blob: 1b89e392ef7d90e05ca57ce9293e60a1f68c1b03 [file] [log] [blame]
/**
* @file printer_lyb.c
* @author Michal Vasko <mvasko@cesnet.cz>
* @brief LYB printer for libyang data structure
*
* Copyright (c) 2020 CESNET, z.s.p.o.
*
* This source code is licensed under BSD 3-Clause License (the "License").
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*/
#include "lyb.h"
#include <assert.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include "common.h"
#include "compat.h"
#include "config.h"
#include "context.h"
#include "hash_table.h"
#include "log.h"
#include "parser_data.h"
#include "printer.h"
#include "printer_data.h"
#include "printer_internal.h"
#include "set.h"
#include "tree.h"
#include "tree_data_internal.h"
#include "tree_schema.h"
#include "tree_schema_internal.h"
/**
* @brief Hash table equal callback for checking hash equality only.
*/
static int
lyb_hash_equal_cb(void *UNUSED(val1_p), void *UNUSED(val2_p), int UNUSED(mod), void *UNUSED(cb_data))
{
/* for this purpose, if hash matches, the value does also, we do not want 2 values to have the same hash */
return 1;
}
/**
* @brief Hash table equal callback for checking value pointer equality only.
*/
static int
lyb_ptr_equal_cb(void *val1_p, void *val2_p, int UNUSED(mod), void *UNUSED(cb_data))
{
struct lysc_node *val1 = *(struct lysc_node **)val1_p;
struct lysc_node *val2 = *(struct lysc_node **)val2_p;
if (val1 == val2) {
return 1;
}
return 0;
}
/**
* @brief Check that sibling collision hash is safe to insert into hash table.
*
* @param[in] ht Hash table.
* @param[in] sibling Hashed sibling.
* @param[in] ht_col_id Sibling hash collision ID.
* @param[in] compare_col_id Last collision ID to compare with.
* @return LY_SUCCESS when the whole hash sequence does not collide,
* @return LY_EEXIST when the whole hash sequence sollides.
*/
static LY_ERR
lyb_hash_sequence_check(struct hash_table *ht, struct lysc_node *sibling, int ht_col_id, int compare_col_id)
{
int j;
struct lysc_node **col_node;
/* get the first node inserted with last hash col ID ht_col_id */
if (lyht_find(ht, &sibling, lyb_hash(sibling, ht_col_id), (void **)&col_node)) {
/* there is none. valid situation */
return LY_SUCCESS;
}
lyht_set_cb(ht, lyb_ptr_equal_cb);
do {
for (j = compare_col_id; j > -1; --j) {
if (lyb_hash(sibling, j) != lyb_hash(*col_node, j)) {
/* one non-colliding hash */
break;
}
}
if (j == -1) {
/* all whole hash sequences of nodes inserted with last hash col ID compare_col_id collide */
lyht_set_cb(ht, lyb_hash_equal_cb);
return LY_EEXIST;
}
/* get next node inserted with last hash col ID ht_col_id */
} while (!lyht_find_next(ht, col_node, lyb_hash(*col_node, ht_col_id), (void **)&col_node));
lyht_set_cb(ht, lyb_hash_equal_cb);
return LY_SUCCESS;
}
/**
* @brief Hash all the siblings and add them also into a separate hash table.
*
* @param[in] sibling Any sibling in all the siblings on one level.
* @param[out] ht_p Created hash table.
* @return LY_ERR value.
*/
static LY_ERR
lyb_hash_siblings(struct lysc_node *sibling, struct hash_table **ht_p)
{
struct hash_table *ht;
const struct lysc_node *parent;
const struct lys_module *mod;
int i, j;
ht = lyht_new(1, sizeof(struct lysc_node *), lyb_hash_equal_cb, NULL, 1);
LY_CHECK_ERR_RET(!ht, LOGMEM(sibling->module->ctx), LY_EMEM);
parent = lysc_data_parent(sibling);
mod = sibling->module;
sibling = NULL;
/* ignore features so that their state does not affect hashes */
while ((sibling = (struct lysc_node *)lys_getnext(sibling, parent, mod->compiled, LYS_GETNEXT_NOSTATECHECK))) {
/* find the first non-colliding hash (or specifically non-colliding hash sequence) */
for (i = 0; i < LYB_HASH_BITS; ++i) {
/* check that we are not colliding with nodes inserted with a lower collision ID than ours */
for (j = i - 1; j > -1; --j) {
if (lyb_hash_sequence_check(ht, sibling, j, i)) {
break;
}
}
if (j > -1) {
/* some check failed, we must use a higher collision ID */
continue;
}
/* try to insert node with the current collision ID */
if (!lyht_insert_with_resize_cb(ht, &sibling, lyb_hash(sibling, i), lyb_ptr_equal_cb, NULL)) {
/* success, no collision */
break;
}
/* make sure we really cannot insert it with this hash col ID (meaning the whole hash sequence is colliding) */
if (i && !lyb_hash_sequence_check(ht, sibling, i, i)) {
/* it can be inserted after all, even though there is already a node with the same last collision ID */
lyht_set_cb(ht, lyb_ptr_equal_cb);
if (lyht_insert(ht, &sibling, lyb_hash(sibling, i), NULL)) {
LOGINT(sibling->module->ctx);
lyht_set_cb(ht, lyb_hash_equal_cb);
lyht_free(ht);
return LY_EINT;
}
lyht_set_cb(ht, lyb_hash_equal_cb);
break;
}
/* there is still another colliding schema node with the same hash sequence, try higher collision ID */
}
if (i == LYB_HASH_BITS) {
/* wow */
LOGINT(sibling->module->ctx);
lyht_free(ht);
return LY_EINT;
}
}
/* change val equal callback so that the HT is usable for finding value hashes */
lyht_set_cb(ht, lyb_ptr_equal_cb);
*ht_p = ht;
return LY_SUCCESS;
}
/**
* @brief Find node hash in a hash table.
*
* @param[in] ht Hash table to search in.
* @param[in] node Node to find.
* @param[out] hash_p First non-colliding hash found.
* @return LY_ERR value.
*/
static LY_ERR
lyb_hash_find(struct hash_table *ht, struct lysc_node *node, LYB_HASH *hash_p)
{
LYB_HASH hash;
uint32_t i;
for (i = 0; i < LYB_HASH_BITS; ++i) {
hash = lyb_hash(node, i);
if (!hash) {
LOGINT_RET(node->module->ctx);
}
if (!lyht_find(ht, &node, hash, NULL)) {
/* success, no collision */
break;
}
}
/* cannot happen, we already calculated the hash */
if (i == LYB_HASH_BITS) {
LOGINT_RET(node->module->ctx);
}
*hash_p = hash;
return LY_SUCCESS;
}
/**
* @brief Write LYB data fully handling the metadata.
*
* @param[in] out Out structure.
* @param[in] buf Source buffer.
* @param[in] count Number of bytes to write.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_write(struct ly_out *out, const uint8_t *buf, size_t count, struct lyd_lyb_ctx *lybctx)
{
LY_ARRAY_COUNT_TYPE u;
struct lyd_lyb_subtree *full, *iter;
ssize_t r, to_write;
uint8_t meta_buf[LYB_META_BYTES];
while (1) {
/* check for full data chunks */
to_write = count;
full = NULL;
LY_ARRAY_FOR(lybctx->subtrees, u) {
/* we want the innermost chunks resolved first, so replace previous full chunks */
if (lybctx->subtrees[u].written + to_write >= LYB_SIZE_MAX) {
/* full chunk, do not write more than allowed */
to_write = LYB_SIZE_MAX - lybctx->subtrees[u].written;
full = &lybctx->subtrees[u];
}
}
if (!full && !count) {
break;
}
/* we are actually writing some data, not just finishing another chunk */
if (to_write) {
r = ly_write(out, (char *)buf, to_write);
if (r < to_write) {
return LY_ESYS;
}
LY_ARRAY_FOR(lybctx->subtrees, u) {
/* increase all written counters */
lybctx->subtrees[u].written += r;
assert(lybctx->subtrees[u].written <= LYB_SIZE_MAX);
}
/* decrease count/buf */
count -= r;
buf += r;
}
if (full) {
/* write the meta information (inner chunk count and chunk size) */
meta_buf[0] = full->written & 0xFF;
meta_buf[1] = full->inner_chunks & 0xFF;
r = ly_write_skipped(out, full->position, (char *)meta_buf, LYB_META_BYTES);
if (r < 0) {
return LY_ESYS;
}
/* these bytes were already counted */
/* zero written and inner chunks */
full->written = 0;
full->inner_chunks = 0;
/* skip space for another chunk size */
r = ly_write_skip(out, LYB_META_BYTES, &full->position);
if (r < LYB_META_BYTES) {
return LY_ESYS;
}
/* increase inner chunk count */
for (iter = &lybctx->subtrees[0]; iter != full; ++iter) {
if (iter->inner_chunks == LYB_INCHUNK_MAX) {
LOGINT(lybctx->ctx);
return LY_EINT;
}
++iter->inner_chunks;
}
}
}
return LY_SUCCESS;
}
/**
* @brief Stop the current subtree - write its final metadata.
*
* @param[in] out Out structure.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_write_stop_subtree(struct ly_out *out, struct lyd_lyb_ctx *lybctx)
{
ssize_t r;
uint8_t meta_buf[LYB_META_BYTES];
/* write the meta chunk information */
meta_buf[0] = LYB_LAST_SUBTREE(lybctx).written & 0xFF;
meta_buf[1] = LYB_LAST_SUBTREE(lybctx).inner_chunks & 0xFF;
r = ly_write_skipped(out, LYB_LAST_SUBTREE(lybctx).position, (char *)&meta_buf, LYB_META_BYTES);
if (r < 0) {
return LY_ESYS;
}
/* do not count these bytes */
LY_ARRAY_DECREMENT(lybctx->subtrees);
return LY_SUCCESS;
}
/**
* @brief Start a new subtree - skip bytes for its metadata.
*
* @param[in] out Out structure.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_write_start_subtree(struct ly_out *out, struct lyd_lyb_ctx *lybctx)
{
ssize_t r;
LY_ARRAY_COUNT_TYPE u;
if (!lybctx->subtrees) {
assert(lybctx->subtree_size == 0);
u = 0;
} else {
u = LY_ARRAY_COUNT(lybctx->subtrees);
}
if (u == lybctx->subtree_size) {
LY_ARRAY_CREATE_RET(lybctx->ctx, lybctx->subtrees, u + LYB_SUBTREE_STEP, LY_EMEM);
lybctx->subtree_size = u + LYB_SUBTREE_STEP;
}
LY_ARRAY_INCREMENT(lybctx->subtrees);
LYB_LAST_SUBTREE(lybctx).written = 0;
LYB_LAST_SUBTREE(lybctx).inner_chunks = 0;
/* another inner chunk */
for (u = 0; u < LY_ARRAY_COUNT(lybctx->subtrees) - 1; ++u) {
if (lybctx->subtrees[u].inner_chunks == LYB_INCHUNK_MAX) {
LOGINT(lybctx->ctx);
return -1;
}
++lybctx->subtrees[u].inner_chunks;
}
r = ly_write_skip(out, LYB_META_BYTES, &LYB_LAST_SUBTREE(lybctx).position);
if (r < LYB_META_BYTES) {
return LY_ESYS;
}
return LY_SUCCESS;
}
/**
* @brief Write a number.
*
* @param[in] num Number to write.
* @param[in] bytes Actual accessible bytes of @p num.
* @param[in] out Out structure.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_write_number(uint64_t num, size_t bytes, struct ly_out *out, struct lyd_lyb_ctx *lybctx)
{
/* correct byte order */
num = htole64(num);
return lyb_write(out, (uint8_t *)&num, bytes, lybctx);
}
/**
* @brief Write a string.
*
* @param[in] str String to write.
* @param[in] str_len Length of @p str.
* @param[in] with_length Whether to precede the string with its length.
* @param[in] out Out structure.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_write_string(const char *str, size_t str_len, int with_length, struct ly_out *out, struct lyd_lyb_ctx *lybctx)
{
if (!str) {
str = "";
}
if (!str_len) {
str_len = strlen(str);
}
if (with_length) {
/* print length on 2 bytes */
if (str_len > UINT16_MAX) {
LOGINT(lybctx->ctx);
return LY_EINT;
}
LY_CHECK_RET(lyb_write_number(str_len, 2, out, lybctx));
}
LY_CHECK_RET(lyb_write(out, (const uint8_t *)str, str_len, lybctx));
return LY_SUCCESS;
}
/**
* @brief Print YANG module info.
*
* @param[in] out Out structure.
* @param[in] mod Module to print.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_model(struct ly_out *out, const struct lys_module *mod, struct lyd_lyb_ctx *lybctx)
{
int r;
uint16_t revision;
/* model name length and model name */
if (mod) {
LY_CHECK_RET(lyb_write_string(mod->name, 0, 1, out, lybctx));
} else {
LY_CHECK_RET(lyb_write_string("", 0, 1, out, lybctx));
}
/* model revision as XXXX XXXX XXXX XXXX (2B) (year is offset from 2000)
* YYYY YYYM MMMD DDDD */
revision = 0;
if (mod && mod->revision) {
r = atoi(mod->revision);
r -= 2000;
r <<= 9;
revision |= r;
r = atoi(mod->revision + 5);
r <<= 5;
revision |= r;
r = atoi(mod->revision + 8);
revision |= r;
}
LY_CHECK_RET(lyb_write_number(revision, sizeof revision, out, lybctx));
return LY_SUCCESS;
}
/**
* @brief Print all used YANG modules.
*
* @param[in] out Out structure.
* @param[in] root Data root.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_data_models(struct ly_out *out, const struct lyd_node *root, struct lyd_lyb_ctx *lybctx)
{
struct ly_set *set;
LY_ARRAY_COUNT_TYPE u;
LY_ERR ret = LY_SUCCESS;
struct lys_module *mod;
const struct lyd_node *node;
uint32_t i;
set = ly_set_new();
LY_CHECK_RET(!set, LY_EMEM);
/* collect all data node modules */
LY_LIST_FOR(root, node) {
if (!node->schema) {
continue;
}
mod = node->schema->module;
ly_set_add(set, mod, 0);
/* add also their modules deviating or augmenting them */
LY_ARRAY_FOR(mod->compiled->deviated_by, u) {
ly_set_add(set, mod->compiled->deviated_by[u], 0);
}
LY_ARRAY_FOR(mod->compiled->augmented_by, u) {
ly_set_add(set, mod->compiled->augmented_by[u], 0);
}
}
/* now write module count on 2 bytes */
LY_CHECK_GOTO(ret = lyb_write_number(set->count, 2, out, lybctx), cleanup);
/* and all the used models */
for (i = 0; i < set->count; ++i) {
LY_CHECK_GOTO(ret = lyb_print_model(out, set->objs[i], lybctx), cleanup);
}
cleanup:
ly_set_free(set, NULL);
return ret;
}
/**
* @brief Print LYB magic number.
*
* @param[in] out Out structure.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_magic_number(struct ly_out *out)
{
int r;
uint32_t magic_number;
/* 'l', 'y', 'b' - 0x6c7962 */
((char *)&magic_number)[0] = 'l';
((char *)&magic_number)[1] = 'y';
((char *)&magic_number)[2] = 'b';
r = ly_write(out, (char *)&magic_number, 3);
if (r < 3) {
return LY_ESYS;
}
return LY_SUCCESS;
}
/**
* @brief Print LYB header.
*
* @param[in] out Out structure.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_header(struct ly_out *out)
{
int r;
uint8_t byte = 0;
/* version, future flags */
byte |= LYB_VERSION_NUM;
r = ly_write(out, (char *)&byte, 1);
if (r < 1) {
return LY_ESYS;
}
return LY_SUCCESS;
}
/**
* @brief Print opaque prefixes.
*
* @param[in] out Out structure.
* @param[in] prefs Prefixes to print.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_opaq_prefixes(struct ly_out *out, const struct ly_prefix *prefs, struct lyd_lyb_ctx *lybctx)
{
uint8_t count;
LY_ARRAY_COUNT_TYPE u;
if (prefs && (LY_ARRAY_COUNT(prefs) > UINT8_MAX)) {
LOGERR(lybctx->ctx, LY_EINT, "Maximum supported number of prefixes is %u.", UINT8_MAX);
return LY_EINT;
}
count = prefs ? LY_ARRAY_COUNT(prefs) : 0;
/* write number of prefixes on 1 byte */
LY_CHECK_RET(lyb_write(out, &count, 1, lybctx));
/* write all the prefixes */
LY_ARRAY_FOR(prefs, u) {
/* prefix */
LY_CHECK_RET(lyb_write_string(prefs[u].pref, 0, 1, out, lybctx));
/* namespace */
LY_CHECK_RET(lyb_write_string(prefs[u].ns, 0, 1, out, lybctx));
}
return LY_SUCCESS;
}
/**
* @brief Print opaque node.
*
* @param[in] opaq Node to print.
* @param[in] out Out structure.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_opaq(struct lyd_node_opaq *opaq, struct ly_out *out, struct lyd_lyb_ctx *lybctx)
{
/* prefix */
LY_CHECK_RET(lyb_write_string(opaq->prefix.pref, 0, 1, out, lybctx));
/* namespace */
LY_CHECK_RET(lyb_write_string(opaq->prefix.ns, 0, 1, out, lybctx));
/* name */
LY_CHECK_RET(lyb_write_string(opaq->name, 0, 1, out, lybctx));
/* value prefixes */
LY_CHECK_RET(lyb_print_opaq_prefixes(out, opaq->val_prefs, lybctx));
/* format */
LY_CHECK_RET(lyb_write_number(opaq->format, 1, out, lybctx));
/* value */
LY_CHECK_RET(lyb_write_string(opaq->value, 0, 0, out, lybctx));
return LY_SUCCESS;
}
/**
* @brief Print anydata node.
*
* @param[in] anydata Node to print.
* @param[in] out Out structure.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_anydata(struct lyd_node_any *anydata, struct ly_out *out, struct lyd_lyb_ctx *lybctx)
{
LY_ERR ret = LY_SUCCESS;
LYD_ANYDATA_VALUETYPE value_type;
int len;
char *buf = NULL;
const char *str;
struct ly_out *out2 = NULL;
if (anydata->value_type == LYD_ANYDATA_DATATREE) {
/* will be printed as a nested LYB data tree */
value_type = LYD_ANYDATA_LYB;
} else {
value_type = anydata->value_type;
}
/* first byte is type */
LY_CHECK_GOTO(ret = lyb_write(out, (uint8_t *)&value_type, sizeof value_type, lybctx), cleanup);
if (anydata->value_type == LYD_ANYDATA_DATATREE) {
/* print LYB data tree to memory */
LY_CHECK_GOTO(ret = ly_out_new_memory(&buf, 0, &out2), cleanup);
LY_CHECK_GOTO(ret = lyb_print_data(out2, anydata->value.tree, LYD_PRINT_WITHSIBLINGS), cleanup);
len = lyd_lyb_data_length(buf);
assert(len != -1);
str = buf;
} else if (anydata->value_type == LYD_ANYDATA_LYB) {
len = lyd_lyb_data_length(anydata->value.mem);
assert(len != -1);
str = anydata->value.mem;
} else {
len = strlen(anydata->value.str);
str = anydata->value.str;
}
/* followed by the content */
LY_CHECK_GOTO(ret = lyb_write_string(str, (size_t)len, 0, out, lybctx), cleanup);
cleanup:
ly_out_free(out2, NULL, 1);
return ret;
}
/**
* @brief Print term node.
*
* @param[in] term Node to print.
* @param[in] out Out structure.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_term(struct lyd_node_term *term, struct ly_out *out, struct lyd_lyb_ctx *lybctx)
{
LY_ERR ret;
int dynamic;
const char *str;
/* get value */
str = lyd_value2str(term, &dynamic);
/* print it */
ret = lyb_write_string(str, 0, 0, out, lybctx);
if (dynamic) {
free((char *)str);
}
return ret;
}
/**
* @brief Print YANG node metadata.
*
* @param[in] out Out structure.
* @param[in] node Data node whose metadata to print.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_metadata(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx)
{
LY_ERR ret;
int dynamic;
uint8_t count = 0;
const struct lys_module *wd_mod = NULL;
struct lyd_meta *iter;
const char *str;
/* with-defaults */
if (node->schema->nodetype & LYD_NODE_TERM) {
if (((node->flags & LYD_DEFAULT) && (lybctx->print_options & (LYD_PRINT_WD_ALL_TAG | LYD_PRINT_WD_IMPL_TAG))) ||
((lybctx->print_options & LYD_PRINT_WD_ALL_TAG) && ly_is_default(node))) {
/* we have implicit OR explicit default node, print attribute only if context include with-defaults schema */
wd_mod = ly_ctx_get_module_latest(node->schema->module->ctx, "ietf-netconf-with-defaults");
}
}
/* count metadata */
if (wd_mod) {
++count;
}
for (iter = node->meta; iter; iter = iter->next) {
if (count == UINT8_MAX) {
LOGERR(lybctx->ctx, LY_EINT, "Maximum supported number of data node metadata is %u.", UINT8_MAX);
return LY_EINT;
}
++count;
}
/* write number of metadata on 1 byte */
LY_CHECK_RET(lyb_write(out, &count, 1, lybctx));
if (wd_mod) {
/* write the "default" metadata */
LY_CHECK_RET(lyb_write_start_subtree(out, lybctx));
LY_CHECK_RET(lyb_print_model(out, wd_mod, lybctx));
LY_CHECK_RET(lyb_write_string("default", 0, 1, out, lybctx));
LY_CHECK_RET(lyb_write_string("true", 0, 0, out, lybctx));
LY_CHECK_RET(lyb_write_stop_subtree(out, lybctx));
}
/* write all the node metadata */
LY_LIST_FOR(node->meta, iter) {
/* each metadata is a subtree */
LY_CHECK_RET(lyb_write_start_subtree(out, lybctx));
/* model */
LY_CHECK_RET(lyb_print_model(out, iter->annotation->module, lybctx));
/* annotation name with length */
LY_CHECK_RET(lyb_write_string(iter->name, 0, 1, out, lybctx));
/* get the value */
str = lyd_meta2str(iter, &dynamic);
/* metadata value */
ret = lyb_write_string(str, 0, 0, out, lybctx);
if (dynamic) {
free((char *)str);
}
LY_CHECK_RET(ret);
/* finish metadata subtree */
LY_CHECK_RET(lyb_write_stop_subtree(out, lybctx));
}
return LY_SUCCESS;
}
/**
* @brief Print opaque node attributes.
*
* @param[in] out Out structure.
* @param[in] node Opaque node whose attributes to print.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_attributes(struct ly_out *out, const struct lyd_node_opaq *node, struct lyd_lyb_ctx *lybctx)
{
uint8_t count = 0;
struct ly_attr *iter;
for (iter = node->attr; iter; iter = iter->next) {
if (count == UINT8_MAX) {
LOGERR(lybctx->ctx, LY_EINT, "Maximum supported number of data node attributes is %u.", UINT8_MAX);
return LY_EINT;
}
++count;
}
/* write number of attributes on 1 byte */
LY_CHECK_RET(lyb_write(out, &count, 1, lybctx));
/* write all the attributes */
LY_LIST_FOR(node->attr, iter) {
/* each attribute is a subtree */
LY_CHECK_RET(lyb_write_start_subtree(out, lybctx));
/* prefix */
LY_CHECK_RET(lyb_write_string(iter->prefix.pref, 0, 1, out, lybctx));
/* namespace */
LY_CHECK_RET(lyb_write_string(iter->prefix.ns, 0, 1, out, lybctx));
/* name */
LY_CHECK_RET(lyb_write_string(iter->name, 0, 1, out, lybctx));
/* value prefixes */
LY_CHECK_RET(lyb_print_opaq_prefixes(out, iter->val_prefs, lybctx));
/* format */
LY_CHECK_RET(lyb_write_number(iter->format, 1, out, lybctx));
/* value */
LY_CHECK_RET(lyb_write_string(iter->value, 0, 0, out, lybctx));
/* finish attribute subtree */
LY_CHECK_RET(lyb_write_stop_subtree(out, lybctx));
}
return LY_SUCCESS;
}
/**
* @brief Print schema node hash.
*
* @param[in] out Out structure.
* @param[in] schema Schema node whose hash to print.
* @param[in,out] sibling_ht Cached hash table for these siblings, created if NULL.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_schema_hash(struct ly_out *out, struct lysc_node *schema, struct hash_table **sibling_ht, struct lyd_lyb_ctx *lybctx)
{
LY_ARRAY_COUNT_TYPE u;
uint32_t i;
LYB_HASH hash;
struct lyd_lyb_sib_ht *sib_ht;
struct lysc_node *first_sibling;
if (!schema) {
/* opaque node, write empty hash */
hash = 0;
LY_CHECK_RET(lyb_write(out, &hash, sizeof hash, lybctx));
return LY_SUCCESS;
}
/* create whole sibling HT if not already created and saved */
if (!*sibling_ht) {
/* get first schema data sibling (or input/output) */
first_sibling = (struct lysc_node *)lys_getnext(NULL, lysc_data_parent(schema), schema->module->compiled, 0);
LY_ARRAY_FOR(lybctx->sib_hts, u) {
if (lybctx->sib_hts[u].first_sibling == first_sibling) {
/* we have already created a hash table for these siblings */
*sibling_ht = lybctx->sib_hts[u].ht;
break;
}
}
if (!*sibling_ht) {
/* we must create sibling hash table */
LY_CHECK_RET(lyb_hash_siblings(first_sibling, sibling_ht));
/* and save it */
LY_ARRAY_NEW_RET(lybctx->ctx, lybctx->sib_hts, sib_ht, LY_EMEM);
sib_ht->first_sibling = first_sibling;
sib_ht->ht = *sibling_ht;
}
}
/* get our hash */
LY_CHECK_RET(lyb_hash_find(*sibling_ht, schema, &hash));
/* write the hash */
LY_CHECK_RET(lyb_write(out, &hash, sizeof hash, lybctx));
if (hash & LYB_HASH_COLLISION_ID) {
/* no collision for this hash, we are done */
return LY_SUCCESS;
}
/* written hash was a collision, write also all the preceding hashes */
for (i = 0; !(hash & (LYB_HASH_COLLISION_ID >> i)); ++i);
for (; i; --i) {
hash = lyb_hash(schema, i - 1);
if (!hash) {
return LY_EINT;
}
assert(hash & (LYB_HASH_COLLISION_ID >> (i - 1)));
LY_CHECK_RET(lyb_write(out, &hash, sizeof hash, lybctx));
}
return LY_SUCCESS;
}
/**
* @brief Print data subtree.
*
* @param[in] out Out structure.
* @param[in] node Root node of the subtree to print.
* @param[in,out] sibling_ht Cached hash table for these data siblings, created if NULL.
* @param[in] lybctx LYB context.
* @return LY_ERR value.
*/
static LY_ERR
lyb_print_subtree(struct ly_out *out, const struct lyd_node *node, struct hash_table **sibling_ht, struct lyd_lyb_ctx *lybctx)
{
struct hash_table *child_ht = NULL;
/* register a new subtree */
LY_CHECK_RET(lyb_write_start_subtree(out, lybctx));
/* write model info first */
if (!node->schema && !((struct lyd_node_opaq *)node)->parent) {
LY_CHECK_RET(lyb_print_model(out, NULL, lybctx));
} else if (node->schema && !lysc_data_parent(node->schema)) {
LY_CHECK_RET(lyb_print_model(out, node->schema->module, lybctx));
}
/* write schema hash */
LY_CHECK_RET(lyb_print_schema_hash(out, (struct lysc_node *)node->schema, sibling_ht, lybctx));
/* write any metadata/attributes */
if (node->schema) {
LY_CHECK_RET(lyb_print_metadata(out, node, lybctx));
} else {
LY_CHECK_RET(lyb_print_attributes(out, (struct lyd_node_opaq *)node, lybctx));
}
/* write node content */
if (!node->schema) {
LY_CHECK_RET(lyb_print_opaq((struct lyd_node_opaq *)node, out, lybctx));
} else if (node->schema->nodetype & LYD_NODE_INNER) {
/* nothing to write */
} else if (node->schema->nodetype & LYD_NODE_TERM) {
LY_CHECK_RET(lyb_print_term((struct lyd_node_term *)node, out, lybctx));
} else if (node->schema->nodetype & LYD_NODE_ANY) {
LY_CHECK_RET(lyb_print_anydata((struct lyd_node_any *)node, out, lybctx));
} else {
LOGINT_RET(lybctx->ctx);
}
/* recursively write all the descendants */
LY_LIST_FOR(lyd_node_children(node, 0), node) {
LY_CHECK_RET(lyb_print_subtree(out, node, &child_ht, lybctx));
}
/* finish this subtree */
LY_CHECK_RET(lyb_write_stop_subtree(out, lybctx));
return LY_SUCCESS;
}
LY_ERR
lyb_print_data(struct ly_out *out, const struct lyd_node *root, int options)
{
LY_ERR ret = LY_SUCCESS;
uint8_t zero = 0;
LY_ARRAY_COUNT_TYPE u;
struct hash_table *top_sibling_ht = NULL;
const struct lys_module *prev_mod = NULL;
struct lyd_lyb_ctx lybctx = {0};
lybctx.print_options = options;
if (root) {
lybctx.ctx = LYD_NODE_CTX(root);
if (root->schema && lysc_data_parent(root->schema)) {
LOGERR(lybctx.ctx, LY_EINVAL, "LYB printer supports only printing top-level nodes.");
return LY_EINVAL;
}
}
/* LYB magic number */
LY_CHECK_GOTO(ret = lyb_print_magic_number(out), cleanup);
/* LYB header */
LY_CHECK_GOTO(ret = lyb_print_header(out), cleanup);
/* all used models */
LY_CHECK_GOTO(ret = lyb_print_data_models(out, root, &lybctx), cleanup);
LY_LIST_FOR(root, root) {
/* do not reuse sibling hash tables from different modules */
if (!root->schema || (root->schema->module != prev_mod)) {
top_sibling_ht = NULL;
prev_mod = root->schema ? root->schema->module : NULL;
}
LY_CHECK_GOTO(ret = lyb_print_subtree(out, root, &top_sibling_ht, &lybctx), cleanup);
if (!(options & LYD_PRINT_WITHSIBLINGS)) {
break;
}
}
/* ending zero byte */
LY_CHECK_GOTO(ret = lyb_write(out, &zero, sizeof zero, &lybctx), cleanup);
cleanup:
LY_ARRAY_FREE(lybctx.subtrees);
LY_ARRAY_FOR(lybctx.sib_hts, u) {
lyht_free(lybctx.sib_hts[u].ht);
}
LY_ARRAY_FREE(lybctx.sib_hts);
return ret;
}