ly_err_print(ctx, eitem);
} else {
if (node) {
LOG_LOCSET(NULL, node);
} else if (scnode) {
LOG_LOCSET(scnode, NULL);
}
ly_vlog(ctx, eitem->apptag, eitem->err == LY_EVALID ? eitem->vecode : LYVE_DATA, "%s", eitem->msg);
if (node) {
LOG_LOCBACK(0, 1);
} else if (scnode) {
LOG_LOCBACK(1, 0);
}
}
}
LY_ERR
lyd_value_store(const struct ly_ctx *ctx, struct lyd_value *val, const struct lysc_type *type, const void *value,
size_t value_len, ly_bool is_utf8, ly_bool store_only, ly_bool *dynamic, LY_VALUE_FORMAT format, void *prefix_data,
uint32_t hints, const struct lysc_node *ctx_node, ly_bool *incomplete)
{
LY_ERR ret;
struct ly_err_item *err = NULL;
uint32_t options = 0;
if (!value) {
value = "";
}
if (incomplete) {
*incomplete = 0;
}
if (dynamic && *dynamic) {
options |= LYPLG_TYPE_STORE_DYNAMIC;
}
if (is_utf8) {
options |= LYPLG_TYPE_STORE_IS_UTF8;
}
if (store_only) {
options |= LYPLG_TYPE_STORE_ONLY;
}
ret = type->plugin->store(ctx, type, value, value_len, options, format, prefix_data, hints, ctx_node, val, NULL, &err);
if (dynamic) {
*dynamic = 0;
}
if (ret == LY_EINCOMPLETE) {
if (incomplete) {
*incomplete = 1;
}
} else if (ret) {
if (err) {
ly_err_print_build_path(ctx, NULL, ctx_node, err);
ly_err_free(err);
} else {
LOGVAL(ctx, LYVE_OTHER, "Storing value failed.");
}
return ret;
}
return LY_SUCCESS;
}
LY_ERR
lyd_value_validate_incomplete(const struct ly_ctx *ctx, const struct lysc_type *type, struct lyd_value *val,
const struct lyd_node *ctx_node, const struct lyd_node *tree)
{
LY_ERR ret;
struct ly_err_item *err = NULL;
assert(type->plugin->validate);
ret = type->plugin->validate(ctx, type, ctx_node, tree, val, &err);
if (ret) {
if (err) {
ly_err_print_build_path(ctx, ctx_node, NULL, err);
ly_err_free(err);
} else {
LOGVAL(ctx, LYVE_OTHER, "Resolving value \"%s\" failed.",
(char *)type->plugin->print(ctx, val, LY_VALUE_CANON, NULL, NULL, NULL));
}
return ret;
}
return LY_SUCCESS;
}
LY_ERR
ly_value_validate(const struct ly_ctx *ctx, const struct lysc_node *node, const char *value, size_t value_len,
LY_VALUE_FORMAT format, void *prefix_data, uint32_t hints)
{
LY_ERR rc = LY_SUCCESS;
struct ly_err_item *err = NULL;
struct lyd_value storage;
struct lysc_type *type;
LY_CHECK_ARG_RET(ctx, node, LY_EINVAL);
if (!(node->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGARG(ctx, node);
return LY_EINVAL;
}
type = ((struct lysc_node_leaf *)node)->type;
rc = type->plugin->store(ctx ? ctx : node->module->ctx, type, value, value_len, 0, format, prefix_data, hints, node,
&storage, NULL, &err);
if (rc == LY_EINCOMPLETE) {
/* actually success since we do not provide the context tree and call validation with
* LY_TYPE_OPTS_INCOMPLETE_DATA */
rc = LY_SUCCESS;
} else if (rc && err) {
if (ctx) {
/* log only in case the ctx was provided as input parameter */
ly_err_print_build_path(ctx, NULL, node, err);
}
ly_err_free(err);
}
if (!rc) {
type->plugin->free(ctx ? ctx : node->module->ctx, &storage);
}
return rc;
}
LIBYANG_API_DEF LY_ERR
lyd_value_validate(const struct ly_ctx *ctx, const struct lysc_node *schema, const char *value, size_t value_len,
const struct lyd_node *ctx_node, const struct lysc_type **realtype, const char **canonical)
{
LY_ERR rc;
struct ly_err_item *err = NULL;
struct lysc_type *type;
struct lyd_value val = {0};
ly_bool stored = 0, log = 1;
LY_CHECK_ARG_RET(ctx, schema, !value_len || value, LY_EINVAL);
if (!ctx) {
ctx = schema->module->ctx;
log = 0;
}
if (!value_len) {
value = "";
}
type = ((struct lysc_node_leaf *)schema)->type;
/* store */
rc = type->plugin->store(ctx, type, value, value_len, 0, LY_VALUE_JSON, NULL,
LYD_HINT_DATA, schema, &val, NULL, &err);
if (!rc || (rc == LY_EINCOMPLETE)) {
stored = 1;
}
if (ctx_node && (rc == LY_EINCOMPLETE)) {
/* resolve */
rc = type->plugin->validate(ctx, type, ctx_node, ctx_node, &val, &err);
}
if (rc && (rc != LY_EINCOMPLETE) && err) {
if (log) {
/* log error */
ly_err_print_build_path(ctx, ctx_node, schema, err);
}
ly_err_free(err);
}
if (!rc || (rc == LY_EINCOMPLETE)) {
if (realtype) {
/* return realtype */
if (val.realtype->basetype == LY_TYPE_UNION) {
*realtype = val.subvalue->value.realtype;
} else {
*realtype = val.realtype;
}
}
if (canonical) {
/* return canonical value */
lydict_insert(ctx, val.realtype->plugin->print(ctx, &val, LY_VALUE_CANON, NULL, NULL, NULL), 0, canonical);
}
}
if (stored) {
/* free value */
type->plugin->free(ctx ? ctx : schema->module->ctx, &val);
}
return rc;
}
LIBYANG_API_DEF LY_ERR
lyd_value_compare(const struct lyd_node_term *node, const char *value, size_t value_len)
{
LY_ERR ret = LY_SUCCESS;
struct ly_ctx *ctx;
struct lysc_type *type;
struct lyd_value val = {0};
LY_CHECK_ARG_RET(node ? node->schema->module->ctx : NULL, node, value, LY_EINVAL);
ctx = node->schema->module->ctx;
type = ((struct lysc_node_leaf *)node->schema)->type;
/* store the value */
LOG_LOCSET(NULL, &node->node);
ret = lyd_value_store(ctx, &val, type, value, value_len, 0, 0, NULL, LY_VALUE_JSON, NULL, LYD_HINT_DATA, node->schema, NULL);
LOG_LOCBACK(0, 1);
LY_CHECK_RET(ret);
/* compare values */
ret = type->plugin->compare(ctx, &node->value, &val);
type->plugin->free(ctx, &val);
return ret;
}
LIBYANG_API_DEF ly_bool
lyd_is_default(const struct lyd_node *node)
{
const struct lysc_node_leaf *leaf;
const struct lysc_node_leaflist *llist;
const struct lyd_node_term *term;
LY_ARRAY_COUNT_TYPE u;
if (!(node->schema->nodetype & LYD_NODE_TERM)) {
return 0;
}
term = (const struct lyd_node_term *)node;
if (node->schema->nodetype == LYS_LEAF) {
leaf = (const struct lysc_node_leaf *)node->schema;
if (!leaf->dflt) {
return 0;
}
/* compare with the default value */
if (!leaf->type->plugin->compare(LYD_CTX(node), &term->value, leaf->dflt)) {
return 1;
}
} else {
llist = (const struct lysc_node_leaflist *)node->schema;
if (!llist->dflts) {
return 0;
}
LY_ARRAY_FOR(llist->dflts, u) {
/* compare with each possible default value */
if (!llist->type->plugin->compare(LYD_CTX(node), &term->value, llist->dflts[u])) {
return 1;
}
}
}
return 0;
}
LIBYANG_API_DEF uint32_t
lyd_list_pos(const struct lyd_node *instance)
{
const struct lyd_node *iter = NULL;
uint32_t pos = 0;
if (!instance || !(instance->schema->nodetype & (LYS_LIST | LYS_LEAFLIST))) {
return 0;
}
/* data instances are ordered, so we can stop when we found instance of other schema node */
for (iter = instance; iter->schema == instance->schema; iter = iter->prev) {
if (pos && (iter->next == NULL)) {
/* overrun to the end of the siblings list */
break;
}
++pos;
}
return pos;
}
LIBYANG_API_DEF struct lyd_node *
lyd_first_sibling(const struct lyd_node *node)
{
struct lyd_node *start;
if (!node) {
return NULL;
}
/* get the first sibling */
if (node->parent) {
return node->parent->child;
} else if (!node->prev->next) {
return (struct lyd_node *)node;
}
for (start = (struct lyd_node *)node->prev; start->prev->next; start = start->prev) {
assert(start != node);
}
return start;
}
/**
* @brief Check list node parsed into an opaque node for the reason.
*
* @param[in] node Opaque node.
* @param[in] snode Schema node of @p opaq.
* @return LY_SUCCESS if the node is valid;
* @return LY_ERR on error.
*/
static LY_ERR
lyd_parse_opaq_list_error(const struct lyd_node *node, const struct lysc_node *snode)
{
LY_ERR ret = LY_SUCCESS;
struct ly_set key_set = {0};
const struct lysc_node *key = NULL;
const struct lyd_node *child;
const struct lyd_node_opaq *opaq_k;
uint32_t i;
assert(!node->schema);
/* get all keys into a set */
while ((key = lys_getnext(key, snode, NULL, 0)) && (key->flags & LYS_KEY)) {
LY_CHECK_GOTO(ret = ly_set_add(&key_set, (void *)key, 1, NULL), cleanup);
}
LY_LIST_FOR(lyd_child(node), child) {
/* find the key schema node */
for (i = 0; i < key_set.count; ++i) {
key = key_set.snodes[i];
if (!strcmp(key->name, LYD_NAME(child))) {
break;
}
}
if (i == key_set.count) {
/* some other node, skip */
continue;
}
/* key found */
ly_set_rm_index(&key_set, i, NULL);
if (child->schema) {
/* valid key */
continue;
}
/* check value */
opaq_k = (struct lyd_node_opaq *)child;
ret = ly_value_validate(LYD_CTX(node), key, opaq_k->value, strlen(opaq_k->value), opaq_k->format,
opaq_k->val_prefix_data, opaq_k->hints);
LY_CHECK_GOTO(ret, cleanup);
}
if (key_set.count) {
/* missing keys */
LOGVAL(LYD_CTX(node), LY_VCODE_NOKEY, key_set.snodes[0]->name);
ret = LY_EVALID;
goto cleanup;
}
cleanup:
ly_set_erase(&key_set, NULL);
return ret;
}
LIBYANG_API_DEF LY_ERR
lyd_parse_opaq_error(const struct lyd_node *node)
{
LY_ERR rc = LY_SUCCESS;
const struct ly_ctx *ctx;
const struct lyd_node_opaq *opaq;
const struct lyd_node *parent;
const struct lys_module *mod;
const struct lysc_node *sparent, *snode;
uint32_t loc_scnode = 0, loc_dnode = 0;
LY_CHECK_ARG_RET(LYD_CTX(node), node, !node->schema, LY_EINVAL);
ctx = LYD_CTX(node);
opaq = (struct lyd_node_opaq *)node;
parent = lyd_parent(node);
sparent = lyd_node_schema(parent);
/* if parent is NULL, it is still added as root */
LOG_LOCSET(NULL, parent);
loc_dnode = 1;
if (!opaq->name.module_ns) {
LOGVAL(ctx, LYVE_REFERENCE, "Unknown module of node \"%s\".", opaq->name.name);
rc = LY_EVALID;
goto cleanup;
}
/* module */
switch (opaq->format) {
case LY_VALUE_XML:
if (!sparent || strcmp(opaq->name.module_ns, sparent->module->ns)) {
mod = ly_ctx_get_module_implemented_ns(ctx, opaq->name.module_ns);
if (!mod) {
LOGVAL(ctx, LYVE_REFERENCE, "No (implemented) module with namespace \"%s\" of node \"%s\" in the context.",
opaq->name.module_ns, opaq->name.name);
rc = LY_EVALID;
goto cleanup;
}
} else {
/* inherit */
mod = sparent->module;
}
break;
case LY_VALUE_JSON:
case LY_VALUE_LYB:
if (!sparent || strcmp(opaq->name.module_name, sparent->module->name)) {
mod = ly_ctx_get_module_implemented(ctx, opaq->name.module_name);
if (!mod) {
LOGVAL(ctx, LYVE_REFERENCE, "No (implemented) module named \"%s\" of node \"%s\" in the context.",
opaq->name.module_name, opaq->name.name);
rc = LY_EVALID;
goto cleanup;
}
} else {
/* inherit */
mod = sparent->module;
}
break;
default:
LOGERR(ctx, LY_EINVAL, "Unsupported value format.");
rc = LY_EINVAL;
goto cleanup;
}
/* schema */
snode = lys_find_child(sparent, mod, opaq->name.name, 0, 0, 0);
if (!snode && sparent && (sparent->nodetype & (LYS_RPC | LYS_ACTION))) {
/* maybe output node */
snode = lys_find_child(sparent, mod, opaq->name.name, 0, 0, LYS_GETNEXT_OUTPUT);
}
if (!snode) {
if (sparent) {
LOGVAL(ctx, LYVE_REFERENCE, "Node \"%s\" not found as a child of \"%s\" node.", opaq->name.name,
sparent->name);
} else {
LOGVAL(ctx, LYVE_REFERENCE, "Node \"%s\" not found in the \"%s\" module.", opaq->name.name, mod->name);
}
rc = LY_EVALID;
goto cleanup;
}
/* schema node exists */
LOG_LOCBACK(0, 1);
loc_dnode = 0;
LOG_LOCSET(snode, NULL);
loc_scnode = 1;
if (snode->nodetype & LYD_NODE_TERM) {
/* leaf / leaf-list */
rc = ly_value_validate(ctx, snode, opaq->value, strlen(opaq->value), opaq->format, opaq->val_prefix_data, opaq->hints);
LY_CHECK_GOTO(rc, cleanup);
} else if (snode->nodetype == LYS_LIST) {
/* list */
rc = lyd_parse_opaq_list_error(node, snode);
LY_CHECK_GOTO(rc, cleanup);
} else if (snode->nodetype & LYD_NODE_INNER) {
/* inner node */
if (opaq->value) {
LOGVAL(ctx, LYVE_DATA, "Invalid value \"%s\" for %s \"%s\".", opaq->value,
lys_nodetype2str(snode->nodetype), snode->name);
rc = LY_EVALID;
goto cleanup;
}
} else {
LOGERR(ctx, LY_EINVAL, "Unexpected opaque schema node %s \"%s\".", lys_nodetype2str(snode->nodetype), snode->name);
rc = LY_EINVAL;
goto cleanup;
}
LOGERR(ctx, LY_EINVAL, "Unexpected valid opaque node %s \"%s\".", lys_nodetype2str(snode->nodetype), snode->name);
rc = LY_EINVAL;
cleanup:
LOG_LOCBACK(loc_scnode, loc_dnode);
return rc;
}
LIBYANG_API_DEF const char *
lyd_value_get_canonical(const struct ly_ctx *ctx, const struct lyd_value *value)
{
LY_CHECK_ARG_RET(ctx, ctx, value, NULL);
return value->_canonical ? value->_canonical :
(const char *)value->realtype->plugin->print(ctx, value, LY_VALUE_CANON, NULL, NULL, NULL);
}
LIBYANG_API_DEF LY_ERR
lyd_any_value_str(const struct lyd_node *any, char **value_str)
{
const struct lyd_node_any *a;
struct lyd_node *tree = NULL;
const char *str = NULL;
ly_bool dynamic = 0;
LY_ERR ret = LY_SUCCESS;
LY_CHECK_ARG_RET(NULL, any, value_str, LY_EINVAL);
LY_CHECK_ARG_RET(NULL, any->schema, any->schema->nodetype & LYS_ANYDATA, LY_EINVAL);
a = (struct lyd_node_any *)any;
*value_str = NULL;
if (!a->value.str) {
/* there is no value in the union */
return LY_SUCCESS;
}
switch (a->value_type) {
case LYD_ANYDATA_LYB:
/* parse into a data tree */
ret = lyd_parse_data_mem(LYD_CTX(any), a->value.mem, LYD_LYB, LYD_PARSE_ONLY, 0, &tree);
LY_CHECK_GOTO(ret, cleanup);
dynamic = 1;
break;
case LYD_ANYDATA_DATATREE:
tree = a->value.tree;
break;
case LYD_ANYDATA_STRING:
case LYD_ANYDATA_XML:
case LYD_ANYDATA_JSON:
/* simply use the string */
str = a->value.str;
break;
}
if (tree) {
/* print into a string */
ret = lyd_print_mem(value_str, tree, LYD_XML, LYD_PRINT_WITHSIBLINGS);
LY_CHECK_GOTO(ret, cleanup);
} else {
assert(str);
*value_str = strdup(str);
LY_CHECK_ERR_GOTO(!*value_str, LOGMEM(LYD_CTX(any)), cleanup);
}
/* success */
cleanup:
if (dynamic) {
lyd_free_all(tree);
}
return ret;
}
LIBYANG_API_DEF LY_ERR
lyd_any_copy_value(struct lyd_node *trg, const union lyd_any_value *value, LYD_ANYDATA_VALUETYPE value_type)
{
struct lyd_node_any *t;
LY_CHECK_ARG_RET(NULL, trg, LY_EINVAL);
LY_CHECK_ARG_RET(NULL, trg->schema, trg->schema->nodetype & LYS_ANYDATA, LY_EINVAL);
t = (struct lyd_node_any *)trg;
/* free trg */
switch (t->value_type) {
case LYD_ANYDATA_DATATREE:
lyd_free_all(t->value.tree);
break;
case LYD_ANYDATA_STRING:
case LYD_ANYDATA_XML:
case LYD_ANYDATA_JSON:
lydict_remove(LYD_CTX(trg), t->value.str);
break;
case LYD_ANYDATA_LYB:
free(t->value.mem);
break;
}
t->value.str = NULL;
if (!value) {
/* only free value in this case */
return LY_SUCCESS;
}
/* copy src */
t->value_type = value_type;
switch (value_type) {
case LYD_ANYDATA_DATATREE:
if (value->tree) {
LY_CHECK_RET(lyd_dup_siblings(value->tree, NULL, LYD_DUP_RECURSIVE, &t->value.tree));
}
break;
case LYD_ANYDATA_STRING:
case LYD_ANYDATA_XML:
case LYD_ANYDATA_JSON:
if (value->str) {
LY_CHECK_RET(lydict_insert(LYD_CTX(trg), value->str, 0, &t->value.str));
}
break;
case LYD_ANYDATA_LYB:
if (value->mem) {
int len = lyd_lyb_data_length(value->mem);
LY_CHECK_RET(len == -1, LY_EINVAL);
t->value.mem = malloc(len);
LY_CHECK_ERR_RET(!t->value.mem, LOGMEM(LYD_CTX(trg)), LY_EMEM);
memcpy(t->value.mem, value->mem, len);
}
break;
}
return LY_SUCCESS;
}
LIBYANG_API_DEF const struct lysc_node *
lyd_node_schema(const struct lyd_node *node)
{
const struct lysc_node *schema = NULL;
const struct lyd_node *prev_iter = NULL, *iter;
const struct lys_module *mod;
if (!node) {
return NULL;
} else if (node->schema) {
return node->schema;
}
/* find the first schema node in the parents */
for (iter = lyd_parent(node); iter && !iter->schema; iter = lyd_parent(iter)) {}
if (iter) {
prev_iter = iter;
schema = prev_iter->schema;
}
/* get schema node of an opaque node */
do {
/* get next data node */
for (iter = node; lyd_parent(iter) != prev_iter; iter = lyd_parent(iter)) {}
/* get module */
mod = lyd_node_module(iter);
if (!mod) {
/* unknown module, no schema node */
schema = NULL;
break;
}
/* get schema node */
schema = lys_find_child(schema, mod, LYD_NAME(iter), 0, 0, 0);
/* move to the descendant */
prev_iter = iter;
} while (schema && (iter != node));
return schema;
}
LIBYANG_API_DEF ly_bool
lyd_meta_is_internal(const struct lyd_meta *meta)
{
const char *arg;
assert(meta->annotation);
arg = meta->annotation->argument;
if (!strcmp(meta->annotation->module->name, "yang") && !strcmp(arg, "lyds_tree")) {
return 1;
}
return 0;
}
/**
* @brief Comparison callback to match schema node with a schema of a data node.
*
* @param[in] val1_p Pointer to the schema node
* @param[in] val2_p Pointer to the data node
* Implementation of ::lyht_value_equal_cb.
*/
static ly_bool
lyd_hash_table_schema_val_equal(void *val1_p, void *val2_p, ly_bool UNUSED(mod), void *UNUSED(cb_data))
{
struct lysc_node *val1;
struct lyd_node *val2;
val1 = *((struct lysc_node **)val1_p);
val2 = *((struct lyd_node **)val2_p);
if (val1 == val2->schema) {
/* schema match is enough */
return 1;
} else {
return 0;
}
}
LY_ERR
lyd_find_sibling_schema(const struct lyd_node *siblings, const struct lysc_node *schema, struct lyd_node **match)
{
struct lyd_node **match_p;
struct lyd_node_inner *parent;
uint32_t hash;
assert(schema);
if (!siblings) {
/* no data */
if (match) {
*match = NULL;
}
return LY_ENOTFOUND;
}
parent = siblings->parent;
if (parent && parent->schema && parent->children_ht) {
/* calculate our hash */
hash = lyht_hash_multi(0, schema->module->name, strlen(schema->module->name));
hash = lyht_hash_multi(hash, schema->name, strlen(schema->name));
hash = lyht_hash_multi(hash, NULL, 0);
/* find by hash but use special hash table function (and stay thread-safe) */
if (!lyht_find_with_val_cb(parent->children_ht, &schema, hash, lyd_hash_table_schema_val_equal, (void **)&match_p)) {
siblings = *match_p;
} else {
/* not found */
siblings = NULL;
}
} else {
/* find first sibling */
if (siblings->parent) {
siblings = siblings->parent->child;
} else {
while (siblings->prev->next) {
siblings = siblings->prev;
}
}
/* search manually without hashes and ignore opaque nodes (cannot be found by hashes) */
for ( ; siblings && siblings->schema; siblings = siblings->next) {
/* schema match is enough */
if (LYD_CTX(siblings) == schema->module->ctx) {
if (siblings->schema == schema) {
break;
}
} else {
if (!strcmp(LYD_NAME(siblings), schema->name) && !strcmp(siblings->schema->module->name, schema->module->name)) {
break;
}
}
}
if (siblings && !siblings->schema) {
siblings = NULL;
}
}
if (!siblings) {
if (match) {
*match = NULL;
}
return LY_ENOTFOUND;
}
if (match) {
*match = (struct lyd_node *)siblings;
}
return LY_SUCCESS;
}
void
lyd_del_move_root(struct lyd_node **root, const struct lyd_node *to_del, const struct lys_module *mod)
{
if (*root && (lyd_owner_module(*root) != mod)) {
/* there are no data of mod so this is simply the first top-level sibling */
mod = NULL;
}
if ((*root != to_del) || (*root)->parent) {
return;
}
if (mod && (*root)->prev->next && (!(*root)->next || (lyd_owner_module(to_del) != lyd_owner_module((*root)->next)))) {
/* there are no more nodes from mod, simply get the first top-level sibling */
*root = lyd_first_sibling(*root);
} else {
*root = (*root)->next;
}
}
void
lyd_np_cont_dflt_set(struct lyd_node *parent)
{
const struct lyd_node *child;
while (parent) {
if (!parent->schema || (parent->flags & LYD_DEFAULT) || !lysc_is_np_cont(parent->schema)) {
/* not a non-dflt NP container */
break;
}
LY_LIST_FOR(lyd_child(parent), child) {
if (!(child->flags & LYD_DEFAULT)) {
break;
}
}
if (child) {
/* explicit child, no dflt change */
break;
}
/* set the dflt flag */
parent->flags |= LYD_DEFAULT;
/* check all parent containers */
parent = lyd_parent(parent);
}
}
void
lyd_np_cont_dflt_del(struct lyd_node *parent)
{
while (parent && (parent->flags & LYD_DEFAULT)) {
parent->flags &= ~LYD_DEFAULT;
parent = lyd_parent(parent);
}
}
LY_ERR
ly_nested_ext_schema(const struct lyd_node *parent, const struct lysc_node *sparent, const char *prefix,
size_t prefix_len, LY_VALUE_FORMAT format, void *prefix_data, const char *name, size_t name_len,
const struct lysc_node **snode, struct lysc_ext_instance **ext)
{
LY_ERR r;
LY_ARRAY_COUNT_TYPE u;
struct lysc_ext_instance *nested_exts = NULL;
lyplg_ext_data_snode_clb ext_snode_cb;
/* check if there are any nested extension instances */
if (parent && parent->schema) {
nested_exts = parent->schema->exts;
} else if (sparent) {
nested_exts = sparent->exts;
}
LY_ARRAY_FOR(nested_exts, u) {
if (!nested_exts[u].def->plugin) {
/* no plugin */
continue;
}
ext_snode_cb = nested_exts[u].def->plugin->snode;
if (!ext_snode_cb) {
/* not an extension with nested data */
continue;
}
/* try to get the schema node */
r = ext_snode_cb(&nested_exts[u], parent, sparent, prefix, prefix_len, format, prefix_data, name, name_len, snode);
if (!r) {
if (ext) {
/* data successfully created, remember the ext instance */
*ext = &nested_exts[u];
}
return LY_SUCCESS;
} else if (r != LY_ENOT) {
/* fatal error */
return r;
}
/* data was not from this module, continue */
}
/* no extensions or none matched */
return LY_ENOT;
}
void
ly_free_prefix_data(LY_VALUE_FORMAT format, void *prefix_data)
{
struct ly_set *ns_list;
struct lysc_prefix *prefixes;
uint32_t i;
LY_ARRAY_COUNT_TYPE u;
if (!prefix_data) {
return;
}
switch (format) {
case LY_VALUE_XML:
case LY_VALUE_STR_NS:
ns_list = prefix_data;
for (i = 0; i < ns_list->count; ++i) {
free(((struct lyxml_ns *)ns_list->objs[i])->prefix);
free(((struct lyxml_ns *)ns_list->objs[i])->uri);
}
ly_set_free(ns_list, free);
break;
case LY_VALUE_SCHEMA_RESOLVED:
prefixes = prefix_data;
LY_ARRAY_FOR(prefixes, u) {
free(prefixes[u].prefix);
}
LY_ARRAY_FREE(prefixes);
break;
case LY_VALUE_CANON:
case LY_VALUE_SCHEMA:
case LY_VALUE_JSON:
case LY_VALUE_LYB:
break;
}
}
LY_ERR
ly_dup_prefix_data(const struct ly_ctx *ctx, LY_VALUE_FORMAT format, const void *prefix_data,
void **prefix_data_p)
{
LY_ERR ret = LY_SUCCESS;
struct lyxml_ns *ns;
struct lysc_prefix *prefixes = NULL, *orig_pref;
struct ly_set *ns_list, *orig_ns;
uint32_t i;
LY_ARRAY_COUNT_TYPE u;
assert(!*prefix_data_p);
switch (format) {
case LY_VALUE_SCHEMA:
*prefix_data_p = (void *)prefix_data;
break;
case LY_VALUE_SCHEMA_RESOLVED:
/* copy all the value prefixes */
orig_pref = (struct lysc_prefix *)prefix_data;
LY_ARRAY_CREATE_GOTO(ctx, prefixes, LY_ARRAY_COUNT(orig_pref), ret, cleanup);
*prefix_data_p = prefixes;
LY_ARRAY_FOR(orig_pref, u) {
if (orig_pref[u].prefix) {
prefixes[u].prefix = strdup(orig_pref[u].prefix);
LY_CHECK_ERR_GOTO(!prefixes[u].prefix, LOGMEM(ctx); ret = LY_EMEM, cleanup);
}
prefixes[u].mod = orig_pref[u].mod;
LY_ARRAY_INCREMENT(prefixes);
}
break;
case LY_VALUE_XML:
case LY_VALUE_STR_NS:
/* copy all the namespaces */
LY_CHECK_GOTO(ret = ly_set_new(&ns_list), cleanup);
*prefix_data_p = ns_list;
orig_ns = (struct ly_set *)prefix_data;
for (i = 0; i < orig_ns->count; ++i) {
ns = calloc(1, sizeof *ns);
LY_CHECK_ERR_GOTO(!ns, LOGMEM(ctx); ret = LY_EMEM, cleanup);
LY_CHECK_GOTO(ret = ly_set_add(ns_list, ns, 1, NULL), cleanup);
if (((struct lyxml_ns *)orig_ns->objs[i])->prefix) {
ns->prefix = strdup(((struct lyxml_ns *)orig_ns->objs[i])->prefix);
LY_CHECK_ERR_GOTO(!ns->prefix, LOGMEM(ctx); ret = LY_EMEM, cleanup);
}
ns->uri = strdup(((struct lyxml_ns *)orig_ns->objs[i])->uri);
LY_CHECK_ERR_GOTO(!ns->uri, LOGMEM(ctx); ret = LY_EMEM, cleanup);
}
break;
case LY_VALUE_CANON:
case LY_VALUE_JSON:
case LY_VALUE_LYB:
assert(!prefix_data);
*prefix_data_p = NULL;
break;
}
cleanup:
if (ret) {
ly_free_prefix_data(format, *prefix_data_p);
*prefix_data_p = NULL;
}
return ret;
}
LY_ERR
ly_store_prefix_data(const struct ly_ctx *ctx, const void *value, size_t value_len, LY_VALUE_FORMAT format,
const void *prefix_data, LY_VALUE_FORMAT *format_p, void **prefix_data_p)
{
LY_ERR ret = LY_SUCCESS;
const struct lys_module *mod;
const struct lyxml_ns *ns;
struct lyxml_ns *new_ns;
struct ly_set *ns_list;
struct lysc_prefix *prefixes = NULL, *val_pref;
const char *value_iter, *value_next, *value_end;
uint32_t substr_len;
ly_bool is_prefix;
switch (format) {
case LY_VALUE_SCHEMA:
/* copy all referenced modules as prefix - module pairs */
if (!*prefix_data_p) {
/* new prefix data */
LY_ARRAY_CREATE_GOTO(ctx, prefixes, 0, ret, cleanup);
*format_p = LY_VALUE_SCHEMA_RESOLVED;
*prefix_data_p = prefixes;
} else {
/* reuse prefix data */
assert(*format_p == LY_VALUE_SCHEMA_RESOLVED);
prefixes = *prefix_data_p;
}
/* add current module for unprefixed values */
LY_ARRAY_NEW_GOTO(ctx, prefixes, val_pref, ret, cleanup);
*prefix_data_p = prefixes;
val_pref->prefix = NULL;
val_pref->mod = ((const struct lysp_module *)prefix_data)->mod;
/* add all used prefixes */
value_end = (char *)value + value_len;
for (value_iter = value; value_iter; value_iter = value_next) {
LY_CHECK_GOTO(ret = ly_value_prefix_next(value_iter, value_end, &substr_len, &is_prefix, &value_next), cleanup);
if (is_prefix) {
/* we have a possible prefix. Do we already have the prefix? */
mod = ly_resolve_prefix(ctx, value_iter, substr_len, *format_p, *prefix_data_p);
if (!mod) {
mod = ly_resolve_prefix(ctx, value_iter, substr_len, format, prefix_data);
if (mod) {
assert(*format_p == LY_VALUE_SCHEMA_RESOLVED);
/* store a new prefix - module pair */
LY_ARRAY_NEW_GOTO(ctx, prefixes, val_pref, ret, cleanup);
*prefix_data_p = prefixes;
val_pref->prefix = strndup(value_iter, substr_len);
LY_CHECK_ERR_GOTO(!val_pref->prefix, LOGMEM(ctx); ret = LY_EMEM, cleanup);
val_pref->mod = mod;
} /* else it is not even defined */
} /* else the prefix is already present */
}
}
break;
case LY_VALUE_XML:
case LY_VALUE_STR_NS:
/* copy all referenced namespaces as prefix - namespace pairs */
if (!*prefix_data_p) {
/* new prefix data */
LY_CHECK_GOTO(ret = ly_set_new(&ns_list), cleanup);
*format_p = format;
*prefix_data_p = ns_list;
} else {
/* reuse prefix data */
assert(*format_p == format);
ns_list = *prefix_data_p;
}
/* store default namespace */
ns = lyxml_ns_get(prefix_data, NULL, 0);
if (ns) {
new_ns = calloc(1, sizeof *new_ns);
LY_CHECK_ERR_GOTO(!new_ns, LOGMEM(ctx); ret = LY_EMEM, cleanup);
LY_CHECK_GOTO(ret = ly_set_add(ns_list, new_ns, 1, NULL), cleanup);
new_ns->prefix = NULL;
new_ns->uri = strdup(ns->uri);
LY_CHECK_ERR_GOTO(!new_ns->uri, LOGMEM(ctx); ret = LY_EMEM, cleanup);
}
/* add all used prefixes */
value_end = (char *)value + value_len;
for (value_iter = value; value_iter; value_iter = value_next) {
LY_CHECK_GOTO(ret = ly_value_prefix_next(value_iter, value_end, &substr_len, &is_prefix, &value_next), cleanup);
if (is_prefix) {
/* we have a possible prefix. Do we already have the prefix? */
ns = lyxml_ns_get(ns_list, value_iter, substr_len);
if (!ns) {
ns = lyxml_ns_get(prefix_data, value_iter, substr_len);
if (ns) {
/* store a new prefix - namespace pair */
new_ns = calloc(1, sizeof *new_ns);
LY_CHECK_ERR_GOTO(!new_ns, LOGMEM(ctx); ret = LY_EMEM, cleanup);
LY_CHECK_GOTO(ret = ly_set_add(ns_list, new_ns, 1, NULL), cleanup);
new_ns->prefix = strndup(value_iter, substr_len);
LY_CHECK_ERR_GOTO(!new_ns->prefix, LOGMEM(ctx); ret = LY_EMEM, cleanup);
new_ns->uri = strdup(ns->uri);
LY_CHECK_ERR_GOTO(!new_ns->uri, LOGMEM(ctx); ret = LY_EMEM, cleanup);
} /* else it is not even defined */
} /* else the prefix is already present */
}
}
break;
case LY_VALUE_CANON:
case LY_VALUE_SCHEMA_RESOLVED:
case LY_VALUE_JSON:
case LY_VALUE_LYB:
if (!*prefix_data_p) {
/* new prefix data - simply copy all the prefix data */
*format_p = format;
LY_CHECK_GOTO(ret = ly_dup_prefix_data(ctx, format, prefix_data, prefix_data_p), cleanup);
} /* else reuse prefix data - the prefix data are always the same, nothing to do */
break;
}
cleanup:
if (ret) {
ly_free_prefix_data(*format_p, *prefix_data_p);
*prefix_data_p = NULL;
}
return ret;
}
const char *
ly_format2str(LY_VALUE_FORMAT format)
{
switch (format) {
case LY_VALUE_CANON:
return "canonical";
case LY_VALUE_SCHEMA:
return "schema imports";
case LY_VALUE_SCHEMA_RESOLVED:
return "schema stored mapping";
case LY_VALUE_XML:
return "XML prefixes";
case LY_VALUE_JSON:
return "JSON module names";
case LY_VALUE_LYB:
return "LYB prefixes";
default:
break;
}
return NULL;
}
LIBYANG_API_DEF int
ly_time_tz_offset(void)
{
return ly_time_tz_offset_at(time(NULL));
}
LIBYANG_API_DEF int
ly_time_tz_offset_at(time_t time)
{
struct tm tm_local, tm_utc;
int result = 0;
/* init timezone */
tzset();
/* get local and UTC time */
localtime_r(&time, &tm_local);
gmtime_r(&time, &tm_utc);
/* account for year/month/day change by adding/subtracting from the hours, the change cannot be more than 1 day */
if (tm_local.tm_year < tm_utc.tm_year) {
tm_utc.tm_hour += 24;
} else if (tm_local.tm_year > tm_utc.tm_year) {
tm_local.tm_hour += 24;
} else if (tm_local.tm_mon < tm_utc.tm_mon) {
tm_utc.tm_hour += 24;
} else if (tm_local.tm_mon > tm_utc.tm_mon) {
tm_local.tm_hour += 24;
} else if (tm_local.tm_mday < tm_utc.tm_mday) {
tm_utc.tm_hour += 24;
} else if (tm_local.tm_mday > tm_utc.tm_mday) {
tm_local.tm_hour += 24;
}
/* hours shift in seconds */
result += (tm_local.tm_hour - tm_utc.tm_hour) * 3600;
/* minutes shift in seconds */
result += (tm_local.tm_min - tm_utc.tm_min) * 60;
/* seconds shift */
result += tm_local.tm_sec - tm_utc.tm_sec;
return result;
}
LIBYANG_API_DEF LY_ERR
ly_time_str2time(const char *value, time_t *time, char **fractions_s)
{
struct tm tm = {0};
uint32_t i, frac_len;
const char *frac;
char *ptr;
int64_t shift, shift_m;
time_t t;
LY_CHECK_ARG_RET(NULL, value, strlen(value) > 17, time, LY_EINVAL);
tm.tm_year = atoi(&value[0]) - 1900;
tm.tm_mon = atoi(&value[5]) - 1;
tm.tm_mday = atoi(&value[8]);
tm.tm_hour = atoi(&value[11]);
tm.tm_min = atoi(&value[14]);
tm.tm_sec = atoi(&value[17]);
/* explicit checks for some gross errors */
if (tm.tm_mon > 11) {
LOGERR(NULL, LY_EINVAL, "Invalid date-and-time month \"%d\".", tm.tm_mon);
return LY_EINVAL;
}
if ((tm.tm_mday < 1) || (tm.tm_mday > 31)) {
LOGERR(NULL, LY_EINVAL, "Invalid date-and-time day of month \"%d\".", tm.tm_mday);
return LY_EINVAL;
}
if (tm.tm_hour > 23) {
LOGERR(NULL, LY_EINVAL, "Invalid date-and-time hours \"%d\".", tm.tm_hour);
return LY_EINVAL;
}
if (tm.tm_min > 59) {
LOGERR(NULL, LY_EINVAL, "Invalid date-and-time minutes \"%d\".", tm.tm_min);
return LY_EINVAL;
}
if (tm.tm_sec > 60) {
LOGERR(NULL, LY_EINVAL, "Invalid date-and-time seconds \"%d\".", tm.tm_sec);
return LY_EINVAL;
}
t = timegm(&tm);
i = 19;
/* fractions of a second */
if (value[i] == '.') {
++i;
frac = &value[i];
for (frac_len = 0; isdigit(frac[frac_len]); ++frac_len) {}
if (!frac_len) {
LOGERR(NULL, LY_EINVAL, "Missing date-and-time fractions after '.'.");
return LY_EINVAL;
}
i += frac_len;
} else {
frac = NULL;
}
/* apply offset */
if ((value[i] == 'Z') || (value[i] == 'z')) {
/* zero shift */
shift = 0;
} else {
value += i;
shift = strtol(value, &ptr, 10);
if (shift > 23) {
LOGERR(NULL, LY_EINVAL, "Invalid date-and-time timezone hour \"%" PRIi64 "\".", shift);
return LY_EINVAL;
} else if (ptr[0] != ':') {
LOGERR(NULL, LY_EINVAL, "Invalid date-and-time timezone hour \"%s\".", value);
return LY_EINVAL;
}
shift = shift * 60 * 60; /* convert from hours to seconds */
value = ptr + 1;
shift_m = strtol(value, NULL, 10);
if ((shift_m < 0) || (shift_m > 59)) {
LOGERR(NULL, LY_EINVAL, "Invalid date-and-time timezone minutes \"%" PRIi64 "\".", shift_m);
return LY_EINVAL;
}
shift_m *= 60; /* convert from minutes to seconds */
/* correct sign */
if (shift < 0) {
shift_m *= -1;
}
/* connect hours and minutes of the shift */
shift = shift + shift_m;
}
/* we have to shift to the opposite way to correct the time */
t -= shift;
*time = t;
if (fractions_s) {
if (frac) {
*fractions_s = strndup(frac, frac_len);
LY_CHECK_RET(!*fractions_s, LY_EMEM);
} else {
*fractions_s = NULL;
}
}
return LY_SUCCESS;
}
LIBYANG_API_DEF LY_ERR
ly_time_time2str(time_t time, const char *fractions_s, char **str)
{
struct tm tm;
char zoneshift[12];
int zonediff_s, zonediff_h, zonediff_m;
LY_CHECK_ARG_RET(NULL, str, LY_EINVAL);
/* init timezone */
tzset();
/* convert */
if (!localtime_r(&time, &tm)) {
return LY_ESYS;
}
/* get timezone offset (do not use tm_gmtoff to avoid portability problems),
* zonediff_h may be negative, zonediff_m MUST NOT */
zonediff_s = ly_time_tz_offset_at(time);
zonediff_h = zonediff_s / 60 / 60;
zonediff_m = zonediff_s / 60 % 60;
sprintf(zoneshift, "%+03d:%02d", zonediff_h, zonediff_m < 0 ? -zonediff_m : zonediff_m);
/* print */
if (asprintf(str, "%04d-%02d-%02dT%02d:%02d:%02d%s%s%s",
tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec,
fractions_s ? "." : "", fractions_s ? fractions_s : "", zoneshift) == -1) {
return LY_EMEM;
}
return LY_SUCCESS;
}
LIBYANG_API_DEF LY_ERR
ly_time_str2ts(const char *value, struct timespec *ts)
{
LY_ERR rc;
char *fractions_s, frac_buf[10];
int frac_len;
LY_CHECK_ARG_RET(NULL, value, ts, LY_EINVAL);
rc = ly_time_str2time(value, &ts->tv_sec, &fractions_s);
LY_CHECK_RET(rc);
/* convert fractions of a second to nanoseconds */
if (fractions_s) {
/* init frac_buf with zeroes */
memset(frac_buf, '0', 9);
frac_buf[9] = '\0';
frac_len = strlen(fractions_s);
memcpy(frac_buf, fractions_s, frac_len > 9 ? 9 : frac_len);
ts->tv_nsec = atol(frac_buf);
free(fractions_s);
} else {
ts->tv_nsec = 0;
}
return LY_SUCCESS;
}
LIBYANG_API_DEF LY_ERR
ly_time_ts2str(const struct timespec *ts, char **str)
{
char frac_buf[10];
LY_CHECK_ARG_RET(NULL, ts, str, ((ts->tv_nsec <= 999999999) && (ts->tv_nsec >= 0)), LY_EINVAL);
/* convert nanoseconds to fractions of a second */
if (ts->tv_nsec) {
sprintf(frac_buf, "%09ld", ts->tv_nsec);
}
return ly_time_time2str(ts->tv_sec, ts->tv_nsec ? frac_buf : NULL, str);
}