blob: 2128ac75bb0d641e9effcb49e89751f0c61b1f7e [file] [log] [blame]
/**
* @file schema_compile_node.c
* @author Radek Krejci <rkrejci@cesnet.cz>
* @brief Schema compilation of common nodes.
*
* Copyright (c) 2015 - 2020 CESNET, z.s.p.o.
*
* This source code is licensed under BSD 3-Clause License (the "License").
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*/
#define _GNU_SOURCE /* asprintf, strdup */
#include "schema_compile_node.h"
#include <assert.h>
#include <ctype.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "common.h"
#include "compat.h"
#include "dict.h"
#include "log.h"
#include "plugins.h"
#include "plugins_exts_compile.h"
#include "plugins_internal.h"
#include "plugins_types.h"
#include "schema_compile.h"
#include "schema_compile_amend.h"
#include "schema_features.h"
#include "set.h"
#include "tree.h"
#include "tree_data.h"
#include "tree_edit.h"
#include "tree_schema.h"
#include "tree_schema_internal.h"
#include "xpath.h"
static struct lysc_ext_instance *
lysc_ext_instance_dup(struct ly_ctx *ctx, struct lysc_ext_instance *orig)
{
/* TODO - extensions, increase refcount */
(void) ctx;
(void) orig;
return NULL;
}
/**
* @brief Add a node with must(s) to unres.
*
* @param[in] ctx Compile context.
* @param[in] node Compiled node with must(s).
* @param[in] pnode Parsed ndoe with must(s).
* @return LY_ERR value.
*/
static LY_ERR
lysc_unres_must_add(struct lysc_ctx *ctx, struct lysc_node *node, struct lysp_node *pnode)
{
struct lysc_unres_must *m = NULL;
LY_ARRAY_COUNT_TYPE u;
struct lysc_must *musts;
struct lysp_restr *pmusts;
LY_ERR ret;
/* do not check must(s) in a grouping */
if (ctx->compile_opts & LYS_COMPILE_GROUPING) {
return LY_SUCCESS;
}
musts = lysc_node_musts(node);
pmusts = lysp_node_musts(pnode);
assert(LY_ARRAY_COUNT(musts) == LY_ARRAY_COUNT(pmusts));
if (!musts) {
/* no must */
return LY_SUCCESS;
}
/* add new unres must */
m = calloc(1, sizeof *m);
LY_CHECK_ERR_GOTO(!m, ret = LY_EMEM, error);
m->node = node;
/* add must local modules */
LY_ARRAY_CREATE_GOTO(ctx->ctx, m->local_mods, LY_ARRAY_COUNT(pmusts), ret, error);
LY_ARRAY_FOR(pmusts, u) {
m->local_mods[u] = pmusts[u].arg.mod;
LY_ARRAY_INCREMENT(m->local_mods);
}
LY_CHECK_ERR_GOTO(ly_set_add(&ctx->unres->musts, m, 1, NULL), ret = LY_EMEM, error);
return LY_SUCCESS;
error:
if (m) {
LY_ARRAY_FREE(m->local_mods);
free(m);
}
LOGMEM(ctx->ctx);
return ret;
}
static LY_ERR
lysc_unres_leafref_add(struct lysc_ctx *ctx, struct lysc_node_leaf *leaf, const struct lysp_module *local_mod)
{
struct lysc_unres_leafref *l = NULL;
struct ly_set *leafrefs_set;
LY_ARRAY_COUNT_TYPE u;
int is_lref = 0;
if (ctx->compile_opts & LYS_COMPILE_GROUPING) {
/* do not check leafrefs in groupings */
return LY_SUCCESS;
}
/* use special set for disabled leafrefs */
leafrefs_set = ctx->compile_opts & LYS_COMPILE_DISABLED ? &ctx->unres->disabled_leafrefs : &ctx->unres->leafrefs;
if (leaf->type->basetype == LY_TYPE_LEAFREF) {
/* leafref */
is_lref = 1;
} else if (leaf->type->basetype == LY_TYPE_UNION) {
/* union with leafrefs */
LY_ARRAY_FOR(((struct lysc_type_union *)leaf->type)->types, u) {
if (((struct lysc_type_union *)leaf->type)->types[u]->basetype == LY_TYPE_LEAFREF) {
is_lref = 1;
break;
}
}
}
if (is_lref) {
/* add new unresolved leafref node */
l = calloc(1, sizeof *l);
LY_CHECK_ERR_RET(!l, LOGMEM(ctx->ctx), LY_EMEM);
l->node = &leaf->node;
l->local_mod = local_mod;
LY_CHECK_ERR_RET(ly_set_add(leafrefs_set, l, 1, NULL), free(l); LOGMEM(ctx->ctx), LY_EMEM);
}
return LY_SUCCESS;
}
/**
* @brief Add/replace a leaf default value in unres.
* Can also be used for a single leaf-list default value.
*
* @param[in] ctx Compile context.
* @param[in] leaf Leaf with the default value.
* @param[in] dflt Default value to use.
* @return LY_ERR value.
*/
static LY_ERR
lysc_unres_leaf_dflt_add(struct lysc_ctx *ctx, struct lysc_node_leaf *leaf, struct lysp_qname *dflt)
{
struct lysc_unres_dflt *r = NULL;
uint32_t i;
if (ctx->compile_opts & (LYS_COMPILE_DISABLED | LYS_COMPILE_GROUPING)) {
return LY_SUCCESS;
}
for (i = 0; i < ctx->unres->dflts.count; ++i) {
if (((struct lysc_unres_dflt *)ctx->unres->dflts.objs[i])->leaf == leaf) {
/* just replace the default */
r = ctx->unres->dflts.objs[i];
lysp_qname_free(ctx->ctx, r->dflt);
free(r->dflt);
break;
}
}
if (!r) {
/* add new unres item */
r = calloc(1, sizeof *r);
LY_CHECK_ERR_RET(!r, LOGMEM(ctx->ctx), LY_EMEM);
r->leaf = leaf;
LY_CHECK_RET(ly_set_add(&ctx->unres->dflts, r, 1, NULL));
}
r->dflt = malloc(sizeof *r->dflt);
LY_CHECK_GOTO(!r->dflt, error);
LY_CHECK_GOTO(lysp_qname_dup(ctx->ctx, r->dflt, dflt), error);
return LY_SUCCESS;
error:
free(r->dflt);
LOGMEM(ctx->ctx);
return LY_EMEM;
}
/**
* @brief Add/replace a leaf-list default value(s) in unres.
*
* @param[in] ctx Compile context.
* @param[in] llist Leaf-list with the default value.
* @param[in] dflts Sized array of the default values.
* @return LY_ERR value.
*/
static LY_ERR
lysc_unres_llist_dflts_add(struct lysc_ctx *ctx, struct lysc_node_leaflist *llist, struct lysp_qname *dflts)
{
struct lysc_unres_dflt *r = NULL;
uint32_t i;
if (ctx->compile_opts & (LYS_COMPILE_DISABLED | LYS_COMPILE_GROUPING)) {
return LY_SUCCESS;
}
for (i = 0; i < ctx->unres->dflts.count; ++i) {
if (((struct lysc_unres_dflt *)ctx->unres->dflts.objs[i])->llist == llist) {
/* just replace the defaults */
r = ctx->unres->dflts.objs[i];
lysp_qname_free(ctx->ctx, r->dflt);
free(r->dflt);
r->dflt = NULL;
FREE_ARRAY(ctx->ctx, r->dflts, lysp_qname_free);
r->dflts = NULL;
break;
}
}
if (!r) {
r = calloc(1, sizeof *r);
LY_CHECK_ERR_RET(!r, LOGMEM(ctx->ctx), LY_EMEM);
r->llist = llist;
LY_CHECK_RET(ly_set_add(&ctx->unres->dflts, r, 1, NULL));
}
DUP_ARRAY(ctx->ctx, dflts, r->dflts, lysp_qname_dup);
return LY_SUCCESS;
}
/**
* @brief Add a bits/enumeration type to unres.
*
* @param[in] ctx Compile context.
* @param[in] leaf Leaf of type bits/enumeration whose disabled items to free.
* @return LY_ERR value.
*/
static LY_ERR
lysc_unres_bitenum_add(struct lysc_ctx *ctx, struct lysc_node_leaf *leaf)
{
if (ctx->compile_opts & (LYS_COMPILE_DISABLED | LYS_COMPILE_GROUPING)) {
/* skip groupings and redundant for disabled nodes */
return LY_SUCCESS;
}
LY_CHECK_RET(ly_set_add(&ctx->unres->disabled_bitenums, leaf, 1, NULL));
return LY_SUCCESS;
}
/**
* @brief Duplicate the compiled pattern structure.
*
* Instead of duplicating memory, the reference counter in the @p orig is increased.
*
* @param[in] orig The pattern structure to duplicate.
* @return The duplicated structure to use.
*/
static struct lysc_pattern *
lysc_pattern_dup(struct lysc_pattern *orig)
{
++orig->refcount;
return orig;
}
/**
* @brief Duplicate the array of compiled patterns.
*
* The sized array itself is duplicated, but the pattern structures are just shadowed by increasing their reference counter.
*
* @param[in] ctx Libyang context for logging.
* @param[in] orig The patterns sized array to duplicate.
* @return New sized array as a copy of @p orig.
* @return NULL in case of memory allocation error.
*/
static struct lysc_pattern **
lysc_patterns_dup(struct ly_ctx *ctx, struct lysc_pattern **orig)
{
struct lysc_pattern **dup = NULL;
LY_ARRAY_COUNT_TYPE u;
assert(orig);
LY_ARRAY_CREATE_RET(ctx, dup, LY_ARRAY_COUNT(orig), NULL);
LY_ARRAY_FOR(orig, u) {
dup[u] = lysc_pattern_dup(orig[u]);
LY_ARRAY_INCREMENT(dup);
}
return dup;
}
/**
* @brief Duplicate compiled range structure.
*
* @param[in] ctx Libyang context for logging.
* @param[in] orig The range structure to be duplicated.
* @return New compiled range structure as a copy of @p orig.
* @return NULL in case of memory allocation error.
*/
static struct lysc_range *
lysc_range_dup(struct ly_ctx *ctx, const struct lysc_range *orig)
{
struct lysc_range *dup;
LY_ERR ret;
assert(orig);
dup = calloc(1, sizeof *dup);
LY_CHECK_ERR_RET(!dup, LOGMEM(ctx), NULL);
if (orig->parts) {
LY_ARRAY_CREATE_GOTO(ctx, dup->parts, LY_ARRAY_COUNT(orig->parts), ret, cleanup);
(*((LY_ARRAY_COUNT_TYPE *)(dup->parts) - 1)) = LY_ARRAY_COUNT(orig->parts);
memcpy(dup->parts, orig->parts, LY_ARRAY_COUNT(dup->parts) * sizeof *dup->parts);
}
DUP_STRING_GOTO(ctx, orig->eapptag, dup->eapptag, ret, cleanup);
DUP_STRING_GOTO(ctx, orig->emsg, dup->emsg, ret, cleanup);
dup->exts = lysc_ext_instance_dup(ctx, orig->exts);
return dup;
cleanup:
free(dup);
(void) ret; /* set but not used due to the return type */
return NULL;
}
/**
* @brief Compile status information of the given statement.
*
* To simplify getting status of the node, the flags are set following inheritance rules, so all the nodes
* has the status correctly set during the compilation.
*
* @param[in] ctx Compile context
* @param[in,out] stmt_flags Compiled flags to update. If the status was set explicitly, it is already set
* in the flags value and we just check the compatibility with the parent's status value.
* @param[in] stmt_name Statement name, for logging.
* @param[in] parent_flags Flags of the parent node to check/inherit the status value.
* @param[in] parent_name Name of the parent node, for logging.
* @param[in] inherit_log Whether to print inherit message.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_status(struct lysc_ctx *ctx, uint16_t *stmt_flags, const char *stmt_name, uint16_t parent_flags,
const char *parent_name, ly_bool inherit_log)
{
/* status - it is not inherited by specification, but it does not make sense to have
* current in deprecated or deprecated in obsolete, so we do print warning and inherit status */
if (!(*stmt_flags & LYS_STATUS_MASK)) {
if (parent_flags & (LYS_STATUS_DEPRC | LYS_STATUS_OBSLT)) {
if (inherit_log) {
LOGVRB("Missing explicit \"%s\" status specified in parent \"%s\", inheriting for \"%s\".",
(parent_flags & LYS_STATUS_DEPRC) ? "deprecated" : "obsolete", parent_name, stmt_name);
}
*stmt_flags |= parent_flags & LYS_STATUS_MASK;
} else {
*stmt_flags |= LYS_STATUS_CURR;
}
} else if (parent_flags & LYS_STATUS_MASK) {
/* check status compatibility with the parent */
if ((parent_flags & LYS_STATUS_MASK) > (*stmt_flags & LYS_STATUS_MASK)) {
if (*stmt_flags & LYS_STATUS_CURR) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS,
"Status \"current\" of \"%s\" is in conflict with the \"%s\" status of parent \"%s\".",
stmt_name, (parent_flags & LYS_STATUS_DEPRC) ? "deprecated" : "obsolete", parent_name);
} else { /* LYS_STATUS_DEPRC */
LOGVAL(ctx->ctx, LYVE_SEMANTICS,
"Status \"deprecated\" of \"%s\" is in conflict with the \"obsolete\" status of parent \"%s\".",
stmt_name, parent_name);
}
return LY_EVALID;
}
}
return LY_SUCCESS;
}
/**
* @brief Compile information from the when statement
*
* @param[in] ctx Compile context.
* @param[in] when_p Parsed when structure.
* @param[in] parent_flags Flags of the parsed node with the when statement.
* @param[in] compiled_parent Closest compiled parent of the when statement.
* @param[in] ctx_node Context node for the when statement.
* @param[out] when Pointer where to store pointer to the created compiled when structure.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_when_(struct lysc_ctx *ctx, struct lysp_when *when_p, uint16_t parent_flags,
const struct lysc_node *compiled_parent, const struct lysc_node *ctx_node, struct lysc_when **when)
{
LY_ERR ret = LY_SUCCESS;
LY_VALUE_FORMAT format;
*when = calloc(1, sizeof **when);
LY_CHECK_ERR_RET(!(*when), LOGMEM(ctx->ctx), LY_EMEM);
(*when)->refcount = 1;
LY_CHECK_RET(lyxp_expr_parse(ctx->ctx, when_p->cond, 0, 1, &(*when)->cond));
LY_CHECK_RET(lyplg_type_prefix_data_new(ctx->ctx, when_p->cond, strlen(when_p->cond),
LY_VALUE_SCHEMA, ctx->pmod, &format, (void **)&(*when)->prefixes));
(*when)->context = (struct lysc_node *)ctx_node;
DUP_STRING_GOTO(ctx->ctx, when_p->dsc, (*when)->dsc, ret, done);
DUP_STRING_GOTO(ctx->ctx, when_p->ref, (*when)->ref, ret, done);
COMPILE_EXTS_GOTO(ctx, when_p->exts, (*when)->exts, (*when), ret, done);
(*when)->flags = (parent_flags & LYS_STATUS_MASK);
if (compiled_parent) {
LY_CHECK_RET(lys_compile_status(ctx, &(*when)->flags, "when", compiled_parent->flags, compiled_parent->name, 0));
} else {
LY_CHECK_RET(lys_compile_status(ctx, &(*when)->flags, "when", 0, NULL, 0));
}
done:
return ret;
}
LY_ERR
lys_compile_when(struct lysc_ctx *ctx, struct lysp_when *when_p, uint16_t parent_flags, const struct lysc_node *compiled_parent,
const struct lysc_node *ctx_node, struct lysc_node *node, struct lysc_when **when_c)
{
struct lysc_when **new_when, ***node_when;
assert(when_p);
/* get the when array */
node_when = lysc_node_when_p(node);
/* create new when pointer */
LY_ARRAY_NEW_RET(ctx->ctx, *node_when, new_when, LY_EMEM);
if (!when_c || !(*when_c)) {
/* compile when */
LY_CHECK_RET(lys_compile_when_(ctx, when_p, parent_flags, compiled_parent, ctx_node, new_when));
/* remember the compiled when for sharing */
if (when_c) {
*when_c = *new_when;
}
} else {
/* use the previously compiled when */
++(*when_c)->refcount;
*new_when = *when_c;
}
if (!(ctx->compile_opts & LYS_COMPILE_GROUPING)) {
/* do not check "when" semantics in a grouping, but repeat the check for different node because
* of dummy node check */
LY_CHECK_RET(ly_set_add(&ctx->unres->whens, node, 0, NULL));
}
return LY_SUCCESS;
}
/**
* @brief Compile information from the must statement
* @param[in] ctx Compile context.
* @param[in] must_p The parsed must statement structure.
* @param[in,out] must Prepared (empty) compiled must structure to fill.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_must(struct lysc_ctx *ctx, struct lysp_restr *must_p, struct lysc_must *must)
{
LY_ERR ret = LY_SUCCESS;
LY_VALUE_FORMAT format;
LY_CHECK_RET(lyxp_expr_parse(ctx->ctx, must_p->arg.str, 0, 1, &must->cond));
LY_CHECK_RET(lyplg_type_prefix_data_new(ctx->ctx, must_p->arg.str, strlen(must_p->arg.str),
LY_VALUE_SCHEMA, must_p->arg.mod, &format, (void **)&must->prefixes));
DUP_STRING_GOTO(ctx->ctx, must_p->eapptag, must->eapptag, ret, done);
DUP_STRING_GOTO(ctx->ctx, must_p->emsg, must->emsg, ret, done);
DUP_STRING_GOTO(ctx->ctx, must_p->dsc, must->dsc, ret, done);
DUP_STRING_GOTO(ctx->ctx, must_p->ref, must->ref, ret, done);
COMPILE_EXTS_GOTO(ctx, must_p->exts, must->exts, must, ret, done);
done:
return ret;
}
/**
* @brief Validate and normalize numeric value from a range definition.
* @param[in] ctx Compile context.
* @param[in] basetype Base YANG built-in type of the node connected with the range restriction. Actually only LY_TYPE_DEC64 is important to
* allow processing of the fractions. The fraction point is extracted from the value which is then normalize according to given frdigits into
* valcopy to allow easy parsing and storing of the value. libyang stores decimal number without the decimal point which is always recovered from
* the known fraction-digits value. So, with fraction-digits 2, number 3.14 is stored as 314 and number 1 is stored as 100.
* @param[in] frdigits The fraction-digits of the type in case of LY_TYPE_DEC64.
* @param[in] value String value of the range boundary.
* @param[out] len Number of the processed bytes from the value. Processing stops on the first character which is not part of the number boundary.
* @param[out] valcopy NULL-terminated string with the numeric value to parse and store.
* @return LY_ERR value - LY_SUCCESS, LY_EMEM, LY_EVALID (no number) or LY_EINVAL (decimal64 not matching fraction-digits value).
*/
static LY_ERR
range_part_check_value_syntax(struct lysc_ctx *ctx, LY_DATA_TYPE basetype, uint8_t frdigits, const char *value,
size_t *len, char **valcopy)
{
size_t fraction = 0, size;
*len = 0;
assert(value);
/* parse value */
if (!isdigit(value[*len]) && (value[*len] != '-') && (value[*len] != '+')) {
return LY_EVALID;
}
if ((value[*len] == '-') || (value[*len] == '+')) {
++(*len);
}
while (isdigit(value[*len])) {
++(*len);
}
if ((basetype != LY_TYPE_DEC64) || (value[*len] != '.') || !isdigit(value[*len + 1])) {
if (basetype == LY_TYPE_DEC64) {
goto decimal;
} else {
*valcopy = strndup(value, *len);
return LY_SUCCESS;
}
}
fraction = *len;
++(*len);
while (isdigit(value[*len])) {
++(*len);
}
if (basetype == LY_TYPE_DEC64) {
decimal:
assert(frdigits);
if (fraction && (*len - 1 - fraction > frdigits)) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Range boundary \"%.*s\" of decimal64 type exceeds defined number (%u) of fraction digits.",
(int)(*len), value, frdigits);
return LY_EINVAL;
}
if (fraction) {
size = (*len) + (frdigits - ((*len) - 1 - fraction));
} else {
size = (*len) + frdigits + 1;
}
*valcopy = malloc(size * sizeof **valcopy);
LY_CHECK_ERR_RET(!(*valcopy), LOGMEM(ctx->ctx), LY_EMEM);
(*valcopy)[size - 1] = '\0';
if (fraction) {
memcpy(&(*valcopy)[0], &value[0], fraction);
memcpy(&(*valcopy)[fraction], &value[fraction + 1], (*len) - 1 - (fraction));
memset(&(*valcopy)[(*len) - 1], '0', frdigits - ((*len) - 1 - fraction));
} else {
memcpy(&(*valcopy)[0], &value[0], *len);
memset(&(*valcopy)[*len], '0', frdigits);
}
}
return LY_SUCCESS;
}
/**
* @brief Check that values in range are in ascendant order.
* @param[in] unsigned_value Flag to note that we are working with unsigned values.
* @param[in] max Flag to distinguish if checking min or max value. min value must be strictly higher than previous,
* max can be also equal.
* @param[in] value Current value to check.
* @param[in] prev_value The last seen value.
* @return LY_SUCCESS or LY_EEXIST for invalid order.
*/
static LY_ERR
range_part_check_ascendancy(ly_bool unsigned_value, ly_bool max, int64_t value, int64_t prev_value)
{
if (unsigned_value) {
if ((max && ((uint64_t)prev_value > (uint64_t)value)) || (!max && ((uint64_t)prev_value >= (uint64_t)value))) {
return LY_EEXIST;
}
} else {
if ((max && (prev_value > value)) || (!max && (prev_value >= value))) {
return LY_EEXIST;
}
}
return LY_SUCCESS;
}
/**
* @brief Set min/max value of the range part.
* @param[in] ctx Compile context.
* @param[in] part Range part structure to fill.
* @param[in] max Flag to distinguish if storing min or max value.
* @param[in] prev The last seen value to check that all values in range are specified in ascendant order.
* @param[in] basetype Type of the value to get know implicit min/max values and other checking rules.
* @param[in] first Flag for the first value of the range to avoid ascendancy order.
* @param[in] length_restr Flag to distinguish between range and length restrictions. Only for logging.
* @param[in] frdigits The fraction-digits value in case of LY_TYPE_DEC64 basetype.
* @param[in] base_range Range from the type from which the current type is derived (if not built-in) to get type's min and max values.
* @param[in,out] value Numeric range value to be stored, if not provided the type's min/max value is set.
* @return LY_ERR value - LY_SUCCESS, LY_EDENIED (value brokes type's boundaries), LY_EVALID (not a number),
* LY_EEXIST (value is smaller than the previous one), LY_EINVAL (decimal64 value does not corresponds with the
* frdigits value), LY_EMEM.
*/
static LY_ERR
range_part_minmax(struct lysc_ctx *ctx, struct lysc_range_part *part, ly_bool max, int64_t prev, LY_DATA_TYPE basetype,
ly_bool first, ly_bool length_restr, uint8_t frdigits, struct lysc_range *base_range, const char **value)
{
LY_ERR ret = LY_SUCCESS;
char *valcopy = NULL;
size_t len = 0;
if (value) {
ret = range_part_check_value_syntax(ctx, basetype, frdigits, *value, &len, &valcopy);
LY_CHECK_GOTO(ret, finalize);
}
if (!valcopy && base_range) {
if (max) {
part->max_64 = base_range->parts[LY_ARRAY_COUNT(base_range->parts) - 1].max_64;
} else {
part->min_64 = base_range->parts[0].min_64;
}
if (!first) {
ret = range_part_check_ascendancy(basetype <= LY_TYPE_STRING ? 1 : 0, max, max ? part->max_64 : part->min_64, prev);
}
goto finalize;
}
switch (basetype) {
case LY_TYPE_INT8: /* range */
if (valcopy) {
ret = ly_parse_int(valcopy, strlen(valcopy), INT64_C(-128), INT64_C(127), LY_BASE_DEC, max ? &part->max_64 : &part->min_64);
} else if (max) {
part->max_64 = INT64_C(127);
} else {
part->min_64 = INT64_C(-128);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(0, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_INT16: /* range */
if (valcopy) {
ret = ly_parse_int(valcopy, strlen(valcopy), INT64_C(-32768), INT64_C(32767), LY_BASE_DEC,
max ? &part->max_64 : &part->min_64);
} else if (max) {
part->max_64 = INT64_C(32767);
} else {
part->min_64 = INT64_C(-32768);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(0, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_INT32: /* range */
if (valcopy) {
ret = ly_parse_int(valcopy, strlen(valcopy), INT64_C(-2147483648), INT64_C(2147483647), LY_BASE_DEC,
max ? &part->max_64 : &part->min_64);
} else if (max) {
part->max_64 = INT64_C(2147483647);
} else {
part->min_64 = INT64_C(-2147483648);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(0, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_INT64: /* range */
case LY_TYPE_DEC64: /* range */
if (valcopy) {
ret = ly_parse_int(valcopy, strlen(valcopy), INT64_C(-9223372036854775807) - INT64_C(1), INT64_C(9223372036854775807),
LY_BASE_DEC, max ? &part->max_64 : &part->min_64);
} else if (max) {
part->max_64 = INT64_C(9223372036854775807);
} else {
part->min_64 = INT64_C(-9223372036854775807) - INT64_C(1);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(0, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_UINT8: /* range */
if (valcopy) {
ret = ly_parse_uint(valcopy, strlen(valcopy), UINT64_C(255), LY_BASE_DEC, max ? &part->max_u64 : &part->min_u64);
} else if (max) {
part->max_u64 = UINT64_C(255);
} else {
part->min_u64 = UINT64_C(0);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(1, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_UINT16: /* range */
if (valcopy) {
ret = ly_parse_uint(valcopy, strlen(valcopy), UINT64_C(65535), LY_BASE_DEC, max ? &part->max_u64 : &part->min_u64);
} else if (max) {
part->max_u64 = UINT64_C(65535);
} else {
part->min_u64 = UINT64_C(0);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(1, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_UINT32: /* range */
if (valcopy) {
ret = ly_parse_uint(valcopy, strlen(valcopy), UINT64_C(4294967295), LY_BASE_DEC,
max ? &part->max_u64 : &part->min_u64);
} else if (max) {
part->max_u64 = UINT64_C(4294967295);
} else {
part->min_u64 = UINT64_C(0);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(1, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_UINT64: /* range */
case LY_TYPE_STRING: /* length */
case LY_TYPE_BINARY: /* length */
if (valcopy) {
ret = ly_parse_uint(valcopy, strlen(valcopy), UINT64_C(18446744073709551615), LY_BASE_DEC,
max ? &part->max_u64 : &part->min_u64);
} else if (max) {
part->max_u64 = UINT64_C(18446744073709551615);
} else {
part->min_u64 = UINT64_C(0);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(1, max, max ? part->max_64 : part->min_64, prev);
}
break;
default:
LOGINT(ctx->ctx);
ret = LY_EINT;
}
finalize:
if (ret == LY_EDENIED) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Invalid %s restriction - value \"%s\" does not fit the type limitations.",
length_restr ? "length" : "range", valcopy ? valcopy : *value);
} else if (ret == LY_EVALID) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Invalid %s restriction - invalid value \"%s\".",
length_restr ? "length" : "range", valcopy ? valcopy : *value);
} else if (ret == LY_EEXIST) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Invalid %s restriction - values are not in ascending order (%s).",
length_restr ? "length" : "range",
(valcopy && basetype != LY_TYPE_DEC64) ? valcopy : value ? *value : max ? "max" : "min");
} else if (!ret && value) {
*value = *value + len;
}
free(valcopy);
return ret;
}
/**
* @brief Compile the parsed range restriction.
* @param[in] ctx Compile context.
* @param[in] range_p Parsed range structure to compile.
* @param[in] basetype Base YANG built-in type of the node with the range restriction.
* @param[in] length_restr Flag to distinguish between range and length restrictions. Only for logging.
* @param[in] frdigits The fraction-digits value in case of LY_TYPE_DEC64 basetype.
* @param[in] base_range Range restriction of the type from which the current type is derived. The current
* range restriction must be more restrictive than the base_range.
* @param[in,out] range Pointer to the created current range structure.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_type_range(struct lysc_ctx *ctx, struct lysp_restr *range_p, LY_DATA_TYPE basetype, ly_bool length_restr,
uint8_t frdigits, struct lysc_range *base_range, struct lysc_range **range)
{
LY_ERR ret = LY_SUCCESS;
const char *expr;
struct lysc_range_part *parts = NULL, *part;
ly_bool range_expected = 0, uns;
LY_ARRAY_COUNT_TYPE parts_done = 0, u, v;
assert(range);
assert(range_p);
expr = range_p->arg.str;
while (1) {
if (isspace(*expr)) {
++expr;
} else if (*expr == '\0') {
if (range_expected) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Invalid %s restriction - unexpected end of the expression after \"..\" (%s).",
length_restr ? "length" : "range", range_p->arg.str);
ret = LY_EVALID;
goto cleanup;
} else if (!parts || (parts_done == LY_ARRAY_COUNT(parts))) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Invalid %s restriction - unexpected end of the expression (%s).",
length_restr ? "length" : "range", range_p->arg.str);
ret = LY_EVALID;
goto cleanup;
}
parts_done++;
break;
} else if (!strncmp(expr, "min", ly_strlen_const("min"))) {
if (parts) {
/* min cannot be used elsewhere than in the first part */
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Invalid %s restriction - unexpected data before min keyword (%.*s).", length_restr ? "length" : "range",
(int)(expr - range_p->arg.str), range_p->arg.str);
ret = LY_EVALID;
goto cleanup;
}
expr += ly_strlen_const("min");
LY_ARRAY_NEW_GOTO(ctx->ctx, parts, part, ret, cleanup);
LY_CHECK_GOTO(ret = range_part_minmax(ctx, part, 0, 0, basetype, 1, length_restr, frdigits, base_range, NULL), cleanup);
part->max_64 = part->min_64;
} else if (*expr == '|') {
if (!parts || range_expected) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Invalid %s restriction - unexpected beginning of the expression (%s).", length_restr ? "length" : "range", expr);
ret = LY_EVALID;
goto cleanup;
}
expr++;
parts_done++;
/* process next part of the expression */
} else if (!strncmp(expr, "..", 2)) {
expr += 2;
while (isspace(*expr)) {
expr++;
}
if (!parts || (LY_ARRAY_COUNT(parts) == parts_done)) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Invalid %s restriction - unexpected \"..\" without a lower bound.", length_restr ? "length" : "range");
ret = LY_EVALID;
goto cleanup;
}
/* continue expecting the upper boundary */
range_expected = 1;
} else if (isdigit(*expr) || (*expr == '-') || (*expr == '+')) {
/* number */
if (range_expected) {
part = &parts[LY_ARRAY_COUNT(parts) - 1];
LY_CHECK_GOTO(ret = range_part_minmax(ctx, part, 1, part->min_64, basetype, 0, length_restr, frdigits, NULL, &expr), cleanup);
range_expected = 0;
} else {
LY_ARRAY_NEW_GOTO(ctx->ctx, parts, part, ret, cleanup);
LY_CHECK_GOTO(ret = range_part_minmax(ctx, part, 0, parts_done ? parts[LY_ARRAY_COUNT(parts) - 2].max_64 : 0,
basetype, parts_done ? 0 : 1, length_restr, frdigits, NULL, &expr), cleanup);
part->max_64 = part->min_64;
}
/* continue with possible another expression part */
} else if (!strncmp(expr, "max", ly_strlen_const("max"))) {
expr += ly_strlen_const("max");
while (isspace(*expr)) {
expr++;
}
if (*expr != '\0') {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid %s restriction - unexpected data after max keyword (%s).",
length_restr ? "length" : "range", expr);
ret = LY_EVALID;
goto cleanup;
}
if (range_expected) {
part = &parts[LY_ARRAY_COUNT(parts) - 1];
LY_CHECK_GOTO(ret = range_part_minmax(ctx, part, 1, part->min_64, basetype, 0, length_restr, frdigits, base_range, NULL), cleanup);
range_expected = 0;
} else {
LY_ARRAY_NEW_GOTO(ctx->ctx, parts, part, ret, cleanup);
LY_CHECK_GOTO(ret = range_part_minmax(ctx, part, 1, parts_done ? parts[LY_ARRAY_COUNT(parts) - 2].max_64 : 0,
basetype, parts_done ? 0 : 1, length_restr, frdigits, base_range, NULL), cleanup);
part->min_64 = part->max_64;
}
} else {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid %s restriction - unexpected data (%s).",
length_restr ? "length" : "range", expr);
ret = LY_EVALID;
goto cleanup;
}
}
/* check with the previous range/length restriction */
if (base_range) {
switch (basetype) {
case LY_TYPE_BINARY:
case LY_TYPE_UINT8:
case LY_TYPE_UINT16:
case LY_TYPE_UINT32:
case LY_TYPE_UINT64:
case LY_TYPE_STRING:
uns = 1;
break;
case LY_TYPE_DEC64:
case LY_TYPE_INT8:
case LY_TYPE_INT16:
case LY_TYPE_INT32:
case LY_TYPE_INT64:
uns = 0;
break;
default:
LOGINT(ctx->ctx);
ret = LY_EINT;
goto cleanup;
}
for (u = v = 0; u < parts_done && v < LY_ARRAY_COUNT(base_range->parts); ++u) {
if ((uns && (parts[u].min_u64 < base_range->parts[v].min_u64)) || (!uns && (parts[u].min_64 < base_range->parts[v].min_64))) {
goto baseerror;
}
/* current lower bound is not lower than the base */
if (base_range->parts[v].min_64 == base_range->parts[v].max_64) {
/* base has single value */
if (base_range->parts[v].min_64 == parts[u].min_64) {
/* both lower bounds are the same */
if (parts[u].min_64 != parts[u].max_64) {
/* current continues with a range */
goto baseerror;
} else {
/* equal single values, move both forward */
++v;
continue;
}
} else {
/* base is single value lower than current range, so the
* value from base range is removed in the current,
* move only base and repeat checking */
++v;
--u;
continue;
}
} else {
/* base is the range */
if (parts[u].min_64 == parts[u].max_64) {
/* current is a single value */
if ((uns && (parts[u].max_u64 > base_range->parts[v].max_u64)) || (!uns && (parts[u].max_64 > base_range->parts[v].max_64))) {
/* current is behind the base range, so base range is omitted,
* move the base and keep the current for further check */
++v;
--u;
} /* else it is within the base range, so move the current, but keep the base */
continue;
} else {
/* both are ranges - check the higher bound, the lower was already checked */
if ((uns && (parts[u].max_u64 > base_range->parts[v].max_u64)) || (!uns && (parts[u].max_64 > base_range->parts[v].max_64))) {
/* higher bound is higher than the current higher bound */
if ((uns && (parts[u].min_u64 > base_range->parts[v].max_u64)) || (!uns && (parts[u].min_64 > base_range->parts[v].max_64))) {
/* but the current lower bound is also higher, so the base range is omitted,
* continue with the same current, but move the base */
--u;
++v;
continue;
}
/* current range starts within the base range but end behind it */
goto baseerror;
} else {
/* current range is smaller than the base,
* move current, but stay with the base */
continue;
}
}
}
}
if (u != parts_done) {
baseerror:
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Invalid %s restriction - the derived restriction (%s) is not equally or more limiting.",
length_restr ? "length" : "range", range_p->arg.str);
ret = LY_EVALID;
goto cleanup;
}
}
if (!(*range)) {
*range = calloc(1, sizeof **range);
LY_CHECK_ERR_RET(!(*range), LOGMEM(ctx->ctx), LY_EMEM);
}
/* we rewrite the following values as the types chain is being processed */
if (range_p->eapptag) {
lydict_remove(ctx->ctx, (*range)->eapptag);
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, range_p->eapptag, 0, &(*range)->eapptag), cleanup);
}
if (range_p->emsg) {
lydict_remove(ctx->ctx, (*range)->emsg);
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, range_p->emsg, 0, &(*range)->emsg), cleanup);
}
if (range_p->dsc) {
lydict_remove(ctx->ctx, (*range)->dsc);
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, range_p->dsc, 0, &(*range)->dsc), cleanup);
}
if (range_p->ref) {
lydict_remove(ctx->ctx, (*range)->ref);
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, range_p->ref, 0, &(*range)->ref), cleanup);
}
/* extensions are taken only from the last range by the caller */
(*range)->parts = parts;
parts = NULL;
cleanup:
LY_ARRAY_FREE(parts);
return ret;
}
LY_ERR
lys_compile_type_pattern_check(struct ly_ctx *ctx, const char *pattern, pcre2_code **code)
{
size_t idx, idx2, start, end, size, brack;
char *perl_regex, *ptr;
int err_code, compile_opts;
const char *orig_ptr;
PCRE2_SIZE err_offset;
pcre2_code *code_local;
#define URANGE_LEN 19
char *ublock2urange[][2] = {
{"BasicLatin", "[\\x{0000}-\\x{007F}]"},
{"Latin-1Supplement", "[\\x{0080}-\\x{00FF}]"},
{"LatinExtended-A", "[\\x{0100}-\\x{017F}]"},
{"LatinExtended-B", "[\\x{0180}-\\x{024F}]"},
{"IPAExtensions", "[\\x{0250}-\\x{02AF}]"},
{"SpacingModifierLetters", "[\\x{02B0}-\\x{02FF}]"},
{"CombiningDiacriticalMarks", "[\\x{0300}-\\x{036F}]"},
{"Greek", "[\\x{0370}-\\x{03FF}]"},
{"Cyrillic", "[\\x{0400}-\\x{04FF}]"},
{"Armenian", "[\\x{0530}-\\x{058F}]"},
{"Hebrew", "[\\x{0590}-\\x{05FF}]"},
{"Arabic", "[\\x{0600}-\\x{06FF}]"},
{"Syriac", "[\\x{0700}-\\x{074F}]"},
{"Thaana", "[\\x{0780}-\\x{07BF}]"},
{"Devanagari", "[\\x{0900}-\\x{097F}]"},
{"Bengali", "[\\x{0980}-\\x{09FF}]"},
{"Gurmukhi", "[\\x{0A00}-\\x{0A7F}]"},
{"Gujarati", "[\\x{0A80}-\\x{0AFF}]"},
{"Oriya", "[\\x{0B00}-\\x{0B7F}]"},
{"Tamil", "[\\x{0B80}-\\x{0BFF}]"},
{"Telugu", "[\\x{0C00}-\\x{0C7F}]"},
{"Kannada", "[\\x{0C80}-\\x{0CFF}]"},
{"Malayalam", "[\\x{0D00}-\\x{0D7F}]"},
{"Sinhala", "[\\x{0D80}-\\x{0DFF}]"},
{"Thai", "[\\x{0E00}-\\x{0E7F}]"},
{"Lao", "[\\x{0E80}-\\x{0EFF}]"},
{"Tibetan", "[\\x{0F00}-\\x{0FFF}]"},
{"Myanmar", "[\\x{1000}-\\x{109F}]"},
{"Georgian", "[\\x{10A0}-\\x{10FF}]"},
{"HangulJamo", "[\\x{1100}-\\x{11FF}]"},
{"Ethiopic", "[\\x{1200}-\\x{137F}]"},
{"Cherokee", "[\\x{13A0}-\\x{13FF}]"},
{"UnifiedCanadianAboriginalSyllabics", "[\\x{1400}-\\x{167F}]"},
{"Ogham", "[\\x{1680}-\\x{169F}]"},
{"Runic", "[\\x{16A0}-\\x{16FF}]"},
{"Khmer", "[\\x{1780}-\\x{17FF}]"},
{"Mongolian", "[\\x{1800}-\\x{18AF}]"},
{"LatinExtendedAdditional", "[\\x{1E00}-\\x{1EFF}]"},
{"GreekExtended", "[\\x{1F00}-\\x{1FFF}]"},
{"GeneralPunctuation", "[\\x{2000}-\\x{206F}]"},
{"SuperscriptsandSubscripts", "[\\x{2070}-\\x{209F}]"},
{"CurrencySymbols", "[\\x{20A0}-\\x{20CF}]"},
{"CombiningMarksforSymbols", "[\\x{20D0}-\\x{20FF}]"},
{"LetterlikeSymbols", "[\\x{2100}-\\x{214F}]"},
{"NumberForms", "[\\x{2150}-\\x{218F}]"},
{"Arrows", "[\\x{2190}-\\x{21FF}]"},
{"MathematicalOperators", "[\\x{2200}-\\x{22FF}]"},
{"MiscellaneousTechnical", "[\\x{2300}-\\x{23FF}]"},
{"ControlPictures", "[\\x{2400}-\\x{243F}]"},
{"OpticalCharacterRecognition", "[\\x{2440}-\\x{245F}]"},
{"EnclosedAlphanumerics", "[\\x{2460}-\\x{24FF}]"},
{"BoxDrawing", "[\\x{2500}-\\x{257F}]"},
{"BlockElements", "[\\x{2580}-\\x{259F}]"},
{"GeometricShapes", "[\\x{25A0}-\\x{25FF}]"},
{"MiscellaneousSymbols", "[\\x{2600}-\\x{26FF}]"},
{"Dingbats", "[\\x{2700}-\\x{27BF}]"},
{"BraillePatterns", "[\\x{2800}-\\x{28FF}]"},
{"CJKRadicalsSupplement", "[\\x{2E80}-\\x{2EFF}]"},
{"KangxiRadicals", "[\\x{2F00}-\\x{2FDF}]"},
{"IdeographicDescriptionCharacters", "[\\x{2FF0}-\\x{2FFF}]"},
{"CJKSymbolsandPunctuation", "[\\x{3000}-\\x{303F}]"},
{"Hiragana", "[\\x{3040}-\\x{309F}]"},
{"Katakana", "[\\x{30A0}-\\x{30FF}]"},
{"Bopomofo", "[\\x{3100}-\\x{312F}]"},
{"HangulCompatibilityJamo", "[\\x{3130}-\\x{318F}]"},
{"Kanbun", "[\\x{3190}-\\x{319F}]"},
{"BopomofoExtended", "[\\x{31A0}-\\x{31BF}]"},
{"EnclosedCJKLettersandMonths", "[\\x{3200}-\\x{32FF}]"},
{"CJKCompatibility", "[\\x{3300}-\\x{33FF}]"},
{"CJKUnifiedIdeographsExtensionA", "[\\x{3400}-\\x{4DB5}]"},
{"CJKUnifiedIdeographs", "[\\x{4E00}-\\x{9FFF}]"},
{"YiSyllables", "[\\x{A000}-\\x{A48F}]"},
{"YiRadicals", "[\\x{A490}-\\x{A4CF}]"},
{"HangulSyllables", "[\\x{AC00}-\\x{D7A3}]"},
{"PrivateUse", "[\\x{E000}-\\x{F8FF}]"},
{"CJKCompatibilityIdeographs", "[\\x{F900}-\\x{FAFF}]"},
{"AlphabeticPresentationForms", "[\\x{FB00}-\\x{FB4F}]"},
{"ArabicPresentationForms-A", "[\\x{FB50}-\\x{FDFF}]"},
{"CombiningHalfMarks", "[\\x{FE20}-\\x{FE2F}]"},
{"CJKCompatibilityForms", "[\\x{FE30}-\\x{FE4F}]"},
{"SmallFormVariants", "[\\x{FE50}-\\x{FE6F}]"},
{"ArabicPresentationForms-B", "[\\x{FE70}-\\x{FEFE}]"},
{"HalfwidthandFullwidthForms", "[\\x{FF00}-\\x{FFEF}]"},
{"Specials", "[\\x{FEFF}|\\x{FFF0}-\\x{FFFD}]"},
{NULL, NULL}
};
/* adjust the expression to a Perl equivalent
* http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/#regexs */
/* allocate space for the transformed pattern */
size = strlen(pattern) + 1;
compile_opts = PCRE2_UTF | PCRE2_ANCHORED | PCRE2_DOLLAR_ENDONLY | PCRE2_NO_AUTO_CAPTURE;
#ifdef PCRE2_ENDANCHORED
compile_opts |= PCRE2_ENDANCHORED;
#else
/* add space for trailing $ anchor */
size++;
#endif
perl_regex = malloc(size);
LY_CHECK_ERR_RET(!perl_regex, LOGMEM(ctx), LY_EMEM);
perl_regex[0] = '\0';
/* we need to replace all "$" and "^" (that are not in "[]") with "\$" and "\^" */
brack = 0;
idx = 0;
orig_ptr = pattern;
while (orig_ptr[0]) {
switch (orig_ptr[0]) {
case '$':
case '^':
if (!brack) {
/* make space for the extra character */
++size;
perl_regex = ly_realloc(perl_regex, size);
LY_CHECK_ERR_RET(!perl_regex, LOGMEM(ctx), LY_EMEM);
/* print escape slash */
perl_regex[idx] = '\\';
++idx;
}
break;
case '[':
/* must not be escaped */
if ((orig_ptr == pattern) || (orig_ptr[-1] != '\\')) {
++brack;
}
break;
case ']':
if ((orig_ptr == pattern) || (orig_ptr[-1] != '\\')) {
/* pattern was checked and compiled already */
assert(brack);
--brack;
}
break;
default:
break;
}
/* copy char */
perl_regex[idx] = orig_ptr[0];
++idx;
++orig_ptr;
}
#ifndef PCRE2_ENDANCHORED
/* anchor match to end of subject */
perl_regex[idx++] = '$';
#endif
perl_regex[idx] = '\0';
/* substitute Unicode Character Blocks with exact Character Ranges */
while ((ptr = strstr(perl_regex, "\\p{Is"))) {
start = ptr - perl_regex;
ptr = strchr(ptr, '}');
if (!ptr) {
LOGVAL(ctx, LY_VCODE_INREGEXP, pattern, perl_regex + start + 2, "unterminated character property");
free(perl_regex);
return LY_EVALID;
}
end = (ptr - perl_regex) + 1;
/* need more space */
if (end - start < URANGE_LEN) {
perl_regex = ly_realloc(perl_regex, strlen(perl_regex) + (URANGE_LEN - (end - start)) + 1);
LY_CHECK_ERR_RET(!perl_regex, LOGMEM(ctx); free(perl_regex), LY_EMEM);
}
/* find our range */
for (idx = 0; ublock2urange[idx][0]; ++idx) {
if (!strncmp(perl_regex + start + ly_strlen_const("\\p{Is"),
ublock2urange[idx][0], strlen(ublock2urange[idx][0]))) {
break;
}
}
if (!ublock2urange[idx][0]) {
LOGVAL(ctx, LY_VCODE_INREGEXP, pattern, perl_regex + start + 5, "unknown block name");
free(perl_regex);
return LY_EVALID;
}
/* make the space in the string and replace the block (but we cannot include brackets if it was already enclosed in them) */
for (idx2 = 0, idx = 0; idx2 < start; ++idx2) {
if ((perl_regex[idx2] == '[') && (!idx2 || (perl_regex[idx2 - 1] != '\\'))) {
++idx;
}
if ((perl_regex[idx2] == ']') && (!idx2 || (perl_regex[idx2 - 1] != '\\'))) {
--idx;
}
}
if (idx) {
/* skip brackets */
memmove(perl_regex + start + (URANGE_LEN - 2), perl_regex + end, strlen(perl_regex + end) + 1);
memcpy(perl_regex + start, ublock2urange[idx][1] + 1, URANGE_LEN - 2);
} else {
memmove(perl_regex + start + URANGE_LEN, perl_regex + end, strlen(perl_regex + end) + 1);
memcpy(perl_regex + start, ublock2urange[idx][1], URANGE_LEN);
}
}
/* must return 0, already checked during parsing */
code_local = pcre2_compile((PCRE2_SPTR)perl_regex, PCRE2_ZERO_TERMINATED, compile_opts,
&err_code, &err_offset, NULL);
if (!code_local) {
PCRE2_UCHAR err_msg[LY_PCRE2_MSG_LIMIT] = {0};
pcre2_get_error_message(err_code, err_msg, LY_PCRE2_MSG_LIMIT);
LOGVAL(ctx, LY_VCODE_INREGEXP, pattern, perl_regex + err_offset, err_msg);
free(perl_regex);
return LY_EVALID;
}
free(perl_regex);
if (code) {
*code = code_local;
} else {
free(code_local);
}
return LY_SUCCESS;
#undef URANGE_LEN
}
/**
* @brief Compile parsed pattern restriction in conjunction with the patterns from base type.
* @param[in] ctx Compile context.
* @param[in] patterns_p Array of parsed patterns from the current type to compile.
* @param[in] base_patterns Compiled patterns from the type from which the current type is derived.
* Patterns from the base type are inherited to have all the patterns that have to match at one place.
* @param[out] patterns Pointer to the storage for the patterns of the current type.
* @return LY_ERR LY_SUCCESS, LY_EMEM, LY_EVALID.
*/
static LY_ERR
lys_compile_type_patterns(struct lysc_ctx *ctx, struct lysp_restr *patterns_p,
struct lysc_pattern **base_patterns, struct lysc_pattern ***patterns)
{
struct lysc_pattern **pattern;
LY_ARRAY_COUNT_TYPE u;
LY_ERR ret = LY_SUCCESS;
/* first, copy the patterns from the base type */
if (base_patterns) {
*patterns = lysc_patterns_dup(ctx->ctx, base_patterns);
LY_CHECK_ERR_RET(!(*patterns), LOGMEM(ctx->ctx), LY_EMEM);
}
LY_ARRAY_FOR(patterns_p, u) {
LY_ARRAY_NEW_RET(ctx->ctx, (*patterns), pattern, LY_EMEM);
*pattern = calloc(1, sizeof **pattern);
++(*pattern)->refcount;
ret = lys_compile_type_pattern_check(ctx->ctx, &patterns_p[u].arg.str[1], &(*pattern)->code);
LY_CHECK_RET(ret);
if (patterns_p[u].arg.str[0] == LYSP_RESTR_PATTERN_NACK) {
(*pattern)->inverted = 1;
}
DUP_STRING_GOTO(ctx->ctx, &patterns_p[u].arg.str[1], (*pattern)->expr, ret, done);
DUP_STRING_GOTO(ctx->ctx, patterns_p[u].eapptag, (*pattern)->eapptag, ret, done);
DUP_STRING_GOTO(ctx->ctx, patterns_p[u].emsg, (*pattern)->emsg, ret, done);
DUP_STRING_GOTO(ctx->ctx, patterns_p[u].dsc, (*pattern)->dsc, ret, done);
DUP_STRING_GOTO(ctx->ctx, patterns_p[u].ref, (*pattern)->ref, ret, done);
COMPILE_EXTS_GOTO(ctx, patterns_p[u].exts, (*pattern)->exts, (*pattern), ret, done);
}
done:
return ret;
}
/**
* @brief map of the possible restrictions combination for the specific built-in type.
*/
static uint16_t type_substmt_map[LY_DATA_TYPE_COUNT] = {
0 /* LY_TYPE_UNKNOWN */,
LYS_SET_LENGTH /* LY_TYPE_BINARY */,
LYS_SET_RANGE /* LY_TYPE_UINT8 */,
LYS_SET_RANGE /* LY_TYPE_UINT16 */,
LYS_SET_RANGE /* LY_TYPE_UINT32 */,
LYS_SET_RANGE /* LY_TYPE_UINT64 */,
LYS_SET_LENGTH | LYS_SET_PATTERN /* LY_TYPE_STRING */,
LYS_SET_BIT /* LY_TYPE_BITS */,
0 /* LY_TYPE_BOOL */,
LYS_SET_FRDIGITS | LYS_SET_RANGE /* LY_TYPE_DEC64 */,
0 /* LY_TYPE_EMPTY */,
LYS_SET_ENUM /* LY_TYPE_ENUM */,
LYS_SET_BASE /* LY_TYPE_IDENT */,
LYS_SET_REQINST /* LY_TYPE_INST */,
LYS_SET_REQINST | LYS_SET_PATH /* LY_TYPE_LEAFREF */,
LYS_SET_TYPE /* LY_TYPE_UNION */,
LYS_SET_RANGE /* LY_TYPE_INT8 */,
LYS_SET_RANGE /* LY_TYPE_INT16 */,
LYS_SET_RANGE /* LY_TYPE_INT32 */,
LYS_SET_RANGE /* LY_TYPE_INT64 */
};
/**
* @brief stringification of the YANG built-in data types
*/
const char *ly_data_type2str[LY_DATA_TYPE_COUNT] = {
LY_TYPE_UNKNOWN_STR,
LY_TYPE_BINARY_STR,
LY_TYPE_UINT8_STR,
LY_TYPE_UINT16_STR,
LY_TYPE_UINT32_STR,
LY_TYPE_UINT64_STR,
LY_TYPE_STRING_STR,
LY_TYPE_BITS_STR,
LY_TYPE_BOOL_STR,
LY_TYPE_DEC64_STR,
LY_TYPE_EMPTY_STR,
LY_TYPE_ENUM_STR,
LY_TYPE_IDENT_STR,
LY_TYPE_INST_STR,
LY_TYPE_LEAFREF_STR,
LY_TYPE_UNION_STR,
LY_TYPE_INT8_STR,
LY_TYPE_INT16_STR,
LY_TYPE_INT32_STR,
LY_TYPE_INT64_STR
};
/**
* @brief Compile parsed type's enum structures (for enumeration and bits types).
* @param[in] ctx Compile context.
* @param[in] enums_p Array of the parsed enum structures to compile.
* @param[in] basetype Base YANG built-in type from which the current type is derived. Only LY_TYPE_ENUM and LY_TYPE_BITS are expected.
* @param[in] base_enums Array of the compiled enums information from the (latest) base type to check if the current enums are compatible.
* @param[out] bitenums Newly created array of the compiled bitenums information for the current type.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_type_enums(struct lysc_ctx *ctx, struct lysp_type_enum *enums_p, LY_DATA_TYPE basetype,
struct lysc_type_bitenum_item *base_enums, struct lysc_type_bitenum_item **bitenums)
{
LY_ERR ret = LY_SUCCESS;
LY_ARRAY_COUNT_TYPE u, v, match = 0;
int32_t highest_value = INT32_MIN, cur_val = INT32_MIN;
uint32_t highest_position = 0, cur_pos = 0;
struct lysc_type_bitenum_item *e, storage;
ly_bool enabled;
if (base_enums && (ctx->pmod->version < LYS_VERSION_1_1)) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "%s type can be subtyped only in YANG 1.1 modules.",
basetype == LY_TYPE_ENUM ? "Enumeration" : "Bits");
return LY_EVALID;
}
LY_ARRAY_FOR(enums_p, u) {
/* perform all checks */
if (base_enums) {
/* check the enum/bit presence in the base type - the set of enums/bits in the derived type must be a subset */
LY_ARRAY_FOR(base_enums, v) {
if (!strcmp(enums_p[u].name, base_enums[v].name)) {
break;
}
}
if (v == LY_ARRAY_COUNT(base_enums)) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Invalid %s - derived type adds new item \"%s\".",
basetype == LY_TYPE_ENUM ? "enumeration" : "bits", enums_p[u].name);
return LY_EVALID;
}
match = v;
}
if (basetype == LY_TYPE_ENUM) {
if (enums_p[u].flags & LYS_SET_VALUE) {
/* value assigned by model */
cur_val = (int32_t)enums_p[u].value;
/* check collision with other values */
LY_ARRAY_FOR(*bitenums, v) {
if (cur_val == (*bitenums)[v].value) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Invalid enumeration - value %d collide in items \"%s\" and \"%s\".",
cur_val, enums_p[u].name, (*bitenums)[v].name);
return LY_EVALID;
}
}
} else if (base_enums) {
/* inherit the assigned value */
cur_val = base_enums[match].value;
} else {
/* assign value automatically */
if (u == 0) {
cur_val = 0;
} else if (highest_value == INT32_MAX) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Invalid enumeration - it is not possible to auto-assign enum value for "
"\"%s\" since the highest value is already 2147483647.", enums_p[u].name);
return LY_EVALID;
} else {
cur_val = highest_value + 1;
}
}
/* save highest value for auto assing */
if (highest_value < cur_val) {
highest_value = cur_val;
}
} else { /* LY_TYPE_BITS */
if (enums_p[u].flags & LYS_SET_VALUE) {
/* value assigned by model */
cur_pos = (uint32_t)enums_p[u].value;
/* check collision with other values */
LY_ARRAY_FOR(*bitenums, v) {
if (cur_pos == (*bitenums)[v].position) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Invalid bits - position %u collide in items \"%s\" and \"%s\".",
cur_pos, enums_p[u].name, (*bitenums)[v].name);
return LY_EVALID;
}
}
} else if (base_enums) {
/* inherit the assigned value */
cur_pos = base_enums[match].position;
} else {
/* assign value automatically */
if (u == 0) {
cur_pos = 0;
} else if (highest_position == UINT32_MAX) {
/* counter overflow */
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Invalid bits - it is not possible to auto-assign bit position for "
"\"%s\" since the highest value is already 4294967295.", enums_p[u].name);
return LY_EVALID;
} else {
cur_pos = highest_position + 1;
}
}
/* save highest position for auto assing */
if (highest_position < cur_pos) {
highest_position = cur_pos;
}
}
/* the assigned values must not change from the derived type */
if (base_enums) {
if (basetype == LY_TYPE_ENUM) {
if (cur_val != base_enums[match].value) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Invalid enumeration - value of the item \"%s\" has changed from %d to %d in the derived type.",
enums_p[u].name, base_enums[match].value, cur_val);
return LY_EVALID;
}
} else {
if (cur_pos != base_enums[match].position) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Invalid bits - position of the item \"%s\" has changed from %u to %u in the derived type.",
enums_p[u].name, base_enums[match].position, cur_pos);
return LY_EVALID;
}
}
}
/* add new enum/bit */
LY_ARRAY_NEW_RET(ctx->ctx, *bitenums, e, LY_EMEM);
DUP_STRING_GOTO(ctx->ctx, enums_p[u].name, e->name, ret, done);
DUP_STRING_GOTO(ctx->ctx, enums_p[u].dsc, e->dsc, ret, done);
DUP_STRING_GOTO(ctx->ctx, enums_p[u].ref, e->ref, ret, done);
e->flags = (enums_p[u].flags & LYS_FLAGS_COMPILED_MASK) | (basetype == LY_TYPE_ENUM ? LYS_IS_ENUM : 0);
if (basetype == LY_TYPE_ENUM) {
e->value = cur_val;
} else {
e->position = cur_pos;
}
COMPILE_EXTS_GOTO(ctx, enums_p[u].exts, e->exts, e, ret, done);
/* evaluate if-ffeatures */
LY_CHECK_RET(lys_eval_iffeatures(ctx->ctx, enums_p[u].iffeatures, &enabled));
if (!enabled) {
/* set only flag, later resolved and removed */
e->flags |= LYS_DISABLED;
}
if (basetype == LY_TYPE_BITS) {
/* keep bits ordered by position */
for (v = u; v && (*bitenums)[v - 1].position > e->position; --v) {}
if (v != u) {
memcpy(&storage, e, sizeof *e);
memmove(&(*bitenums)[v + 1], &(*bitenums)[v], (u - v) * sizeof **bitenums);
memcpy(&(*bitenums)[v], &storage, sizeof storage);
}
}
}
done:
return ret;
}
static LY_ERR
lys_compile_type_union(struct lysc_ctx *ctx, struct lysp_type *ptypes, struct lysp_node *context_pnode, uint16_t context_flags,
const char *context_name, struct lysc_type ***utypes_p)
{
LY_ERR ret = LY_SUCCESS;
struct lysc_type **utypes = *utypes_p;
struct lysc_type_union *un_aux = NULL;
LY_ARRAY_CREATE_GOTO(ctx->ctx, utypes, LY_ARRAY_COUNT(ptypes), ret, error);
for (LY_ARRAY_COUNT_TYPE u = 0, additional = 0; u < LY_ARRAY_COUNT(ptypes); ++u) {
ret = lys_compile_type(ctx, context_pnode, context_flags, context_name, &ptypes[u], &utypes[u + additional],
NULL, NULL);
LY_CHECK_GOTO(ret, error);
if (utypes[u + additional]->basetype == LY_TYPE_UNION) {
/* add space for additional types from the union subtype */
un_aux = (struct lysc_type_union *)utypes[u + additional];
LY_ARRAY_CREATE_GOTO(ctx->ctx, utypes,
LY_ARRAY_COUNT(ptypes) + additional + LY_ARRAY_COUNT(un_aux->types) - LY_ARRAY_COUNT(utypes), ret, error);
/* copy subtypes of the subtype union */
for (LY_ARRAY_COUNT_TYPE v = 0; v < LY_ARRAY_COUNT(un_aux->types); ++v) {
if (un_aux->types[v]->basetype == LY_TYPE_LEAFREF) {
struct lysc_type_leafref *lref;
/* duplicate the whole structure because of the instance-specific path resolving for realtype */
utypes[u + additional] = calloc(1, sizeof(struct lysc_type_leafref));
LY_CHECK_ERR_GOTO(!utypes[u + additional], LOGMEM(ctx->ctx); ret = LY_EMEM, error);
lref = (struct lysc_type_leafref *)utypes[u + additional];
lref->basetype = LY_TYPE_LEAFREF;
ret = lyxp_expr_dup(ctx->ctx, ((struct lysc_type_leafref *)un_aux->types[v])->path, &lref->path);
LY_CHECK_GOTO(ret, error);
lref->refcount = 1;
lref->require_instance = ((struct lysc_type_leafref *)un_aux->types[v])->require_instance;
ret = lyplg_type_prefix_data_dup(ctx->ctx, LY_VALUE_SCHEMA_RESOLVED,
((struct lysc_type_leafref *)un_aux->types[v])->prefixes, (void **)&lref->prefixes);
LY_CHECK_GOTO(ret, error);
/* TODO extensions */
} else {
utypes[u + additional] = un_aux->types[v];
LY_ATOMIC_INC_BARRIER(un_aux->types[v]->refcount);
}
++additional;
LY_ARRAY_INCREMENT(utypes);
}
/* compensate u increment in main loop */
--additional;
/* free the replaced union subtype */
lysc_type_free(ctx->ctx, (struct lysc_type *)un_aux);
un_aux = NULL;
} else {
LY_ARRAY_INCREMENT(utypes);
}
}
*utypes_p = utypes;
return LY_SUCCESS;
error:
if (un_aux) {
lysc_type_free(ctx->ctx, (struct lysc_type *)un_aux);
}
*utypes_p = utypes;
return ret;
}
/**
* @brief The core of the lys_compile_type() - compile information about the given type (from typedef or leaf/leaf-list).
* @param[in] ctx Compile context.
* @param[in] context_pnode Schema node where the type/typedef is placed to correctly find the base types.
* @param[in] context_flags Flags of the context node or the referencing typedef to correctly check status of referencing and referenced objects.
* @param[in] context_name Name of the context node or referencing typedef for logging.
* @param[in] type_p Parsed type to compile.
* @param[in] basetype Base YANG built-in type of the type to compile.
* @param[in] tpdfname Name of the type's typedef, serves as a flag - if it is leaf/leaf-list's type, it is NULL.
* @param[in] base The latest base (compiled) type from which the current type is being derived.
* @param[out] type Newly created type structure with the filled information about the type.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_type_(struct lysc_ctx *ctx, struct lysp_node *context_pnode, uint16_t context_flags, const char *context_name,
struct lysp_type *type_p, LY_DATA_TYPE basetype, const char *tpdfname, struct lysc_type *base, struct lysc_type **type)
{
LY_ERR ret = LY_SUCCESS;
struct lysc_type_bin *bin;
struct lysc_type_num *num;
struct lysc_type_str *str;
struct lysc_type_bits *bits;
struct lysc_type_enum *enumeration;
struct lysc_type_dec *dec;
struct lysc_type_identityref *idref;
struct lysc_type_leafref *lref;
struct lysc_type_union *un;
switch (basetype) {
case LY_TYPE_BINARY:
bin = (struct lysc_type_bin *)(*type);
/* RFC 7950 9.8.1, 9.4.4 - length, number of octets it contains */
if (type_p->length) {
LY_CHECK_RET(lys_compile_type_range(ctx, type_p->length, basetype, 1, 0,
base ? ((struct lysc_type_bin *)base)->length : NULL, &bin->length));
if (!tpdfname) {
COMPILE_EXTS_GOTO(ctx, type_p->length->exts, bin->length->exts, bin->length, ret, cleanup);
}
}
break;
case LY_TYPE_BITS:
/* RFC 7950 9.7 - bits */
bits = (struct lysc_type_bits *)(*type);
if (type_p->bits) {
LY_CHECK_RET(lys_compile_type_enums(ctx, type_p->bits, basetype,
base ? (struct lysc_type_bitenum_item *)((struct lysc_type_bits *)base)->bits : NULL,
(struct lysc_type_bitenum_item **)&bits->bits));
}
if (!base && !type_p->flags) {
/* type derived from bits built-in type must contain at least one bit */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VCODE_MISSCHILDSTMT, "bit", "bits type ", tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VCODE_MISSCHILDSTMT, "bit", "bits type", "");
}
return LY_EVALID;
}
break;
case LY_TYPE_DEC64:
dec = (struct lysc_type_dec *)(*type);
/* RFC 7950 9.3.4 - fraction-digits */
if (!base) {
if (!type_p->fraction_digits) {
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VCODE_MISSCHILDSTMT, "fraction-digits", "decimal64 type ", tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VCODE_MISSCHILDSTMT, "fraction-digits", "decimal64 type", "");
}
return LY_EVALID;
}
dec->fraction_digits = type_p->fraction_digits;
} else {
if (type_p->fraction_digits) {
/* fraction digits is prohibited in types not directly derived from built-in decimal64 */
if (tpdfname) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Invalid fraction-digits substatement for type \"%s\" not directly derived from decimal64 built-in type.",
tpdfname);
} else {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Invalid fraction-digits substatement for type not directly derived from decimal64 built-in type.");
}
return LY_EVALID;
}
dec->fraction_digits = ((struct lysc_type_dec *)base)->fraction_digits;
}
/* RFC 7950 9.2.4 - range */
if (type_p->range) {
LY_CHECK_RET(lys_compile_type_range(ctx, type_p->range, basetype, 0, dec->fraction_digits,
base ? ((struct lysc_type_dec *)base)->range : NULL, &dec->range));
if (!tpdfname) {
COMPILE_EXTS_GOTO(ctx, type_p->range->exts, dec->range->exts, dec->range, ret, cleanup);
}
}
break;
case LY_TYPE_STRING:
str = (struct lysc_type_str *)(*type);
/* RFC 7950 9.4.4 - length */
if (type_p->length) {
LY_CHECK_RET(lys_compile_type_range(ctx, type_p->length, basetype, 1, 0,
base ? ((struct lysc_type_str *)base)->length : NULL, &str->length));
if (!tpdfname) {
COMPILE_EXTS_GOTO(ctx, type_p->length->exts, str->length->exts, str->length, ret, cleanup);
}
} else if (base && ((struct lysc_type_str *)base)->length) {
str->length = lysc_range_dup(ctx->ctx, ((struct lysc_type_str *)base)->length);
}
/* RFC 7950 9.4.5 - pattern */
if (type_p->patterns) {
LY_CHECK_RET(lys_compile_type_patterns(ctx, type_p->patterns,
base ? ((struct lysc_type_str *)base)->patterns : NULL, &str->patterns));
} else if (base && ((struct lysc_type_str *)base)->patterns) {
str->patterns = lysc_patterns_dup(ctx->ctx, ((struct lysc_type_str *)base)->patterns);
}
break;
case LY_TYPE_ENUM:
enumeration = (struct lysc_type_enum *)(*type);
/* RFC 7950 9.6 - enum */
if (type_p->enums) {
LY_CHECK_RET(lys_compile_type_enums(ctx, type_p->enums, basetype,
base ? ((struct lysc_type_enum *)base)->enums : NULL, &enumeration->enums));
}
if (!base && !type_p->flags) {
/* type derived from enumerations built-in type must contain at least one enum */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VCODE_MISSCHILDSTMT, "enum", "enumeration type ", tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VCODE_MISSCHILDSTMT, "enum", "enumeration type", "");
}
return LY_EVALID;
}
break;
case LY_TYPE_INT8:
case LY_TYPE_UINT8:
case LY_TYPE_INT16:
case LY_TYPE_UINT16:
case LY_TYPE_INT32:
case LY_TYPE_UINT32:
case LY_TYPE_INT64:
case LY_TYPE_UINT64:
num = (struct lysc_type_num *)(*type);
/* RFC 6020 9.2.4 - range */
if (type_p->range) {
LY_CHECK_RET(lys_compile_type_range(ctx, type_p->range, basetype, 0, 0,
base ? ((struct lysc_type_num *)base)->range : NULL, &num->range));
if (!tpdfname) {
COMPILE_EXTS_GOTO(ctx, type_p->range->exts, num->range->exts, num->range, ret, cleanup);
}
}
break;
case LY_TYPE_IDENT:
idref = (struct lysc_type_identityref *)(*type);
/* RFC 7950 9.10.2 - base */
if (type_p->bases) {
if (base) {
/* only the directly derived identityrefs can contain base specification */
if (tpdfname) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Invalid base substatement for the type \"%s\" not directly derived from identityref built-in type.",
tpdfname);
} else {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Invalid base substatement for the type not directly derived from identityref built-in type.");
}
return LY_EVALID;
}
LY_CHECK_RET(lys_compile_identity_bases(ctx, type_p->pmod, type_p->bases, NULL, &idref->bases));
}
if (!base && !type_p->flags) {
/* type derived from identityref built-in type must contain at least one base */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VCODE_MISSCHILDSTMT, "base", "identityref type ", tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VCODE_MISSCHILDSTMT, "base", "identityref type", "");
}
return LY_EVALID;
}
break;
case LY_TYPE_LEAFREF:
lref = (struct lysc_type_leafref *)*type;
/* RFC 7950 9.9.3 - require-instance */
if (type_p->flags & LYS_SET_REQINST) {
if (type_p->pmod->version < LYS_VERSION_1_1) {
if (tpdfname) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS,
"Leafref type \"%s\" can be restricted by require-instance statement only in YANG 1.1 modules.", tpdfname);
} else {
LOGVAL(ctx->ctx, LYVE_SEMANTICS,
"Leafref type can be restricted by require-instance statement only in YANG 1.1 modules.");
}
return LY_EVALID;
}
lref->require_instance = type_p->require_instance;
} else if (base) {
/* inherit */
lref->require_instance = ((struct lysc_type_leafref *)base)->require_instance;
} else {
/* default is true */
lref->require_instance = 1;
}
if (type_p->path) {
LY_VALUE_FORMAT format;
LY_CHECK_RET(lyxp_expr_dup(ctx->ctx, type_p->path, &lref->path));
LY_CHECK_RET(lyplg_type_prefix_data_new(ctx->ctx, type_p->path->expr, strlen(type_p->path->expr),
LY_VALUE_SCHEMA, type_p->pmod, &format, (void **)&lref->prefixes));
} else if (base) {
LY_CHECK_RET(lyxp_expr_dup(ctx->ctx, ((struct lysc_type_leafref *)base)->path, &lref->path));
LY_CHECK_RET(lyplg_type_prefix_data_dup(ctx->ctx, LY_VALUE_SCHEMA_RESOLVED,
((struct lysc_type_leafref *)base)->prefixes, (void **)&lref->prefixes));
} else if (tpdfname) {
LOGVAL(ctx->ctx, LY_VCODE_MISSCHILDSTMT, "path", "leafref type ", tpdfname);
return LY_EVALID;
} else {
LOGVAL(ctx->ctx, LY_VCODE_MISSCHILDSTMT, "path", "leafref type", "");
return LY_EVALID;
}
break;
case LY_TYPE_INST:
/* RFC 7950 9.9.3 - require-instance */
if (type_p->flags & LYS_SET_REQINST) {
((struct lysc_type_instanceid *)(*type))->require_instance = type_p->require_instance;
} else {
/* default is true */
((struct lysc_type_instanceid *)(*type))->require_instance = 1;
}
break;
case LY_TYPE_UNION:
un = (struct lysc_type_union *)(*type);
/* RFC 7950 7.4 - type */
if (type_p->types) {
if (base) {
/* only the directly derived union can contain types specification */
if (tpdfname) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Invalid type substatement for the type \"%s\" not directly derived from union built-in type.",
tpdfname);
} else {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG,
"Invalid type substatement for the type not directly derived from union built-in type.");
}
return LY_EVALID;
}
/* compile the type */
LY_CHECK_RET(lys_compile_type_union(ctx, type_p->types, context_pnode, context_flags, context_name, &un->types));
}
if (!base && !type_p->flags) {
/* type derived from union built-in type must contain at least one type */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VCODE_MISSCHILDSTMT, "type", "union type ", tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VCODE_MISSCHILDSTMT, "type", "union type", "");
}
return LY_EVALID;
}
break;
case LY_TYPE_BOOL:
case LY_TYPE_EMPTY:
case LY_TYPE_UNKNOWN: /* just to complete switch */
break;
}
if (tpdfname) {
switch (basetype) {
case LY_TYPE_BINARY:
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_bin));
break;
case LY_TYPE_BITS:
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_bits));
break;
case LY_TYPE_DEC64:
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_dec));
break;
case LY_TYPE_STRING:
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_str));
break;
case LY_TYPE_ENUM:
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_enum));
break;
case LY_TYPE_INT8:
case LY_TYPE_UINT8:
case LY_TYPE_INT16:
case LY_TYPE_UINT16:
case LY_TYPE_INT32:
case LY_TYPE_UINT32:
case LY_TYPE_INT64:
case LY_TYPE_UINT64:
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_num));
break;
case LY_TYPE_IDENT:
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_identityref));
break;
case LY_TYPE_LEAFREF:
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_leafref));
break;
case LY_TYPE_INST:
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_instanceid));
break;
case LY_TYPE_UNION:
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_union));
break;
case LY_TYPE_BOOL:
case LY_TYPE_EMPTY:
case LY_TYPE_UNKNOWN: /* just to complete switch */
break;
}
}
LY_CHECK_ERR_RET(!(*type), LOGMEM(ctx->ctx), LY_EMEM);
cleanup:
return ret;
}
/**
* @brief Find the correct plugin implementing the described type
*
* @param[in] mod Module where the type is defined
* @param[in] name Name of the type (typedef)
* @param[in] basetype Type's basetype (when the built-in base plugin is supposed to be used)
* @return Pointer to the plugin implementing the described data type.
*/
static struct lyplg_type *
lys_compile_type_get_plugin(struct lys_module *mod, const char *name, LY_DATA_TYPE basetype)
{
struct lyplg_type *p;
/* try to find loaded user type plugins */
p = lyplg_find(LYPLG_TYPE, mod->name, mod->revision, name);
if (!p) {
/* use the internal built-in type implementation */
p = lyplg_find(LYPLG_TYPE, "", NULL, ly_data_type2str[basetype]);
}
return p;
}
LY_ERR
lys_compile_type(struct lysc_ctx *ctx, struct lysp_node *context_pnode, uint16_t context_flags, const char *context_name,
struct lysp_type *type_p, struct lysc_type **type, const char **units, struct lysp_qname **dflt)
{
LY_ERR ret = LY_SUCCESS;
ly_bool dummyloops = 0;
struct type_context {
const struct lysp_tpdf *tpdf;
struct lysp_node *node;
} *tctx, *tctx_prev = NULL, *tctx_iter;
LY_DATA_TYPE basetype = LY_TYPE_UNKNOWN;
struct lysc_type *base = NULL, *prev_type;
struct ly_set tpdf_chain = {0};
struct lyplg_type *plugin;
(*type) = NULL;
if (dflt) {
*dflt = NULL;
}
tctx = calloc(1, sizeof *tctx);
LY_CHECK_ERR_RET(!tctx, LOGMEM(ctx->ctx), LY_EMEM);
for (ret = lysp_type_find(type_p->name, context_pnode, type_p->pmod, &basetype, &tctx->tpdf, &tctx->node);
ret == LY_SUCCESS;
ret = lysp_type_find(tctx_prev->tpdf->type.name, tctx_prev->node, tctx_prev->tpdf->type.pmod,
&basetype, &tctx->tpdf, &tctx->node)) {
if (basetype) {
break;
}
/* check status */
ret = lysc_check_status(ctx, context_flags, (void *)type_p->pmod, context_name, tctx->tpdf->flags,
(void *)tctx->tpdf->type.pmod, tctx->node ? tctx->node->name : tctx->tpdf->name);
LY_CHECK_ERR_GOTO(ret, free(tctx), cleanup);
if (units && !*units) {
/* inherit units */
DUP_STRING(ctx->ctx, tctx->tpdf->units, *units, ret);
LY_CHECK_ERR_GOTO(ret, free(tctx), cleanup);
}
if (dflt && !*dflt && tctx->tpdf->dflt.str) {
/* inherit default */
*dflt = (struct lysp_qname *)&tctx->tpdf->dflt;
}
if (dummyloops && (!units || *units) && dflt && *dflt) {
basetype = ((struct type_context *)tpdf_chain.objs[tpdf_chain.count - 1])->tpdf->type.compiled->basetype;
break;
}
if (tctx->tpdf->type.compiled && (tctx->tpdf->type.compiled->refcount == 1)) {
/* context recompilation - everything was freed previously (the only reference is from the parsed type itself)
* and we need now recompile the type again in the updated context. */
lysc_type_free(ctx->ctx, tctx->tpdf->type.compiled);
((struct lysp_tpdf *)tctx->tpdf)->type.compiled = NULL;
}
if (tctx->tpdf->type.compiled) {
/* it is not necessary to continue, the rest of the chain was already compiled,
* but we still may need to inherit default and units values, so start dummy loops */
basetype = tctx->tpdf->type.compiled->basetype;
ret = ly_set_add(&tpdf_chain, tctx, 1, NULL);
LY_CHECK_ERR_GOTO(ret, free(tctx), cleanup);
if ((units && !*units) || (dflt && !*dflt)) {
dummyloops = 1;
goto preparenext;
} else {
tctx = NULL;
break;
}
}
/* circular typedef reference detection */
for (uint32_t u = 0; u < tpdf_chain.count; u++) {
/* local part */
tctx_iter = (struct type_context *)tpdf_chain.objs[u];
if (tctx_iter->tpdf == tctx->tpdf) {
LOGVAL(ctx->ctx, LYVE_REFERENCE,
"Invalid \"%s\" type reference - circular chain of types detected.", tctx->tpdf->name);
free(tctx);
ret = LY_EVALID;
goto cleanup;
}
}
for (uint32_t u = 0; u < ctx->tpdf_chain.count; u++) {
/* global part for unions corner case */
tctx_iter = (struct type_context *)ctx->tpdf_chain.objs[u];
if (tctx_iter->tpdf == tctx->tpdf) {
LOGVAL(ctx->ctx, LYVE_REFERENCE,
"Invalid \"%s\" type reference - circular chain of types detected.", tctx->tpdf->name);
free(tctx);
ret = LY_EVALID;
goto cleanup;
}
}
/* store information for the following processing */
ret = ly_set_add(&tpdf_chain, tctx, 1, NULL);
LY_CHECK_ERR_GOTO(ret, free(tctx), cleanup);
preparenext:
/* prepare next loop */
tctx_prev = tctx;
tctx = calloc(1, sizeof *tctx);
LY_CHECK_ERR_RET(!tctx, LOGMEM(ctx->ctx), LY_EMEM);
}
free(tctx);
/* allocate type according to the basetype */
switch (basetype) {
case LY_TYPE_BINARY:
*type = calloc(1, sizeof(struct lysc_type_bin));
break;
case LY_TYPE_BITS:
*type = calloc(1, sizeof(struct lysc_type_bits));
break;
case LY_TYPE_BOOL:
case LY_TYPE_EMPTY:
*type = calloc(1, sizeof(struct lysc_type));
break;
case LY_TYPE_DEC64:
*type = calloc(1, sizeof(struct lysc_type_dec));
break;
case LY_TYPE_ENUM:
*type = calloc(1, sizeof(struct lysc_type_enum));
break;
case LY_TYPE_IDENT:
*type = calloc(1, sizeof(struct lysc_type_identityref));
break;
case LY_TYPE_INST:
*type = calloc(1, sizeof(struct lysc_type_instanceid));
break;
case LY_TYPE_LEAFREF:
*type = calloc(1, sizeof(struct lysc_type_leafref));
break;
case LY_TYPE_STRING:
*type = calloc(1, sizeof(struct lysc_type_str));
break;
case LY_TYPE_UNION:
*type = calloc(1, sizeof(struct lysc_type_union));
break;
case LY_TYPE_INT8:
case LY_TYPE_UINT8:
case LY_TYPE_INT16:
case LY_TYPE_UINT16:
case LY_TYPE_INT32:
case LY_TYPE_UINT32:
case LY_TYPE_INT64:
case LY_TYPE_UINT64:
*type = calloc(1, sizeof(struct lysc_type_num));
break;
case LY_TYPE_UNKNOWN:
LOGVAL(ctx->ctx, LYVE_REFERENCE,
"Referenced type \"%s\" not found.", tctx_prev ? tctx_prev->tpdf->type.name : type_p->name);
ret = LY_EVALID;
goto cleanup;
}
LY_CHECK_ERR_GOTO(!(*type), LOGMEM(ctx->ctx), cleanup);
if (~type_substmt_map[basetype] & type_p->flags) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid type restrictions for %s type.",
ly_data_type2str[basetype]);
free(*type);
(*type) = NULL;
ret = LY_EVALID;
goto cleanup;
}
/* get restrictions from the referred typedefs */
for (uint32_t u = tpdf_chain.count - 1; u + 1 > 0; --u) {
tctx = (struct type_context *)tpdf_chain.objs[u];
/* remember the typedef context for circular check */
ret = ly_set_add(&ctx->tpdf_chain, tctx, 1, NULL);
LY_CHECK_GOTO(ret, cleanup);
if (tctx->tpdf->type.compiled) {
/* already compiled */
base = tctx->tpdf->type.compiled;
continue;
}
/* get plugin for the specific typedef */
plugin = lys_compile_type_get_plugin(tctx->tpdf->type.pmod->mod, tctx->tpdf->name, basetype);
assert(plugin);
if ((basetype != LY_TYPE_LEAFREF) && (u != tpdf_chain.count - 1) && !(tctx->tpdf->type.flags) &&
(plugin == base->plugin)) {
/* no change, reuse the compiled base */
((struct lysp_tpdf *)tctx->tpdf)->type.compiled = base;
LY_ATOMIC_INC_BARRIER(base->refcount);
continue;
}
LY_ATOMIC_INC_BARRIER((*type)->refcount);
if (~type_substmt_map[basetype] & tctx->tpdf->type.flags) {
LOGVAL(ctx->ctx, LYVE_SYNTAX_YANG, "Invalid type \"%s\" restriction(s) for %s type.",
tctx->tpdf->name, ly_data_type2str[basetype]);
ret = LY_EVALID;
goto cleanup;
} else if ((basetype == LY_TYPE_EMPTY) && tctx->tpdf->dflt.str) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS,
"Invalid type \"%s\" - \"empty\" type must not have a default value (%s).",
tctx->tpdf->name, tctx->tpdf->dflt.str);
ret = LY_EVALID;
goto cleanup;
}
(*type)->basetype = basetype;
(*type)->plugin = plugin;
/* collect extensions */
COMPILE_EXTS_GOTO(ctx, tctx->tpdf->type.exts, (*type)->exts, (*type), ret, cleanup);
/* compile the new typedef */
prev_type = *type;
ret = lys_compile_type_(ctx, tctx->node, tctx->tpdf->flags, tctx->tpdf->name,
&((struct lysp_tpdf *)tctx->tpdf)->type, basetype, tctx->tpdf->name, base, type);
LY_CHECK_GOTO(ret, cleanup);
base = prev_type;
}
/* remove the processed typedef contexts from the stack for circular check */
ctx->tpdf_chain.count = ctx->tpdf_chain.count - tpdf_chain.count;
/* process the type definition in leaf */
if (type_p->flags || !base || (basetype == LY_TYPE_LEAFREF)) {
/* get restrictions from the node itself */
(*type)->basetype = basetype;
(*type)->plugin = base ? base->plugin : lyplg_find(LYPLG_TYPE, "", NULL, ly_data_type2str[basetype]);
LY_ATOMIC_INC_BARRIER((*type)->refcount);
ret = lys_compile_type_(ctx, context_pnode, context_flags, context_name, type_p, basetype, NULL, base, type);
LY_CHECK_GOTO(ret, cleanup);
} else if ((basetype != LY_TYPE_BOOL) && (basetype != LY_TYPE_EMPTY)) {
/* no specific restriction in leaf's type definition, copy from the base */
free(*type);
(*type) = base;
LY_ATOMIC_INC_BARRIER((*type)->refcount);
}
COMPILE_EXTS_GOTO(ctx, type_p->exts, (*type)->exts, (*type), ret, cleanup);
cleanup:
ly_set_erase(&tpdf_chain, free);
return ret;
}
/**
* @brief Check uniqness of the node/action/notification name.
*
* Data nodes, actions/RPCs and Notifications are stored separately (in distinguish lists) in the schema
* structures, but they share the namespace so we need to check their name collisions.
*
* @param[in] ctx Compile context.
* @param[in] parent Parent of the nodes to check, can be NULL.
* @param[in] name Name of the item to find in the given lists.
* @param[in] exclude Node that was just added that should be excluded from the name checking.
* @return LY_SUCCESS in case of unique name, LY_EEXIST otherwise.
*/
static LY_ERR
lys_compile_node_uniqness(struct lysc_ctx *ctx, const struct lysc_node *parent, const char *name,
const struct lysc_node *exclude)
{
const struct lysc_node *iter, *iter2;
const struct lysc_node_action *actions;
const struct lysc_node_notif *notifs;
uint32_t getnext_flags;
struct ly_set parent_choices = {0};
#define CHECK_NODE(iter, exclude, name) (iter != (void *)exclude && (iter)->module == exclude->module && !strcmp(name, (iter)->name))
if (exclude->nodetype == LYS_CASE) {
/* check restricted only to all the cases */
assert(parent->nodetype == LYS_CHOICE);
LY_LIST_FOR(lysc_node_child(parent), iter) {
if (CHECK_NODE(iter, exclude, name)) {
LOGVAL(ctx->ctx, LY_VCODE_DUPIDENT, name, "case");
return LY_EEXIST;
}
}
return LY_SUCCESS;
}
/* no reason for our parent to be choice anymore */
assert(!parent || (parent->nodetype != LYS_CHOICE));
if (parent && (parent->nodetype == LYS_CASE)) {
/* move to the first data definition parent */
/* but remember the choice nodes on the parents path to avoid believe they collide with our node */
iter = lysc_data_parent(parent);
do {
parent = parent->parent;
if (parent && (parent->nodetype == LYS_CHOICE)) {
ly_set_add(&parent_choices, (void *)parent, 1, NULL);
}
} while (parent != iter);
}
getnext_flags = LYS_GETNEXT_WITHCHOICE;
if (parent && (parent->nodetype & (LYS_RPC | LYS_ACTION))) {
/* move to the inout to avoid traversing a not-filled-yet (the other) node */
if (exclude->flags & LYS_IS_OUTPUT) {
getnext_flags |= LYS_GETNEXT_OUTPUT;
parent = lysc_node_child(parent)->next;
} else {
parent = lysc_node_child(parent);
}
}
iter = NULL;
if (!parent && ctx->ext) {
while ((iter = lys_getnext_ext(iter, parent, ctx->ext, getnext_flags))) {
if (!ly_set_contains(&parent_choices, (void *)iter, NULL) && CHECK_NODE(iter, exclude, name)) {
goto error;
}
/* we must compare with both the choice and all its nested data-definiition nodes (but not recursively) */
if (iter->nodetype == LYS_CHOICE) {
iter2 = NULL;
while ((iter2 = lys_getnext_ext(iter2, iter, NULL, 0))) {
if (CHECK_NODE(iter2, exclude, name)) {
goto error;
}
}
}
}
} else {
while ((iter = lys_getnext(iter, parent, ctx->cur_mod->compiled, getnext_flags))) {
if (!ly_set_contains(&parent_choices, (void *)iter, NULL) && CHECK_NODE(iter, exclude, name)) {
goto error;
}
/* we must compare with both the choice and all its nested data-definiition nodes (but not recursively) */
if (iter->nodetype == LYS_CHOICE) {
iter2 = NULL;
while ((iter2 = lys_getnext(iter2, iter, NULL, 0))) {
if (CHECK_NODE(iter2, exclude, name)) {
goto error;
}
}
}
}
actions = parent ? lysc_node_actions(parent) : ctx->cur_mod->compiled->rpcs;
LY_LIST_FOR((struct lysc_node *)actions, iter) {
if (CHECK_NODE(iter, exclude, name)) {
goto error;
}
}
notifs = parent ? lysc_node_notifs(parent) : ctx->cur_mod->compiled->notifs;
LY_LIST_FOR((struct lysc_node *)notifs, iter) {
if (CHECK_NODE(iter, exclude, name)) {
goto error;
}
}
}
ly_set_erase(&parent_choices, NULL);
return LY_SUCCESS;
error:
ly_set_erase(&parent_choices, NULL);
LOGVAL(ctx->ctx, LY_VCODE_DUPIDENT, name, "data definition/RPC/action/notification");
return LY_EEXIST;
#undef CHECK_NODE
}
/**
* @brief Connect the node into the siblings list and check its name uniqueness. Also,
* keep specific order of augments targetting the same node.
*
* @param[in] ctx Compile context
* @param[in] parent Parent node holding the children list, in case of node from a choice's case,
* the choice itself is expected instead of a specific case node.
* @param[in] node Schema node to connect into the list.
* @return LY_ERR value - LY_SUCCESS or LY_EEXIST.
* In case of LY_EEXIST, the node is actually kept in the tree, so do not free it directly.
*/
static LY_ERR
lys_compile_node_connect(struct lysc_ctx *ctx, struct lysc_node *parent, struct lysc_node *node)
{
struct lysc_node **children, *anchor = NULL;
int insert_after = 0;
node->parent = parent;
if (parent) {
if (node->nodetype == LYS_INPUT) {
assert(parent->nodetype & (LYS_ACTION | LYS_RPC));
/* input node is part of the action but link it with output */
node->next = &((struct lysc_node_action *)parent)->output.node;
node->prev = node->next;
return LY_SUCCESS;
} else if (node->nodetype == LYS_OUTPUT) {
/* output node is part of the action but link it with input */
node->next = NULL;
node->prev = &((struct lysc_node_action *)parent)->input.node;
return LY_SUCCESS;
} else if (node->nodetype == LYS_ACTION) {
children = (struct lysc_node **)lysc_node_actions_p(parent);
} else if (node->nodetype == LYS_NOTIF) {
children = (struct lysc_node **)lysc_node_notifs_p(parent);
} else {
children = lysc_node_child_p(parent);
}
assert(children);
if (!(*children)) {
/* first child */
*children = node;
} else if (node->flags & LYS_KEY) {
/* special handling of adding keys */
assert(node->module == parent->module);
anchor = *children;
if (anchor->flags & LYS_KEY) {
while ((anchor->flags & LYS_KEY) && anchor->next) {
anchor = anchor->next;
}
/* insert after the last key */
insert_after = 1;
} /* else insert before anchor (at the beginning) */
} else if ((*children)->prev->module == node->module) {
/* last child is from the same module, keep the order and insert at the end */
anchor = (*children)->prev;
insert_after = 1;
} else if (parent->module == node->module) {
/* adding module child after some augments were connected */
for (anchor = *children; anchor->module == node->module; anchor = anchor->next) {}
} else {
/* some augments are already connected and we are connecting new ones,
* keep module name order and insert the node into the children list */
anchor = *children;
do {
anchor = anchor->prev;
/* check that we have not found the last augment node from our module or
* the first augment node from a "smaller" module or
* the first node from a local module */
if ((anchor->module == node->module) || (strcmp(anchor->module->name, node->module->name) < 0) ||
(anchor->module == parent->module)) {
/* insert after */
insert_after = 1;
break;
}
/* we have traversed all the nodes, insert before anchor (as the first node) */
} while (anchor->prev->next);
}
/* insert */
if (anchor) {
if (insert_after) {
node->next = anchor->next;
node->prev = anchor;
anchor->next = node;
if (node->next) {
/* middle node */
node->next->prev = node;
} else {
/* last node */
(*children)->prev = node;
}
} else {
node->next = anchor;
node->prev = anchor->prev;
anchor->prev = node;
if (anchor == *children) {
/* first node */
*children = node;
} else {
/* middle node */
node->prev->next = node;
}
}
}
/* check the name uniqueness (even for an only child, it may be in case) */
if (lys_compile_node_uniqness(ctx, parent, node->name, node)) {
return LY_EEXIST;
}
} else {
/* top-level element */
struct lysc_node **list;
if (ctx->ext) {
lysc_ext_substmt(ctx->ext, LY_STMT_CONTAINER /* matches all data nodes */, (void **)&list, NULL);
} else if (node->nodetype == LYS_RPC) {
list = (struct lysc_node **)&ctx->cur_mod->compiled->rpcs;
} else if (node->nodetype == LYS_NOTIF) {
list = (struct lysc_node **)&ctx->cur_mod->compiled->notifs;
} else {
list = &ctx->cur_mod->compiled->data;
}
if (!(*list)) {
*list = node;
} else {
/* insert at the end of the module's top-level nodes list */
(*list)->prev->next = node;
node->prev = (*list)->prev;
(*list)->prev = node;
}
/* check the name uniqueness on top-level */
if (lys_compile_node_uniqness(ctx, NULL, node->name, node)) {
return LY_EEXIST;
}
}
return LY_SUCCESS;
}
/**
* @brief Set config and operation flags for a node.
*
* @param[in] ctx Compile context.
* @param[in] node Compiled node flags to set.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_config(struct lysc_ctx *ctx, struct lysc_node *node)
{
/* case never has any explicit config */
assert((node->nodetype != LYS_CASE) || !(node->flags & LYS_CONFIG_MASK));
if (ctx->compile_opts & LYS_COMPILE_NO_CONFIG) {
/* ignore config statements inside Notification/RPC/action/... data */
node->flags &= ~LYS_CONFIG_MASK;
} else if (!(node->flags & LYS_CONFIG_MASK)) {
/* config not explicitly set, inherit it from parent */
if (node->parent) {
node->flags |= node->parent->flags & LYS_CONFIG_MASK;
} else {
/* default is config true */
node->flags |= LYS_CONFIG_W;
}
} else {
/* config set explicitly */
node->flags |= LYS_SET_CONFIG;
}
if (node->parent && (node->parent->flags & LYS_CONFIG_R) && (node->flags & LYS_CONFIG_W)) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Configuration node cannot be child of any state data node.");
return LY_EVALID;
}
return LY_SUCCESS;
}
/**
* @brief Set various flags of the compiled nodes
*
* @param[in] ctx Compile context.
* @param[in] node Compiled node where the flags will be set.
* @param[in] uses_status If the node is being placed instead of uses, here we have the uses's status value (as node's flags).
* Zero means no uses, non-zero value with no status bit set mean the default status.
*/
static LY_ERR
lys_compile_node_flags(struct lysc_ctx *ctx, struct lysc_node *node, uint16_t uses_status)
{
/* inherit config flags */
LY_CHECK_RET(lys_compile_config(ctx, node));
/* status - it is not inherited by specification, but it does not make sense to have
* current in deprecated or deprecated in obsolete, so we do print warning and inherit status */
LY_CHECK_RET(lys_compile_status(ctx, &node->flags, node->name, uses_status ? uses_status :
(node->parent ? node->parent->flags : 0), uses_status ? "<uses>" : (node->parent ? node->parent->name : NULL),
!uses_status));
/* other flags */
if ((ctx->compile_opts & LYS_IS_INPUT) && (node->nodetype != LYS_INPUT)) {
node->flags |= LYS_IS_INPUT;
} else if ((ctx->compile_opts & LYS_IS_OUTPUT) && (node->nodetype != LYS_OUTPUT)) {
node->flags |= LYS_IS_OUTPUT;
} else if ((ctx->compile_opts & LYS_IS_NOTIF) && (node->nodetype != LYS_NOTIF)) {
node->flags |= LYS_IS_NOTIF;
}
return LY_SUCCESS;
}
LY_ERR
lys_compile_node_(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *parent, uint16_t uses_status,
LY_ERR (*node_compile_spec)(struct lysc_ctx *, struct lysp_node *, struct lysc_node *),
struct lysc_node *node, struct ly_set *child_set)
{
LY_ERR ret = LY_SUCCESS;
ly_bool not_supported, enabled;
struct lysp_node *dev_pnode = NULL;
struct lysp_when *pwhen = NULL;
uint32_t prev_opts = ctx->compile_opts;
node->nodetype = pnode->nodetype;
node->module = ctx->cur_mod;
node->parent = parent;
node->prev = node;
node->priv = ctx->ctx->flags & LY_CTX_SET_PRIV_PARSED ? pnode : NULL;
/* compile any deviations for this node */
LY_CHECK_GOTO(ret = lys_compile_node_deviations_refines(ctx, pnode, parent, &dev_pnode, &not_supported), error);
if (not_supported && !(ctx->compile_opts & (LYS_COMPILE_NO_DISABLED | LYS_COMPILE_DISABLED | LYS_COMPILE_GROUPING))) {
/* if not supported, keep it just like disabled nodes by if-feature */
ly_set_add(&ctx->unres->disabled, node, 1, NULL);
ctx->compile_opts |= LYS_COMPILE_DISABLED;
}
if (dev_pnode) {
pnode = dev_pnode;
}
node->flags = pnode->flags & LYS_FLAGS_COMPILED_MASK;
DUP_STRING_GOTO(ctx->ctx, pnode->name, node->name, ret, error);
DUP_STRING_GOTO(ctx->ctx, pnode->dsc, node->dsc, ret, error);
DUP_STRING_GOTO(ctx->ctx, pnode->ref, node->ref, ret, error);
/* if-features */
LY_CHECK_GOTO(ret = lys_eval_iffeatures(ctx->ctx, pnode->iffeatures, &enabled), error);
if (!enabled && !(ctx->compile_opts & (LYS_COMPILE_NO_DISABLED | LYS_COMPILE_DISABLED | LYS_COMPILE_GROUPING))) {
ly_set_add(&ctx->unres->disabled, node, 1, NULL);
ctx->compile_opts |= LYS_COMPILE_DISABLED;
}
/* config, status and other flags */
ret = lys_compile_node_flags(ctx, node, uses_status);
LY_CHECK_GOTO(ret, error);
/* list ordering */
if (node->nodetype & (LYS_LIST | LYS_LEAFLIST)) {
if ((node->flags & (LYS_CONFIG_R | LYS_IS_OUTPUT | LYS_IS_NOTIF)) && (node->flags & LYS_ORDBY_MASK)) {
LOGVRB("The ordered-by statement is ignored in lists representing %s (%s).",
(node->flags & LYS_IS_OUTPUT) ? "RPC/action output parameters" :
(ctx->compile_opts & LYS_IS_NOTIF) ? "notification content" : "state data", ctx->path);
node->flags &= ~LYS_ORDBY_MASK;
node->flags |= LYS_ORDBY_SYSTEM;
} else if (!(node->flags & LYS_ORDBY_MASK)) {
/* default ordering is system */
node->flags |= LYS_ORDBY_SYSTEM;
}
}
/* insert into parent's children/compiled module (we can no longer free the node separately on error) */
LY_CHECK_GOTO(ret = lys_compile_node_connect(ctx, parent, node), cleanup);
if ((pwhen = lysp_node_when(pnode))) {
/* compile when */
ret = lys_compile_when(ctx, pwhen, pnode->flags, node, lysc_data_node(node), node, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
/* connect any augments */
LY_CHECK_GOTO(ret = lys_compile_node_augments(ctx, node), cleanup);
/* nodetype-specific part */
LY_CHECK_GOTO(ret = node_compile_spec(ctx, pnode, node), cleanup);
/* final compilation tasks that require the node to be connected */
COMPILE_EXTS_GOTO(ctx, pnode->exts, node->exts, node, ret, cleanup);
if (node->flags & LYS_MAND_TRUE) {
/* inherit LYS_MAND_TRUE in parent containers */
lys_compile_mandatory_parents(parent, 1);
}
if (child_set) {
/* add the new node into set */
LY_CHECK_GOTO(ret = ly_set_add(child_set, node, 1, NULL), cleanup);
}
goto cleanup;
error:
lysc_node_free(ctx->ctx, node, 0);
cleanup:
if (ret && dev_pnode) {
LOGVAL(ctx->ctx, LYVE_OTHER, "Compilation of a deviated and/or refined node failed.");
}
ctx->compile_opts = prev_opts;
lysp_dev_node_free(ctx->ctx, dev_pnode);
return ret;
}
/**
* @brief Compile parsed action's input/output node information.
* @param[in] ctx Compile context
* @param[in] pnode Parsed inout node.
* @param[in,out] node Pre-prepared structure from lys_compile_node_() with filled generic node information
* is enriched with the inout-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
LY_ERR
lys_compile_node_action_inout(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node)
{
LY_ERR ret = LY_SUCCESS;
struct lysp_node *child_p;
uint32_t prev_options = ctx->compile_opts;
struct lysp_node_action_inout *inout_p = (struct lysp_node_action_inout *)pnode;
struct lysc_node_action_inout *inout = (struct lysc_node_action_inout *)node;
COMPILE_ARRAY_GOTO(ctx, inout_p->musts, inout->musts, lys_compile_must, ret, done);
COMPILE_EXTS_GOTO(ctx, inout_p->exts, inout->exts, inout, ret, done);
ctx->compile_opts |= (inout_p->nodetype == LYS_INPUT) ? LYS_COMPILE_RPC_INPUT : LYS_COMPILE_RPC_OUTPUT;
LY_LIST_FOR(inout_p->child, child_p) {
LY_CHECK_GOTO(ret = lys_compile_node(ctx, child_p, node, 0, NULL), done);
}
ctx->compile_opts = prev_options;
done:
return ret;
}
/**
* @brief Compile parsed action node information.
* @param[in] ctx Compile context
* @param[in] pnode Parsed action node.
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the action-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
LY_ERR
lys_compile_node_action(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node)
{
LY_ERR ret;
struct lysp_node_action *action_p = (struct lysp_node_action *)pnode;
struct lysc_node_action *action = (struct lysc_node_action *)node;
struct lysp_node_action_inout *input, implicit_input = {
.nodetype = LYS_INPUT,
.name = "input",
.parent = pnode,
};
struct lysp_node_action_inout *output, implicit_output = {
.nodetype = LYS_OUTPUT,
.name = "output",
.parent = pnode,
};
/* input */
lysc_update_path(ctx, action->module, "input");
if (action_p->input.nodetype == LYS_UNKNOWN) {
input = &implicit_input;
} else {
input = &action_p->input;
}
ret = lys_compile_node_(ctx, &input->node, &action->node, 0, lys_compile_node_action_inout, &action->input.node, NULL);
lysc_update_path(ctx, NULL, NULL);
LY_CHECK_GOTO(ret, done);
/* add must(s) to unres */
ret = lysc_unres_must_add(ctx, &action->input.node, &input->node);
LY_CHECK_GOTO(ret, done);
/* output */
lysc_update_path(ctx, action->module, "output");
if (action_p->output.nodetype == LYS_UNKNOWN) {
output = &implicit_output;
} else {
output = &action_p->output;
}
ret = lys_compile_node_(ctx, &output->node, &action->node, 0, lys_compile_node_action_inout, &action->output.node, NULL);
lysc_update_path(ctx, NULL, NULL);
LY_CHECK_GOTO(ret, done);
/* add must(s) to unres */
ret = lysc_unres_must_add(ctx, &action->output.node, &output->node);
LY_CHECK_GOTO(ret, done);
done:
return ret;
}
/**
* @brief Compile parsed action node information.
* @param[in] ctx Compile context
* @param[in] pnode Parsed action node.
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the action-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
LY_ERR
lys_compile_node_notif(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node)
{
LY_ERR ret = LY_SUCCESS;
struct lysp_node_notif *notif_p = (struct lysp_node_notif *)pnode;
struct lysc_node_notif *notif = (struct lysc_node_notif *)node;
struct lysp_node *child_p;
COMPILE_ARRAY_GOTO(ctx, notif_p->musts, notif->musts, lys_compile_must, ret, done);
/* add must(s) to unres */
ret = lysc_unres_must_add(ctx, node, pnode);
LY_CHECK_GOTO(ret, done);
LY_LIST_FOR(notif_p->child, child_p) {
ret = lys_compile_node(ctx, child_p, node, 0, NULL);
LY_CHECK_GOTO(ret, done);
}
done:
return ret;
}
/**
* @brief Compile parsed container node information.
* @param[in] ctx Compile context
* @param[in] pnode Parsed container node.
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the container-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_container(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node)
{
struct lysp_node_container *cont_p = (struct lysp_node_container *)pnode;
struct lysc_node_container *cont = (struct lysc_node_container *)node;
struct lysp_node *child_p;
LY_ERR ret = LY_SUCCESS;
if (cont_p->presence) {
/* presence container */
cont->flags |= LYS_PRESENCE;
}
/* more cases when the container has meaning but is kept NP for convenience:
* - when condition
* - direct child action/notification
*/
LY_LIST_FOR(cont_p->child, child_p) {
ret = lys_compile_node(ctx, child_p, node, 0, NULL);
LY_CHECK_GOTO(ret, done);
}
COMPILE_ARRAY_GOTO(ctx, cont_p->musts, cont->musts, lys_compile_must, ret, done);
/* add must(s) to unres */
ret = lysc_unres_must_add(ctx, node, pnode);
LY_CHECK_GOTO(ret, done);
LY_LIST_FOR((struct lysp_node *)cont_p->actions, child_p) {
ret = lys_compile_node(ctx, child_p, node, 0, NULL);
LY_CHECK_GOTO(ret, done);
}
LY_LIST_FOR((struct lysp_node *)cont_p->notifs, child_p) {
ret = lys_compile_node(ctx, child_p, node, 0, NULL);
LY_CHECK_GOTO(ret, done);
}
done:
return ret;
}
/**
* @brief Compile type in leaf/leaf-list node and do all the necessary checks.
* @param[in] ctx Compile context.
* @param[in] context_node Schema node where the type/typedef is placed to correctly find the base types.
* @param[in] type_p Parsed type to compile.
* @param[in,out] leaf Compiled leaf structure (possibly cast leaf-list) to provide node information and to store the compiled type information.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_node_type(struct lysc_ctx *ctx, struct lysp_node *context_node, struct lysp_type *type_p,
struct lysc_node_leaf *leaf)
{
struct lysp_qname *dflt;
struct lysc_type **t;
LY_ARRAY_COUNT_TYPE u, count;
ly_bool in_unres = 0;
LY_CHECK_RET(lys_compile_type(ctx, context_node, leaf->flags, leaf->name, type_p, &leaf->type,
leaf->units ? NULL : &leaf->units, &dflt));
/* store default value, if any */
if (dflt && !(leaf->flags & LYS_SET_DFLT)) {
LY_CHECK_RET(lysc_unres_leaf_dflt_add(ctx, leaf, dflt));
}
/* store leafref(s) to be resolved */
LY_CHECK_RET(lysc_unres_leafref_add(ctx, leaf, type_p->pmod));
/* type-specific checks */
if (leaf->type->basetype == LY_TYPE_UNION) {
t = ((struct lysc_type_union *)leaf->type)->types;
count = LY_ARRAY_COUNT(t);
} else {
t = &leaf->type;
count = 1;
}
for (u = 0; u < count; ++u) {
if (t[u]->basetype == LY_TYPE_EMPTY) {
if ((leaf->nodetype == LYS_LEAFLIST) && (ctx->pmod->version < LYS_VERSION_1_1)) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Leaf-list of type \"empty\" is allowed only in YANG 1.1 modules.");
return LY_EVALID;
}
} else if (!in_unres && ((t[u]->basetype == LY_TYPE_BITS) || (t[u]->basetype == LY_TYPE_ENUM))) {
/* store in unres for all disabled bits/enums to be removed */
LY_CHECK_RET(lysc_unres_bitenum_add(ctx, leaf));
in_unres = 1;
}
}
return LY_SUCCESS;
}
/**
* @brief Compile parsed leaf node information.
* @param[in] ctx Compile context
* @param[in] pnode Parsed leaf node.
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the leaf-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_leaf(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node)
{
struct lysp_node_leaf *leaf_p = (struct lysp_node_leaf *)pnode;
struct lysc_node_leaf *leaf = (struct lysc_node_leaf *)node;
LY_ERR ret = LY_SUCCESS;
COMPILE_ARRAY_GOTO(ctx, leaf_p->musts, leaf->musts, lys_compile_must, ret, done);
/* add must(s) to unres */
ret = lysc_unres_must_add(ctx, node, pnode);
LY_CHECK_GOTO(ret, done);
if (leaf_p->units) {
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, leaf_p->units, 0, &leaf->units), done);
leaf->flags |= LYS_SET_UNITS;
}
/* compile type */
ret = lys_compile_node_type(ctx, pnode, &leaf_p->type, leaf);
LY_CHECK_GOTO(ret, done);
/* store/update default value */
if (leaf_p->dflt.str) {
LY_CHECK_RET(lysc_unres_leaf_dflt_add(ctx, leaf, &leaf_p->dflt));
leaf->flags |= LYS_SET_DFLT;
}
/* checks */
if ((leaf->flags & LYS_SET_DFLT) && (leaf->flags & LYS_MAND_TRUE)) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Invalid mandatory leaf with a default value.");
return LY_EVALID;
}
done:
return ret;
}
/**
* @brief Compile parsed leaf-list node information.
* @param[in] ctx Compile context
* @param[in] pnode Parsed leaf-list node.
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the leaf-list-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_leaflist(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node)
{
struct lysp_node_leaflist *llist_p = (struct lysp_node_leaflist *)pnode;
struct lysc_node_leaflist *llist = (struct lysc_node_leaflist *)node;
LY_ERR ret = LY_SUCCESS;
COMPILE_ARRAY_GOTO(ctx, llist_p->musts, llist->musts, lys_compile_must, ret, done);
/* add must(s) to unres */
ret = lysc_unres_must_add(ctx, node, pnode);
LY_CHECK_GOTO(ret, done);
if (llist_p->units) {
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, llist_p->units, 0, &llist->units), done);
llist->flags |= LYS_SET_UNITS;
}
/* compile type */
ret = lys_compile_node_type(ctx, pnode, &llist_p->type, (struct lysc_node_leaf *)llist);
LY_CHECK_GOTO(ret, done);
/* store/update default values */
if (llist_p->dflts) {
if (ctx->pmod->version < LYS_VERSION_1_1) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Leaf-list default values are allowed only in YANG 1.1 modules.");
return LY_EVALID;
}
LY_CHECK_GOTO(lysc_unres_llist_dflts_add(ctx, llist, llist_p->dflts), done);
llist->flags |= LYS_SET_DFLT;
}
llist->min = llist_p->min;
if (llist->min) {
llist->flags |= LYS_MAND_TRUE;
}
llist->max = llist_p->max ? llist_p->max : UINT32_MAX;
if (llist->flags & LYS_CONFIG_R) {
/* state leaf-list is always ordered-by user */
llist->flags &= ~LYS_ORDBY_SYSTEM;
llist->flags |= LYS_ORDBY_USER;
}
/* checks */
if ((llist->flags & LYS_SET_DFLT) && (llist->flags & LYS_MAND_TRUE)) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS, "The default statement is present on leaf-list with a nonzero min-elements.");
return LY_EVALID;
}
if (llist->min > llist->max) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Leaf-list min-elements %u is bigger than max-elements %u.",
llist->min, llist->max);
return LY_EVALID;
}
done:
return ret;
}
LY_ERR
lysc_resolve_schema_nodeid(struct lysc_ctx *ctx, const char *nodeid, size_t nodeid_len, const struct lysc_node *ctx_node,
const struct lys_module *cur_mod, LY_VALUE_FORMAT format, void *prefix_data, uint16_t nodetype,
const struct lysc_node **target, uint16_t *result_flag)
{
LY_ERR ret = LY_EVALID;
const char *name, *prefix, *id;
size_t name_len, prefix_len;
const struct lys_module *mod = NULL;
const char *nodeid_type;
uint32_t getnext_extra_flag = 0;
uint16_t current_nodetype = 0;
assert(nodeid);
assert(target);
assert(result_flag);
*target = NULL;
*result_flag = 0;
id = nodeid;
if (ctx_node) {
/* descendant-schema-nodeid */
nodeid_type = "descendant";
if (*id == '/') {
LOGVAL(ctx->ctx, LYVE_REFERENCE,
"Invalid descendant-schema-nodeid value \"%.*s\" - absolute-schema-nodeid used.",
(int)(nodeid_len ? nodeid_len : strlen(nodeid)), nodeid);
return LY_EVALID;
}
} else {
/* absolute-schema-nodeid */
nodeid_type = "absolute";
if (*id != '/') {
LOGVAL(ctx->ctx, LYVE_REFERENCE,
"Invalid absolute-schema-nodeid value \"%.*s\" - missing starting \"/\".",
(int)(nodeid_len ? nodeid_len : strlen(nodeid)), nodeid);
return LY_EVALID;
}
++id;
}
while (*id && (ret = ly_parse_nodeid(&id, &prefix, &prefix_len, &name, &name_len)) == LY_SUCCESS) {
if (prefix) {
mod = ly_resolve_prefix(ctx->ctx, prefix, prefix_len, format, prefix_data);
if (!mod) {
/* module must always be found */
assert(prefix);
LOGVAL(ctx->ctx, LYVE_REFERENCE,
"Invalid %s-schema-nodeid value \"%.*s\" - prefix \"%.*s\" not defined in module \"%s\".",
nodeid_type, (int)(id - nodeid), nodeid, (int)prefix_len, prefix, LYSP_MODULE_NAME(ctx->pmod));
return LY_ENOTFOUND;
}
} else {
switch (format) {
case LY_VALUE_SCHEMA:
case LY_VALUE_SCHEMA_RESOLVED:
/* use the current module */
mod = cur_mod;
break;
case LY_VALUE_JSON:
case LY_VALUE_LYB:
if (!ctx_node) {
LOGINT_RET(ctx->ctx);
}
/* inherit the module of the previous context node */
mod = ctx_node->module;
break;
case LY_VALUE_CANON:
case LY_VALUE_XML:
/* not really defined */
LOGINT_RET(ctx->ctx);
}
}
if (ctx_node && (ctx_node->nodetype & (LYS_RPC | LYS_ACTION))) {
/* move through input/output manually */
if (mod != ctx_node->module) {
LOGVAL(ctx->ctx, LYVE_REFERENCE, "Invalid %s-schema-nodeid value \"%.*s\" - target node not found.",
nodeid_type, (int)(id - nodeid), nodeid);
return LY_ENOTFOUND;
}
if (!ly_strncmp("input", name, name_len)) {
ctx_node = &((struct lysc_node_action *)ctx_node)->input.node;
} else if (!ly_strncmp("output", name, name_len)) {
ctx_node = &((struct lysc_node_action *)ctx_node)->output.node;
getnext_extra_flag = LYS_GETNEXT_OUTPUT;
} else {
/* only input or output is valid */
ctx_node = NULL;
}
} else {
ctx_node = lys_find_child(ctx_node, mod, name, name_len, 0,
getnext_extra_flag | LYS_GETNEXT_WITHCHOICE | LYS_GETNEXT_WITHCASE);
getnext_extra_flag = 0;
}
if (!ctx_node) {
LOGVAL(ctx->ctx, LYVE_REFERENCE, "Invalid %s-schema-nodeid value \"%.*s\" - target node not found.",
nodeid_type, (int)(id - nodeid), nodeid);
return LY_ENOTFOUND;
}
current_nodetype = ctx_node->nodetype;
if (current_nodetype == LYS_NOTIF) {
(*result_flag) |= LYS_COMPILE_NOTIFICATION;
} else if (current_nodetype == LYS_INPUT) {
(*result_flag) |= LYS_COMPILE_RPC_INPUT;
} else if (current_nodetype == LYS_OUTPUT) {
(*result_flag) |= LYS_COMPILE_RPC_OUTPUT;
}
if (!*id || (nodeid_len && ((size_t)(id - nodeid) >= nodeid_len))) {
break;
}
if (*id != '/') {
LOGVAL(ctx->ctx, LYVE_REFERENCE,
"Invalid %s-schema-nodeid value \"%.*s\" - missing \"/\" as node-identifier separator.",
nodeid_type, (int)(id - nodeid + 1), nodeid);
return LY_EVALID;
}
++id;
}
if (ret == LY_SUCCESS) {
*target = ctx_node;
if (nodetype && !(current_nodetype & nodetype)) {
return LY_EDENIED;
}
} else {
LOGVAL(ctx->ctx, LYVE_REFERENCE,
"Invalid %s-schema-nodeid value \"%.*s\" - unexpected end of expression.",
nodeid_type, (int)(nodeid_len ? nodeid_len : strlen(nodeid)), nodeid);
}
return ret;
}
/**
* @brief Compile information about list's uniques.
* @param[in] ctx Compile context.
* @param[in] uniques Sized array list of unique statements.
* @param[in] list Compiled list where the uniques are supposed to be resolved and stored.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_node_list_unique(struct lysc_ctx *ctx, struct lysp_qname *uniques, struct lysc_node_list *list)
{
LY_ERR ret = LY_SUCCESS;
struct lysc_node_leaf **key, ***unique;
struct lysc_node *parent;
const char *keystr, *delim;
size_t len;
LY_ARRAY_COUNT_TYPE v;
int8_t config; /* -1 - not yet seen; 0 - LYS_CONFIG_R; 1 - LYS_CONFIG_W */
uint16_t flags;
LY_ARRAY_FOR(uniques, v) {
config = -1;
LY_ARRAY_NEW_RET(ctx->ctx, list->uniques, unique, LY_EMEM);
keystr = uniques[v].str;
while (keystr) {
delim = strpbrk(keystr, " \t\n");
if (delim) {
len = delim - keystr;
while (isspace(*delim)) {
++delim;
}
} else {
len = strlen(keystr);
}
/* unique node must be present */
LY_ARRAY_NEW_RET(ctx->ctx, *unique, key, LY_EMEM);
ret = lysc_resolve_schema_nodeid(ctx, keystr, len, &list->node, uniques[v].mod->mod,
LY_VALUE_SCHEMA, (void *)uniques[v].mod, LYS_LEAF, (const struct lysc_node **)key, &flags);
if (ret != LY_SUCCESS) {
if (ret == LY_EDENIED) {
LOGVAL(ctx->ctx, LYVE_REFERENCE,
"Unique's descendant-schema-nodeid \"%.*s\" refers to %s node instead of a leaf.",
(int)len, keystr, lys_nodetype2str((*key)->nodetype));
}
return LY_EVALID;
} else if (flags) {
LOGVAL(ctx->ctx, LYVE_REFERENCE,
"Unique's descendant-schema-nodeid \"%.*s\" refers into %s node.",
(int)len, keystr, flags & LYS_IS_NOTIF ? "notification" : "RPC/action");
return LY_EVALID;
}
/* all referenced leafs must be of the same config type */
if ((config != -1) && ((((*key)->flags & LYS_CONFIG_W) && (config == 0)) ||
(((*key)->flags & LYS_CONFIG_R) && (config == 1)))) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS,
"Unique statement \"%s\" refers to leaves with different config type.", uniques[v].str);
return LY_EVALID;
} else if ((*key)->flags & LYS_CONFIG_W) {
config = 1;
} else { /* LYS_CONFIG_R */
config = 0;
}
/* we forbid referencing nested lists because it is unspecified what instance of such a list to use */
for (parent = (*key)->parent; parent != (struct lysc_node *)list; parent = parent->parent) {
if (parent->nodetype == LYS_LIST) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS,
"Unique statement \"%s\" refers to a leaf in nested list \"%s\".", uniques[v].str, parent->name);
return LY_EVALID;
}
}
/* check status */
LY_CHECK_RET(lysc_check_status(ctx, list->flags, uniques[v].mod->mod, list->name,
(*key)->flags, (*key)->module, (*key)->name));
/* mark leaf as unique */
(*key)->flags |= LYS_UNIQUE;
/* next unique value in line */
keystr = delim;
}
/* next unique definition */
}
return LY_SUCCESS;
}
/**
* @brief Compile parsed list node information.
* @param[in] ctx Compile context
* @param[in] pnode Parsed list node.
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the list-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_list(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node)
{
struct lysp_node_list *list_p = (struct lysp_node_list *)pnode;
struct lysc_node_list *list = (struct lysc_node_list *)node;
struct lysp_node *child_p;
struct lysc_node_leaf *key, *prev_key = NULL;
size_t len;
const char *keystr, *delim;
LY_ERR ret = LY_SUCCESS;
list->min = list_p->min;
if (list->min) {
list->flags |= LYS_MAND_TRUE;
}
list->max = list_p->max ? list_p->max : (uint32_t)-1;
LY_LIST_FOR(list_p->child, child_p) {
LY_CHECK_RET(lys_compile_node(ctx, child_p, node, 0, NULL));
}
COMPILE_ARRAY_GOTO(ctx, list_p->musts, list->musts, lys_compile_must, ret, done);
/* add must(s) to unres */
ret = lysc_unres_must_add(ctx, node, pnode);
LY_CHECK_GOTO(ret, done);
/* keys */
if ((list->flags & LYS_CONFIG_W) && (!list_p->key || !list_p->key[0])) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Missing key in list representing configuration data.");
return LY_EVALID;
}
/* find all the keys (must be direct children) */
keystr = list_p->key;
if (!keystr) {
/* keyless list */
list->flags &= ~LYS_ORDBY_SYSTEM;
list->flags |= LYS_KEYLESS | LYS_ORDBY_USER;
}
while (keystr) {
delim = strpbrk(keystr, " \t\n");
if (delim) {
len = delim - keystr;
while (isspace(*delim)) {
++delim;
}
} else {
len = strlen(keystr);
}
/* key node must be present */
key = (struct lysc_node_leaf *)lys_find_child(node, node->module, keystr, len, LYS_LEAF, LYS_GETNEXT_NOCHOICE);
if (!key) {
LOGVAL(ctx->ctx, LYVE_REFERENCE, "The list's key \"%.*s\" not found.", (int)len, keystr);
return LY_EVALID;
}
/* keys must be unique */
if (key->flags & LYS_KEY) {
/* the node was already marked as a key */
LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Duplicated key identifier \"%.*s\".", (int)len, keystr);
return LY_EVALID;
}
lysc_update_path(ctx, list->module, key->name);
/* key must have the same config flag as the list itself */
if ((list->flags & LYS_CONFIG_MASK) != (key->flags & LYS_CONFIG_MASK)) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Key of a configuration list must not be a state leaf.");
return LY_EVALID;
}
if (ctx->pmod->version < LYS_VERSION_1_1) {
/* YANG 1.0 denies key to be of empty type */
if (key->type->basetype == LY_TYPE_EMPTY) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS,
"List's key cannot be of \"empty\" type until it is in YANG 1.1 module.");
return LY_EVALID;
}
} else {
/* when and if-feature are illegal on list keys */
if (key->when) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS, "List's key must not have any \"when\" statement.");
return LY_EVALID;
}
/* TODO check key, it cannot have any if-features */
}
/* check status */
LY_CHECK_RET(lysc_check_status(ctx, list->flags, list->module, list->name,
key->flags, key->module, key->name));
/* ignore default values of the key */
if (key->dflt) {
key->dflt->realtype->plugin->free(ctx->ctx, key->dflt);
lysc_type_free(ctx->ctx, (struct lysc_type *)key->dflt->realtype);
free(key->dflt);
key->dflt = NULL;
}
/* mark leaf as key */
key->flags |= LYS_KEY;
/* move it to the correct position */
if ((prev_key && ((struct lysc_node *)prev_key != key->prev)) || (!prev_key && key->prev->next)) {
/* fix links in closest previous siblings of the key */
if (key->next) {
key->next->prev = key->prev;
} else {
/* last child */
list->child->prev = key->prev;
}
if (key->prev->next) {
key->prev->next = key->next;
}
/* fix links in the key */
if (prev_key) {
key->prev = &prev_key->node;
key->next = prev_key->next;
} else {
key->prev = list->child->prev;
key->next = list->child;
}
/* fix links in closes future siblings of the key */
if (prev_key) {
if (prev_key->next) {
prev_key->next->prev = &key->node;
} else {
list->child->prev = &key->node;
}
prev_key->next = &key->node;
} else {
list->child->prev = &key->node;
}
/* fix links in parent */
if (!key->prev->next) {
list->child = &key->node;
}
}
/* next key value */
prev_key = key;
keystr = delim;
lysc_update_path(ctx, NULL, NULL);
}
/* uniques */
if (list_p->uniques) {
LY_CHECK_RET(lys_compile_node_list_unique(ctx, list_p->uniques, list));
}
LY_LIST_FOR((struct lysp_node *)list_p->actions, child_p) {
ret = lys_compile_node(ctx, child_p, node, 0, NULL);
LY_CHECK_GOTO(ret, done);
}
LY_LIST_FOR((struct lysp_node *)list_p->notifs, child_p) {
ret = lys_compile_node(ctx, child_p, node, 0, NULL);
LY_CHECK_GOTO(ret, done);
}
/* checks */
if (list->min > list->max) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS, "List min-elements %u is bigger than max-elements %u.", list->min, list->max);
return LY_EVALID;
}
done:
return ret;
}
/**
* @brief Do some checks and set the default choice's case.
*
* Selects (and stores into ::lysc_node_choice#dflt) the default case and set LYS_SET_DFLT flag on it.
*
* @param[in] ctx Compile context.
* @param[in] dflt Name of the default branch. Can even contain a prefix.
* @param[in,out] ch The compiled choice node, its dflt member is filled to point to the default case node of the choice.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_node_choice_dflt(struct lysc_ctx *ctx, struct lysp_qname *dflt, struct lysc_node_choice *ch)
{
struct lysc_node *iter;
const struct lys_module *mod;
const char *prefix = NULL, *name;
size_t prefix_len = 0;
/* could use lys_parse_nodeid(), but it checks syntax which is already done in this case by the parsers */
name = strchr(dflt->str, ':');
if (name) {
prefix = dflt->str;
prefix_len = name - prefix;
++name;
} else {
name = dflt->str;
}
if (prefix) {
mod = ly_resolve_prefix(ctx->ctx, prefix, prefix_len, LY_VALUE_SCHEMA, (void *)dflt->mod);
if (!mod) {
LOGVAL(ctx->ctx, LYVE_REFERENCE, "Default case prefix \"%.*s\" not found "
"in imports of \"%s\".", (int)prefix_len, prefix, LYSP_MODULE_NAME(dflt->mod));
return LY_EVALID;
}
} else {
mod = ch->module;
}
ch->dflt = (struct lysc_node_case *)lys_find_child(&ch->node, mod, name, 0, LYS_CASE, LYS_GETNEXT_WITHCASE);
if (!ch->dflt) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS,
"Default case \"%s\" not found.", dflt->str);
return LY_EVALID;
}
/* no mandatory nodes directly under the default case */
LY_LIST_FOR(ch->dflt->child, iter) {
if (iter->parent != (struct lysc_node *)ch->dflt) {
break;
}
if (iter->flags & LYS_MAND_TRUE) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS,
"Mandatory node \"%s\" under the default case \"%s\".", iter->name, dflt->str);
return LY_EVALID;
}
}
if (ch->flags & LYS_MAND_TRUE) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS, "Invalid mandatory choice with a default case.");
return LY_EVALID;
}
ch->dflt->flags |= LYS_SET_DFLT;
return LY_SUCCESS;
}
LY_ERR
lys_compile_node_choice_child(struct lysc_ctx *ctx, struct lysp_node *child_p, struct lysc_node *node,
struct ly_set *child_set)
{
LY_ERR ret = LY_SUCCESS;
struct lysp_node *child_p_next = child_p->next;
struct lysp_node_case *cs_p;
struct lysc_node_case *compiled_case;
if (child_p->nodetype == LYS_CASE) {
/* standard case under choice */
ret = lys_compile_node(ctx, child_p, node, 0, child_set);
} else {
/* we need the implicit case first, so create a fake parsed (shorthand) case */
cs_p = calloc(1, sizeof *cs_p);
cs_p->nodetype = LYS_CASE;
DUP_STRING_GOTO(ctx->ctx, child_p->name, cs_p->name, ret, revert_sh_case);
cs_p->child = child_p;
/* make the child the only case child */
child_p->next = NULL;
/* compile it normally */
LY_CHECK_GOTO(ret = lys_compile_node(ctx, (struct lysp_node *)cs_p, node, 0, child_set), revert_sh_case);
if (((struct lysc_node_choice *)node)->cases) {
/* get last case node */
compiled_case = (struct lysc_node_case *)((struct lysc_node_choice *)node)->cases->prev;
if (ctx->ctx->flags & LY_CTX_SET_PRIV_PARSED) {
/* Compiled case node cannot point to his corresponding parsed node
* because it exists temporarily. Therefore, it must be set to NULL.
*/
compiled_case->priv = NULL;
}
/* The status is copied from his child and not from his parent as usual. */
if (compiled_case->child) {
compiled_case->flags &= ~LYS_STATUS_MASK;
compiled_case->flags |= LYS_STATUS_MASK & compiled_case->child->flags;
}
} /* else it was removed by a deviation */
revert_sh_case:
/* free the parsed shorthand case and correct pointers back */
cs_p->child = NULL;
lysp_node_free(ctx->ctx, (struct lysp_node *)cs_p);
child_p->next = child_p_next;
}
return ret;
}
/**
* @brief Compile parsed choice node information.
*
* @param[in] ctx Compile context
* @param[in] pnode Parsed choice node.
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the choice-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_choice(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node)
{
struct lysp_node_choice *ch_p = (struct lysp_node_choice *)pnode;
struct lysc_node_choice *ch = (struct lysc_node_choice *)node;
struct lysp_node *child_p;
LY_ERR ret = LY_SUCCESS;
assert(node->nodetype == LYS_CHOICE);
LY_LIST_FOR(ch_p->child, child_p) {
LY_CHECK_RET(lys_compile_node_choice_child(ctx, child_p, node, NULL));
}
/* default branch */
if (ch_p->dflt.str) {
LY_CHECK_RET(lys_compile_node_choice_dflt(ctx, &ch_p->dflt, ch));
}
return ret;
}
/**
* @brief Compile parsed anydata or anyxml node information.
* @param[in] ctx Compile context
* @param[in] pnode Parsed anydata or anyxml node.
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the any-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_any(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node)
{
struct lysp_node_anydata *any_p = (struct lysp_node_anydata *)pnode;
struct lysc_node_anydata *any = (struct lysc_node_anydata *)node;
LY_ERR ret = LY_SUCCESS;
COMPILE_ARRAY_GOTO(ctx, any_p->musts, any->musts, lys_compile_must, ret, done);
/* add must(s) to unres */
ret = lysc_unres_must_add(ctx, node, pnode);
LY_CHECK_GOTO(ret, done);
if (any->flags & LYS_CONFIG_W) {
LOGVRB("Use of %s to define configuration data is not recommended. %s",
ly_stmt2str(any->nodetype == LYS_ANYDATA ? LY_STMT_ANYDATA : LY_STMT_ANYXML), ctx->path);
}
done:
return ret;
}
/**
* @brief Prepare the case structure in choice node for the new data node.
*
* It is able to handle implicit as well as explicit cases and the situation when the case has multiple data nodes and the case was already
* created in the choice when the first child was processed.
*
* @param[in] ctx Compile context.
* @param[in] pnode Node image from the parsed tree. If the case is explicit, it is the LYS_CASE node, but in case of implicit case,
* it is the LYS_CHOICE, LYS_AUGMENT or LYS_GROUPING node.
* @param[in] ch The compiled choice structure where the new case structures are created (if needed).
* @param[in] child The new data node being part of a case (no matter if explicit or implicit).
* @return The case structure where the child node belongs to, NULL in case of error. Note that the child is not connected into the siblings list,
* it is linked from the case structure only in case it is its first child.
*/
static LY_ERR
lys_compile_node_case(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node)
{
struct lysp_node *child_p;
struct lysp_node_case *cs_p = (struct lysp_node_case *)pnode;
if (pnode->nodetype & (LYS_CHOICE | LYS_AUGMENT | LYS_GROUPING)) {
/* we have to add an implicit case node into the parent choice */
} else if (pnode->nodetype == LYS_CASE) {
/* explicit parent case */
LY_LIST_FOR(cs_p->child, child_p) {
LY_CHECK_RET(lys_compile_node(ctx, child_p, node, 0, NULL));
}
} else {
LOGINT_RET(ctx->ctx);
}
return LY_SUCCESS;
}
void
lys_compile_mandatory_parents(struct lysc_node *parent, ly_bool add)
{
const struct lysc_node *iter;
if (add) { /* set flag */
for ( ; parent && parent->nodetype == LYS_CONTAINER && !(parent->flags & LYS_MAND_TRUE) && !(parent->flags & LYS_PRESENCE);
parent = parent->parent) {
parent->flags |= LYS_MAND_TRUE;
}
} else { /* unset flag */
for ( ; parent && parent->nodetype == LYS_CONTAINER && (parent->flags & LYS_MAND_TRUE); parent = parent->parent) {
for (iter = lysc_node_child(parent); iter; iter = iter->next) {
if (iter->flags & LYS_MAND_TRUE) {
/* there is another mandatory node */
return;
}
}
/* unset mandatory flag - there is no mandatory children in the non-presence container */
parent->flags &= ~LYS_MAND_TRUE;
}
}
}
/**
* @brief Get the grouping with the specified name from given groupings sized array.
* @param[in] grps Linked list of groupings.
* @param[in] name Name of the grouping to find,
* @return NULL when there is no grouping with the specified name
* @return Pointer to the grouping of the specified @p name.
*/
static struct lysp_node_grp *
match_grouping(struct lysp_node_grp *grps, const char *name)
{
struct lysp_node_grp *grp;
LY_LIST_FOR(grps, grp) {
if (!strcmp(grp->name, name)) {
return grp;
}
}
return NULL;
}
/**
* @brief Find grouping for a uses.
*
* @param[in] ctx Compile context.
* @param[in] uses_p Parsed uses node.
* @param[out] gpr_p Found grouping on success.
* @param[out] grp_pmod Module of @p grp_p on success.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_uses_find_grouping(struct lysc_ctx *ctx, struct lysp_node_uses *uses_p, struct lysp_node_grp **grp_p,
struct lysp_module **grp_pmod)
{
struct lysp_node *pnode;
struct lysp_node_grp *grp;
LY_ARRAY_COUNT_TYPE u;
const char *id, *name, *prefix, *local_pref;
size_t prefix_len, name_len;
struct lysp_module *pmod, *found = NULL;
const struct lys_module *mod;
*grp_p = NULL;
*grp_pmod = NULL;
/* search for the grouping definition */
id = uses_p->name;
LY_CHECK_RET(ly_parse_nodeid(&id, &prefix, &prefix_len, &name, &name_len), LY_EVALID);
local_pref = ctx->pmod->is_submod ? ((struct lysp_submodule *)ctx->pmod)->prefix : ctx->pmod->mod->prefix;
if (!prefix || !ly_strncmp(local_pref, prefix, prefix_len)) {
/* current module, search local groupings first */
pmod = ctx->pmod->mod->parsed; /* make sure that we will start in main_module, not submodule */
for (pnode = uses_p->parent; !found && pnode; pnode = pnode->parent) {
if ((grp = match_grouping((struct lysp_node_grp *)lysp_node_groupings(pnode), name))) {
found = ctx->pmod;
break;
}
}
} else {
/* foreign module, find it first */
mod = ly_resolve_prefix(ctx->ctx, prefix, prefix_len, LY_VALUE_SCHEMA, ctx->pmod);
if (!mod) {
LOGVAL(ctx->ctx, LYVE_REFERENCE,
"Invalid prefix used for grouping reference.", uses_p->name);
return LY_EVALID;
}
pmod = mod->parsed;
}
if (!found) {
/* search in top-level groupings of the main module ... */
if ((grp = match_grouping(pmod->groupings, name))) {
found = pmod;
} else {
/* ... and all the submodules */
LY_ARRAY_FOR(pmod->includes, u) {
if ((grp = match_grouping(pmod->includes[u].submodule->groupings, name))) {
found = (struct lysp_module *)pmod->includes[u].submodule;
break;
}
}
}
}
if (!found) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS,
"Grouping \"%s\" referenced by a uses statement not found.", uses_p->name);
return LY_EVALID;
}
if (!(ctx->compile_opts & LYS_COMPILE_GROUPING)) {
/* remember that the grouping is instantiated to avoid its standalone validation */
grp->flags |= LYS_USED_GRP;
}
*grp_p = grp;
*grp_pmod = found;
return LY_SUCCESS;
}
/**
* @brief Special bits combination marking the uses_status value and propagated by ::lys_compile_uses() function.
*/
#define LYS_STATUS_USES LYS_CONFIG_MASK
/**
* @brief Compile parsed uses statement - resolve target grouping and connect its content into parent.
* If present, also apply uses's modificators.
*
* @param[in] ctx Compile context
* @param[in] uses_p Parsed uses schema node.
* @param[in] parent Compiled parent node where the content of the referenced grouping is supposed to be connected. It is
* NULL for top-level nodes, in such a case the module where the node will be connected is taken from
* the compile context.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_uses(struct lysc_ctx *ctx, struct lysp_node_uses *uses_p, struct lysc_node *parent, struct ly_set *child_set)
{
struct lysp_node *pnode;
struct lysc_node *child;
struct lysp_node_grp *grp = NULL;
uint32_t i, grp_stack_count;
uint16_t uses_flags;
struct lysp_module *grp_mod, *mod_old = ctx->pmod;
LY_ERR ret = LY_SUCCESS;
struct lysc_when *when_shared = NULL;
struct ly_set uses_child_set = {0};
/* find the referenced grouping */
LY_CHECK_RET(lys_compile_uses_find_grouping(ctx, uses_p, &grp, &grp_mod));
/* grouping must not reference themselves - stack in ctx maintains list of groupings currently being applied */
grp_stack_count = ctx->groupings.count;
LY_CHECK_RET(ly_set_add(&ctx->groupings, (void *)grp, 0, NULL));
if (grp_stack_count == ctx->groupings.count) {
/* the target grouping is already in the stack, so we are already inside it -> circular dependency */
LOGVAL(ctx->ctx, LYVE_REFERENCE,
"Grouping \"%s\" references itself through a uses statement.", grp->name);
return LY_EVALID;
}
/* check status */
ret = lysc_check_status(ctx, uses_p->flags, ctx->pmod, uses_p->name, grp->flags, grp_mod, grp->name);
LY_CHECK_GOTO(ret, cleanup);
/* compile any augments and refines so they can be applied during the grouping nodes compilation */
ret = lys_precompile_uses_augments_refines(ctx, uses_p, parent);
LY_CHECK_GOTO(ret, cleanup);
/* switch context's parsed module being processed */
ctx->pmod = grp_mod;
/* compile special uses status flags */
uses_flags = uses_p->flags;
ret = lys_compile_status(ctx, &uses_flags, "<uses>", parent ? parent->flags : 0, parent ? parent->name : NULL, 0);
LY_CHECK_GOTO(ret, cleanup);
uses_flags |= LYS_STATUS_USES;
/* compile data nodes */
LY_LIST_FOR(grp->child, pnode) {
ret = lys_compile_node(ctx, pnode, parent, uses_flags, &uses_child_set);
LY_CHECK_GOTO(ret, cleanup);
}
if (child_set) {
/* add these children to our compiled child_set as well since uses is a schema-only node */
LY_CHECK_GOTO(ret = ly_set_merge(child_set, &uses_child_set, 1, NULL), cleanup);
}
if (uses_p->when) {
/* pass uses's when to all the data children */
for (i = 0; i < uses_child_set.count; ++i) {
child = uses_child_set.snodes[i];
ret = lys_compile_when(ctx, uses_p->when, uses_flags, parent, lysc_data_node(parent), child, &when_shared);
LY_CHECK_GOTO(ret, cleanup);
}
}
/* compile actions */
if (grp->actions) {
struct lysc_node_action **actions;
actions = parent ? lysc_node_actions_p(parent) : &ctx->cur_mod->compiled->rpcs;
if (!actions) {
LOGVAL(ctx->ctx, LYVE_REFERENCE, "Invalid child %s \"%s\" of uses parent %s \"%s\" node.",
grp->actions->name, lys_nodetype2str(grp->actions->nodetype),
parent->name, lys_nodetype2str(parent->nodetype));
ret = LY_EVALID;
goto cleanup;
}
LY_LIST_FOR((struct lysp_node *)grp->actions, pnode) {
ret = lys_compile_node(ctx, pnode, parent, uses_flags, &uses_child_set);
LY_CHECK_GOTO(ret, cleanup);
}
if (uses_p->when) {
/* inherit when */
LY_LIST_FOR((struct lysc_node *)*actions, child) {
ret = lys_compile_when(ctx, uses_p->when, uses_flags, parent, lysc_data_node(parent), child, &when_shared);
LY_CHECK_GOTO(ret, cleanup);
}
}
}
/* compile notifications */
if (grp->notifs) {
struct lysc_node_notif **notifs;
notifs = parent ? lysc_node_notifs_p(parent) : &ctx->cur_mod->compiled->notifs;
if (!notifs) {
LOGVAL(ctx->ctx, LYVE_REFERENCE, "Invalid child %s \"%s\" of uses parent %s \"%s\" node.",
grp->notifs->name, lys_nodetype2str(grp->notifs->nodetype),
parent->name, lys_nodetype2str(parent->nodetype));
ret = LY_EVALID;
goto cleanup;
}
LY_LIST_FOR((struct lysp_node *)grp->notifs, pnode) {
ret = lys_compile_node(ctx, pnode, parent, uses_flags, &uses_child_set);
LY_CHECK_GOTO(ret, cleanup);
}
if (uses_p->when) {
/* inherit when */
LY_LIST_FOR((struct lysc_node *)*notifs, child) {
ret = lys_compile_when(ctx, uses_p->when, uses_flags, parent, lysc_data_node(parent), child, &when_shared);
LY_CHECK_GOTO(ret, cleanup);
}
}
}
/* check that all augments were applied */
for (i = 0; i < ctx->uses_augs.count; ++i) {
if (((struct lysc_augment *)ctx->uses_augs.objs[i])->aug_p->parent != (struct lysp_node *)uses_p) {
/* augment of some parent uses, irrelevant now */
continue;
}
LOGVAL(ctx->ctx, LYVE_REFERENCE, "Augment target node \"%s\" in grouping \"%s\" was not found.",
((struct lysc_augment *)ctx->uses_augs.objs[i])->nodeid->expr, grp->name);
ret = LY_ENOTFOUND;
}
LY_CHECK_GOTO(ret, cleanup);
/* check that all refines were applied */
for (i = 0; i < ctx->uses_rfns.count; ++i) {
if (((struct lysc_refine *)ctx->uses_rfns.objs[i])->uses_p != uses_p) {
/* refine of some paretn uses, irrelevant now */
continue;
}
LOGVAL(ctx->ctx, LYVE_REFERENCE, "Refine(s) target node \"%s\" in grouping \"%s\" was not found.",
((struct lysc_refine *)ctx->uses_rfns.objs[i])->nodeid->expr, grp->name);
ret = LY_ENOTFOUND;
}
LY_CHECK_GOTO(ret, cleanup);
cleanup:
/* reload previous context's parsed module being processed */
ctx->pmod = mod_old;
/* remove the grouping from the stack for circular groupings dependency check */
ly_set_rm_index(&ctx->groupings, ctx->groupings.count - 1, NULL);
assert(ctx->groupings.count == grp_stack_count);
ly_set_erase(&uses_child_set, NULL);
return ret;
}
static int
lys_compile_grouping_pathlog(struct lysc_ctx *ctx, struct lysp_node *node, char **path)
{
struct lysp_node *iter;
int len = 0;
*path = NULL;
for (iter = node; iter && len >= 0; iter = iter->parent) {
char *s = *path;
char *id;
switch (iter->nodetype) {
case LYS_USES:
LY_CHECK_RET(asprintf(&id, "{uses='%s'}", iter->name) == -1, -1);
break;
case LYS_GROUPING:
LY_CHECK_RET(asprintf(&id, "{grouping='%s'}", iter->name) == -1, -1);
break;
case LYS_AUGMENT:
LY_CHECK_RET(asprintf(&id, "{augment='%s'}", iter->name) == -1, -1);
break;
default:
id = strdup(iter->name);
break;
}
if (!iter->parent) {
/* print prefix */
len = asprintf(path, "/%s:%s%s", ctx->cur_mod->name, id, s ? s : "");
} else {
/* prefix is the same as in parent */
len = asprintf(path, "/%s%s", id, s ? s : "");
}
free(s);
free(id);
}
if (len < 0) {
free(*path);
*path = NULL;
} else if (len == 0) {
*path = strdup("/");
len = 1;
}
return len;
}
LY_ERR
lys_compile_grouping(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysp_node_grp *grp)
{
LY_ERR ret;
char *path;
int len;
struct lysp_node_uses fake_uses = {
.parent = pnode,
.nodetype = LYS_USES,
.flags = 0, .next = NULL,
.name = grp->name,
.dsc = NULL, .ref = NULL, .when = NULL, .iffeatures = NULL, .exts = NULL,
.refines = NULL, .augments = NULL
};
struct lysc_node_container fake_container = {
.nodetype = LYS_CONTAINER,
.flags = pnode ? (pnode->flags & LYS_FLAGS_COMPILED_MASK) : 0,
.module = ctx->cur_mod,
.parent = NULL, .next = NULL,
.prev = &fake_container.node,
.name = "fake",
.dsc = NULL, .ref = NULL, .exts = NULL, .when = NULL,
.child = NULL, .musts = NULL, .actions = NULL, .notifs = NULL
};
if (grp->parent) {
LOGWRN(ctx->ctx, "Locally scoped grouping \"%s\" not used.", grp->name);
}
len = lys_compile_grouping_pathlog(ctx, grp->parent, &path);
if (len < 0) {
LOGMEM(ctx->ctx);
return LY_EMEM;
}
strncpy(ctx->path, path, LYSC_CTX_BUFSIZE - 1);
ctx->path_len = (uint32_t)len;
free(path);
lysc_update_path(ctx, NULL, "{grouping}");
lysc_update_path(ctx, NULL, grp->name);
ret = lys_compile_uses(ctx, &fake_uses, &fake_container.node, NULL);
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
ctx->path_len = 1;
ctx->path[1] = '\0';
/* cleanup */
lysc_node_container_free(ctx->ctx, &fake_container);
return ret;
}
LY_ERR
lys_compile_node(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *parent, uint16_t uses_status,
struct ly_set *child_set)
{
LY_ERR ret = LY_SUCCESS;
struct lysc_node *node = NULL;
uint32_t prev_opts = ctx->compile_opts;
LY_ERR (*node_compile_spec)(struct lysc_ctx *, struct lysp_node *, struct lysc_node *);
if (pnode->nodetype != LYS_USES) {
lysc_update_path(ctx, parent ? parent->module : NULL, pnode->name);
} else {
lysc_update_path(ctx, NULL, "{uses}");
lysc_update_path(ctx, NULL, pnode->name);
}
switch (pnode->nodetype) {
case LYS_CONTAINER:
node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_container));
node_compile_spec = lys_compile_node_container;
break;
case LYS_LEAF:
node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_leaf));
node_compile_spec = lys_compile_node_leaf;
break;
case LYS_LIST:
node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_list));
node_compile_spec = lys_compile_node_list;
break;
case LYS_LEAFLIST:
node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_leaflist));
node_compile_spec = lys_compile_node_leaflist;
break;
case LYS_CHOICE:
node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_choice));
node_compile_spec = lys_compile_node_choice;
break;
case LYS_CASE:
node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_case));
node_compile_spec = lys_compile_node_case;
break;
case LYS_ANYXML:
case LYS_ANYDATA:
node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_anydata));
node_compile_spec = lys_compile_node_any;
break;
case LYS_RPC:
case LYS_ACTION:
if (ctx->compile_opts & (LYS_IS_INPUT | LYS_IS_OUTPUT | LYS_IS_NOTIF)) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS,
"Action \"%s\" is placed inside %s.", pnode->name,
(ctx->compile_opts & LYS_IS_NOTIF) ? "notification" : "another RPC/action");
return LY_EVALID;
}
node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_action));
node_compile_spec = lys_compile_node_action;
ctx->compile_opts |= LYS_COMPILE_NO_CONFIG;
break;
case LYS_NOTIF:
if (ctx->compile_opts & (LYS_IS_INPUT | LYS_IS_OUTPUT | LYS_IS_NOTIF)) {
LOGVAL(ctx->ctx, LYVE_SEMANTICS,
"Notification \"%s\" is placed inside %s.", pnode->name,
(ctx->compile_opts & LYS_IS_NOTIF) ? "another notification" : "RPC/action");
return LY_EVALID;
}
node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_notif));
node_compile_spec = lys_compile_node_notif;
ctx->compile_opts |= LYS_COMPILE_NOTIFICATION;
break;
case LYS_USES:
ret = lys_compile_uses(ctx, (struct lysp_node_uses *)pnode, parent, child_set);
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
return ret;
default:
LOGINT(ctx->ctx);
return LY_EINT;
}
LY_CHECK_ERR_RET(!node, LOGMEM(ctx->ctx), LY_EMEM);
ret = lys_compile_node_(ctx, pnode, parent, uses_status, node_compile_spec, node, child_set);
ctx->compile_opts = prev_opts;
lysc_update_path(ctx, NULL, NULL);
return ret;
}