blob: 6f2a36785e3c55a534fa8e8241a0d8d335eb94f8 [file] [log] [blame]
/**
* @file tree_schema.c
* @author Radek Krejci <rkrejci@cesnet.cz>
* @brief Schema tree implementation
*
* Copyright (c) 2015 - 2018 CESNET, z.s.p.o.
*
* This source code is licensed under BSD 3-Clause License (the "License").
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*/
#include "common.h"
#include <ctype.h>
#include <stdio.h>
#include "libyang.h"
#include "context.h"
#include "tree_schema_internal.h"
#include "xpath.h"
/**
* @brief Duplicate string into dictionary
* @param[in] CTX libyang context of the dictionary.
* @param[in] ORIG String to duplicate.
* @param[out] DUP Where to store the result.
*/
#define DUP_STRING(CTX, ORIG, DUP) if (ORIG) {DUP = lydict_insert(CTX, ORIG, 0);}
#define COMPILE_ARRAY_GOTO(CTX, ARRAY_P, ARRAY_C, OPTIONS, ITER, FUNC, RET, GOTO) \
if (ARRAY_P) { \
LY_ARRAY_CREATE_GOTO((CTX)->ctx, ARRAY_C, LY_ARRAY_SIZE(ARRAY_P), RET, GOTO); \
size_t __array_offset = LY_ARRAY_SIZE(ARRAY_C); \
for (ITER = 0; ITER < LY_ARRAY_SIZE(ARRAY_P); ++ITER) { \
LY_ARRAY_INCREMENT(ARRAY_C); \
RET = FUNC(CTX, &(ARRAY_P)[ITER], OPTIONS, &(ARRAY_C)[ITER + __array_offset]); \
LY_CHECK_GOTO(RET != LY_SUCCESS, GOTO); \
} \
}
#define COMPILE_ARRAY_UNIQUE_GOTO(CTX, ARRAY_P, ARRAY_C, OPTIONS, ITER, FUNC, RET, GOTO) \
if (ARRAY_P) { \
LY_ARRAY_CREATE_GOTO((CTX)->ctx, ARRAY_C, LY_ARRAY_SIZE(ARRAY_P), RET, GOTO); \
size_t __array_offset = LY_ARRAY_SIZE(ARRAY_C); \
for (ITER = 0; ITER < LY_ARRAY_SIZE(ARRAY_P); ++ITER) { \
LY_ARRAY_INCREMENT(ARRAY_C); \
RET = FUNC(CTX, &(ARRAY_P)[ITER], OPTIONS, ARRAY_C, &(ARRAY_C)[ITER + __array_offset]); \
LY_CHECK_GOTO(RET != LY_SUCCESS, GOTO); \
} \
}
#define COMPILE_MEMBER_GOTO(CTX, MEMBER_P, MEMBER_C, OPTIONS, FUNC, RET, GOTO) \
if (MEMBER_P) { \
MEMBER_C = calloc(1, sizeof *(MEMBER_C)); \
LY_CHECK_ERR_GOTO(!(MEMBER_C), LOGMEM((CTX)->ctx); RET = LY_EMEM, GOTO); \
RET = FUNC(CTX, MEMBER_P, OPTIONS, MEMBER_C); \
LY_CHECK_GOTO(RET != LY_SUCCESS, GOTO); \
}
#define COMPILE_MEMBER_ARRAY_GOTO(CTX, MEMBER_P, ARRAY_C, OPTIONS, FUNC, RET, GOTO) \
if (MEMBER_P) { \
LY_ARRAY_CREATE_GOTO((CTX)->ctx, ARRAY_C, 1, RET, GOTO); \
size_t __array_offset = LY_ARRAY_SIZE(ARRAY_C); \
LY_ARRAY_INCREMENT(ARRAY_C); \
RET = FUNC(CTX, MEMBER_P, OPTIONS, &(ARRAY_C)[__array_offset]); \
LY_CHECK_GOTO(RET != LY_SUCCESS, GOTO); \
}
#define COMPILE_CHECK_UNIQUENESS(CTX, ARRAY, MEMBER, EXCL, STMT, IDENT) \
if (ARRAY) { \
for (unsigned int u__ = 0; u__ < LY_ARRAY_SIZE(ARRAY); ++u__) { \
if (&(ARRAY)[u__] != EXCL && (void*)((ARRAY)[u__].MEMBER) == (void*)(IDENT)) { \
LOGVAL((CTX)->ctx, LY_VLOG_STR, (CTX)->path, LY_VCODE_DUPIDENT, IDENT, STMT); \
return LY_EVALID; \
} \
} \
}
static struct lysc_ext_instance *
lysc_ext_instance_dup(struct ly_ctx *ctx, struct lysc_ext_instance *orig)
{
/* TODO */
(void) ctx;
(void) orig;
return NULL;
}
/**
* @brief Duplicate the compiled pattern structure.
*
* Instead of duplicating memory, the reference counter in the @p orig is increased.
*
* @param[in] orig The pattern structure to duplicate.
* @return The duplicated structure to use.
*/
static struct lysc_pattern*
lysc_pattern_dup(struct lysc_pattern *orig)
{
++orig->refcount;
return orig;
}
/**
* @brief Duplicate the array of compiled patterns.
*
* The sized array itself is duplicated, but the pattern structures are just shadowed by increasing their reference counter.
*
* @param[in] ctx Libyang context for logging.
* @param[in] orig The patterns sized array to duplicate.
* @return New sized array as a copy of @p orig.
* @return NULL in case of memory allocation error.
*/
static struct lysc_pattern**
lysc_patterns_dup(struct ly_ctx *ctx, struct lysc_pattern **orig)
{
struct lysc_pattern **dup = NULL;
unsigned int u;
assert(orig);
LY_ARRAY_CREATE_RET(ctx, dup, LY_ARRAY_SIZE(orig), NULL);
LY_ARRAY_FOR(orig, u) {
dup[u] = lysc_pattern_dup(orig[u]);
LY_ARRAY_INCREMENT(dup);
}
return dup;
}
/**
* @brief Duplicate compiled range structure.
*
* @param[in] ctx Libyang context for logging.
* @param[in] orig The range structure to be duplicated.
* @return New compiled range structure as a copy of @p orig.
* @return NULL in case of memory allocation error.
*/
struct lysc_range*
lysc_range_dup(struct ly_ctx *ctx, const struct lysc_range *orig)
{
struct lysc_range *dup;
LY_ERR ret;
assert(orig);
dup = calloc(1, sizeof *dup);
LY_CHECK_ERR_RET(!dup, LOGMEM(ctx), NULL);
if (orig->parts) {
LY_ARRAY_CREATE_GOTO(ctx, dup->parts, LY_ARRAY_SIZE(orig->parts), ret, cleanup);
LY_ARRAY_SIZE(dup->parts) = LY_ARRAY_SIZE(orig->parts);
memcpy(dup->parts, orig->parts, LY_ARRAY_SIZE(dup->parts) * sizeof *dup->parts);
}
DUP_STRING(ctx, orig->eapptag, dup->eapptag);
DUP_STRING(ctx, orig->emsg, dup->emsg);
dup->exts = lysc_ext_instance_dup(ctx, orig->exts);
return dup;
cleanup:
free(dup);
(void) ret; /* set but not used due to the return type */
return NULL;
}
/**
* @brief Stack for processing if-feature expressions.
*/
struct iff_stack {
int size; /**< number of items in the stack */
int index; /**< first empty item */
uint8_t *stack;/**< stack - array of @ref ifftokens to create the if-feature expression in prefix format */
};
/**
* @brief Add @ref ifftokens into the stack.
* @param[in] stack The if-feature stack to use.
* @param[in] value One of the @ref ifftokens to store in the stack.
* @return LY_EMEM in case of memory allocation error
* @return LY_ESUCCESS if the value successfully stored.
*/
static LY_ERR
iff_stack_push(struct iff_stack *stack, uint8_t value)
{
if (stack->index == stack->size) {
stack->size += 4;
stack->stack = ly_realloc(stack->stack, stack->size * sizeof *stack->stack);
LY_CHECK_ERR_RET(!stack->stack, LOGMEM(NULL); stack->size = 0, LY_EMEM);
}
stack->stack[stack->index++] = value;
return LY_SUCCESS;
}
/**
* @brief Get (and remove) the last item form the stack.
* @param[in] stack The if-feature stack to use.
* @return The value from the top of the stack.
*/
static uint8_t
iff_stack_pop(struct iff_stack *stack)
{
assert(stack && stack->index);
stack->index--;
return stack->stack[stack->index];
}
/**
* @brief Clean up the stack.
* @param[in] stack The if-feature stack to use.
*/
static void
iff_stack_clean(struct iff_stack *stack)
{
stack->size = 0;
free(stack->stack);
}
/**
* @brief Store the @ref ifftokens (@p op) on the given position in the 2bits array
* (libyang format of the if-feature expression).
* @param[in,out] list The 2bits array to modify.
* @param[in] op The operand (@ref ifftokens) to store.
* @param[in] pos Position (0-based) where to store the given @p op.
*/
static void
iff_setop(uint8_t *list, uint8_t op, int pos)
{
uint8_t *item;
uint8_t mask = 3;
assert(pos >= 0);
assert(op <= 3); /* max 2 bits */
item = &list[pos / 4];
mask = mask << 2 * (pos % 4);
*item = (*item) & ~mask;
*item = (*item) | (op << 2 * (pos % 4));
}
#define LYS_IFF_LP 0x04 /**< Additional, temporary, value of @ref ifftokens: ( */
#define LYS_IFF_RP 0x08 /**< Additional, temporary, value of @ref ifftokens: ) */
/**
* @brief Find a feature of the given name and referenced in the given module.
*
* If the compiled schema is available (the schema is implemented), the feature from the compiled schema is
* returned. Otherwise, the special array of pre-compiled features is used to search for the feature. Such
* features are always disabled (feature from not implemented schema cannot be enabled), but in case the schema
* will be made implemented in future (no matter if implicitly via augmenting/deviating it or explicitly via
* ly_ctx_module_implement()), the compilation of these feature structure is finished, but the pointers
* assigned till that time will be still valid.
*
* @param[in] mod Module where the feature was referenced (used to resolve prefix of the feature).
* @param[in] name Name of the feature including possible prefix.
* @param[in] len Length of the string representing the feature identifier in the name variable (mandatory!).
* @return Pointer to the feature structure if found, NULL otherwise.
*/
static struct lysc_feature *
lys_feature_find(struct lys_module *mod, const char *name, size_t len)
{
size_t i;
struct lysc_feature *f, *flist;
for (i = 0; i < len; ++i) {
if (name[i] == ':') {
/* we have a prefixed feature */
mod = lys_module_find_prefix(mod, name, i);
LY_CHECK_RET(!mod, NULL);
name = &name[i + 1];
len = len - i - 1;
}
}
/* we have the correct module, get the feature */
if (mod->implemented) {
/* module is implemented so there is already the compiled schema */
flist = mod->compiled->features;
} else {
flist = mod->off_features;
}
LY_ARRAY_FOR(flist, i) {
f = &flist[i];
if (!strncmp(f->name, name, len) && f->name[len] == '\0') {
return f;
}
}
return NULL;
}
static LY_ERR
lys_compile_ext(struct lysc_ctx *ctx, struct lysp_ext_instance *ext_p, int UNUSED(options), struct lysc_ext_instance *ext)
{
const char *name;
unsigned int u;
const struct lys_module *mod;
struct lysp_ext *edef = NULL;
DUP_STRING(ctx->ctx, ext_p->argument, ext->argument);
ext->insubstmt = ext_p->insubstmt;
ext->insubstmt_index = ext_p->insubstmt_index;
/* get module where the extension definition should be placed */
for (u = 0; ext_p->name[u] != ':'; ++u);
mod = lys_module_find_prefix(ctx->mod_def, ext_p->name, u);
LY_CHECK_ERR_RET(!mod, LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid prefix \"%.*s\" used for extension instance identifier.", u, ext_p->name),
LY_EVALID);
LY_CHECK_ERR_RET(!mod->parsed->extensions,
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Extension instance \"%s\" refers \"%s\" module that does not contain extension definitions.",
ext_p->name, mod->name),
LY_EVALID);
name = &ext_p->name[u + 1];
/* find the extension definition there */
for (ext = NULL, u = 0; u < LY_ARRAY_SIZE(mod->parsed->extensions); ++u) {
if (!strcmp(name, mod->parsed->extensions[u].name)) {
edef = &mod->parsed->extensions[u];
break;
}
}
LY_CHECK_ERR_RET(!edef, LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Extension definition of extension instance \"%s\" not found.", ext_p->name),
LY_EVALID);
/* TODO plugins */
return LY_SUCCESS;
}
/**
* @brief Compile information from the if-feature statement
* @param[in] ctx Compile context.
* @param[in] value The if-feature argument to process. It is pointer-to-pointer-to-char just to unify the compile functions.
* @param[in] options Various options to modify compiler behavior, see [compile flags](@ref scflags).
* @param[in,out] iff Prepared (empty) compiled if-feature structure to fill.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_iffeature(struct lysc_ctx *ctx, const char **value, int UNUSED(options), struct lysc_iffeature *iff)
{
const char *c = *value;
int r, rc = EXIT_FAILURE;
int i, j, last_not, checkversion = 0;
unsigned int f_size = 0, expr_size = 0, f_exp = 1;
uint8_t op;
struct iff_stack stack = {0, 0, NULL};
struct lysc_feature *f;
assert(c);
/* pre-parse the expression to get sizes for arrays, also do some syntax checks of the expression */
for (i = j = last_not = 0; c[i]; i++) {
if (c[i] == '(') {
j++;
checkversion = 1;
continue;
} else if (c[i] == ')') {
j--;
continue;
} else if (isspace(c[i])) {
checkversion = 1;
continue;
}
if (!strncmp(&c[i], "not", r = 3) || !strncmp(&c[i], "and", r = 3) || !strncmp(&c[i], "or", r = 2)) {
if (c[i + r] == '\0') {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid value \"%s\" of if-feature - unexpected end of expression.", *value);
return LY_EVALID;
} else if (!isspace(c[i + r])) {
/* feature name starting with the not/and/or */
last_not = 0;
f_size++;
} else if (c[i] == 'n') { /* not operation */
if (last_not) {
/* double not */
expr_size = expr_size - 2;
last_not = 0;
} else {
last_not = 1;
}
} else { /* and, or */
f_exp++;
/* not a not operation */
last_not = 0;
}
i += r;
} else {
f_size++;
last_not = 0;
}
expr_size++;
while (!isspace(c[i])) {
if (!c[i] || c[i] == ')') {
i--;
break;
}
i++;
}
}
if (j || f_exp != f_size) {
/* not matching count of ( and ) */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid value \"%s\" of if-feature - non-matching opening and closing parentheses.", *value);
return LY_EVALID;
}
if (checkversion || expr_size > 1) {
/* check that we have 1.1 module */
if (ctx->mod_def->version != LYS_VERSION_1_1) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid value \"%s\" of if-feature - YANG 1.1 expression in YANG 1.0 module.", *value);
return LY_EVALID;
}
}
/* allocate the memory */
LY_ARRAY_CREATE_RET(ctx->ctx, iff->features, f_size, LY_EMEM);
iff->expr = calloc((j = (expr_size / 4) + ((expr_size % 4) ? 1 : 0)), sizeof *iff->expr);
stack.stack = malloc(expr_size * sizeof *stack.stack);
LY_CHECK_ERR_GOTO(!stack.stack || !iff->expr, LOGMEM(ctx->ctx), error);
stack.size = expr_size;
f_size--; expr_size--; /* used as indexes from now */
for (i--; i >= 0; i--) {
if (c[i] == ')') {
/* push it on stack */
iff_stack_push(&stack, LYS_IFF_RP);
continue;
} else if (c[i] == '(') {
/* pop from the stack into result all operators until ) */
while((op = iff_stack_pop(&stack)) != LYS_IFF_RP) {
iff_setop(iff->expr, op, expr_size--);
}
continue;
} else if (isspace(c[i])) {
continue;
}
/* end of operator or operand -> find beginning and get what is it */
j = i + 1;
while (i >= 0 && !isspace(c[i]) && c[i] != '(') {
i--;
}
i++; /* go back by one step */
if (!strncmp(&c[i], "not", 3) && isspace(c[i + 3])) {
if (stack.index && stack.stack[stack.index - 1] == LYS_IFF_NOT) {
/* double not */
iff_stack_pop(&stack);
} else {
/* not has the highest priority, so do not pop from the stack
* as in case of AND and OR */
iff_stack_push(&stack, LYS_IFF_NOT);
}
} else if (!strncmp(&c[i], "and", 3) && isspace(c[i + 3])) {
/* as for OR - pop from the stack all operators with the same or higher
* priority and store them to the result, then push the AND to the stack */
while (stack.index && stack.stack[stack.index - 1] <= LYS_IFF_AND) {
op = iff_stack_pop(&stack);
iff_setop(iff->expr, op, expr_size--);
}
iff_stack_push(&stack, LYS_IFF_AND);
} else if (!strncmp(&c[i], "or", 2) && isspace(c[i + 2])) {
while (stack.index && stack.stack[stack.index - 1] <= LYS_IFF_OR) {
op = iff_stack_pop(&stack);
iff_setop(iff->expr, op, expr_size--);
}
iff_stack_push(&stack, LYS_IFF_OR);
} else {
/* feature name, length is j - i */
/* add it to the expression */
iff_setop(iff->expr, LYS_IFF_F, expr_size--);
/* now get the link to the feature definition */
f = lys_feature_find(ctx->mod_def, &c[i], j - i);
LY_CHECK_ERR_GOTO(!f, LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid value \"%s\" of if-feature - unable to find feature \"%.*s\".", *value, j - i, &c[i]);
rc = LY_EVALID, error)
iff->features[f_size] = f;
LY_ARRAY_INCREMENT(iff->features);
f_size--;
}
}
while (stack.index) {
op = iff_stack_pop(&stack);
iff_setop(iff->expr, op, expr_size--);
}
if (++expr_size || ++f_size) {
/* not all expected operators and operands found */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid value \"%s\" of if-feature - processing error.", *value);
rc = LY_EINT;
} else {
rc = LY_SUCCESS;
}
error:
/* cleanup */
iff_stack_clean(&stack);
return rc;
}
/**
* @brief Compile information from the when statement
* @param[in] ctx Compile context.
* @param[in] when_p The parsed when statement structure.
* @param[in] options Various options to modify compiler behavior, see [compile flags](@ref scflags).
* @param[out] when Pointer where to store pointer to the created compiled when structure.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_when(struct lysc_ctx *ctx, struct lysp_when *when_p, int options, struct lysc_when **when)
{
unsigned int u;
LY_ERR ret = LY_SUCCESS;
*when = calloc(1, sizeof **when);
(*when)->refcount = 1;
(*when)->cond = lyxp_expr_parse(ctx->ctx, when_p->cond);
DUP_STRING(ctx->ctx, when_p->dsc, (*when)->dsc);
DUP_STRING(ctx->ctx, when_p->ref, (*when)->ref);
LY_CHECK_ERR_GOTO(!(*when)->cond, ret = ly_errcode(ctx->ctx), done);
COMPILE_ARRAY_GOTO(ctx, when_p->exts, (*when)->exts, options, u, lys_compile_ext, ret, done);
done:
return ret;
}
/**
* @brief Compile information from the must statement
* @param[in] ctx Compile context.
* @param[in] must_p The parsed must statement structure.
* @param[in] options Various options to modify compiler behavior, see [compile flags](@ref scflags).
* @param[in,out] must Prepared (empty) compiled must structure to fill.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_must(struct lysc_ctx *ctx, struct lysp_restr *must_p, int options, struct lysc_must *must)
{
unsigned int u;
LY_ERR ret = LY_SUCCESS;
must->cond = lyxp_expr_parse(ctx->ctx, must_p->arg);
LY_CHECK_ERR_GOTO(!must->cond, ret = ly_errcode(ctx->ctx), done);
DUP_STRING(ctx->ctx, must_p->eapptag, must->eapptag);
DUP_STRING(ctx->ctx, must_p->emsg, must->emsg);
DUP_STRING(ctx->ctx, must_p->dsc, must->dsc);
DUP_STRING(ctx->ctx, must_p->ref, must->ref);
COMPILE_ARRAY_GOTO(ctx, must_p->exts, must->exts, options, u, lys_compile_ext, ret, done);
done:
return ret;
}
/**
* @brief Compile information from the import statement
* @param[in] ctx Compile context.
* @param[in] imp_p The parsed import statement structure.
* @param[in] options Various options to modify compiler behavior, see [compile flags](@ref scflags).
* @param[in,out] imp Prepared (empty) compiled import structure to fill.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_import(struct lysc_ctx *ctx, struct lysp_import *imp_p, int options, struct lysc_import *imp)
{
unsigned int u;
struct lys_module *mod = NULL;
LY_ERR ret = LY_SUCCESS;
DUP_STRING(ctx->ctx, imp_p->prefix, imp->prefix);
COMPILE_ARRAY_GOTO(ctx, imp_p->exts, imp->exts, options, u, lys_compile_ext, ret, done);
imp->module = imp_p->module;
/* make sure that we have the parsed version (lysp_) of the imported module to import groupings or typedefs.
* The compiled version is needed only for augments, deviates and leafrefs, so they are checked (and added,
* if needed) when these nodes are finally being instantiated and validated at the end of schema compilation. */
if (!imp->module->parsed) {
/* try to use filepath if present */
if (imp->module->filepath) {
mod = (struct lys_module*)lys_parse_path(ctx->ctx, imp->module->filepath,
!strcmp(&imp->module->filepath[strlen(imp->module->filepath - 4)], ".yin") ? LYS_IN_YIN : LYS_IN_YANG);
if (mod != imp->module) {
LOGERR(ctx->ctx, LY_EINT, "Filepath \"%s\" of the module \"%s\" does not match.",
imp->module->filepath, imp->module->name);
mod = NULL;
}
}
if (!mod) {
if (lysp_load_module(ctx->ctx, imp->module->name, imp->module->revision, 0, 1, &mod)) {
LOGERR(ctx->ctx, LY_ENOTFOUND, "Unable to reload \"%s\" module to import it into \"%s\", source data not found.",
imp->module->name, ctx->mod->name);
return LY_ENOTFOUND;
}
}
}
done:
return ret;
}
/**
* @brief Compile information from the identity statement
*
* The backlinks to the identities derived from this one are supposed to be filled later via lys_compile_identity_bases().
*
* @param[in] ctx Compile context.
* @param[in] ident_p The parsed identity statement structure.
* @param[in] options Various options to modify compiler behavior, see [compile flags](@ref scflags).
* @param[in] idents List of so far compiled identities to check the name uniqueness.
* @param[in,out] ident Prepared (empty) compiled identity structure to fill.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_identity(struct lysc_ctx *ctx, struct lysp_ident *ident_p, int options, struct lysc_ident *idents, struct lysc_ident *ident)
{
unsigned int u;
LY_ERR ret = LY_SUCCESS;
COMPILE_CHECK_UNIQUENESS(ctx, idents, name, ident, "identity", ident_p->name);
DUP_STRING(ctx->ctx, ident_p->name, ident->name);
DUP_STRING(ctx->ctx, ident_p->ref, ident->dsc);
DUP_STRING(ctx->ctx, ident_p->ref, ident->dsc);
COMPILE_ARRAY_GOTO(ctx, ident_p->iffeatures, ident->iffeatures, options, u, lys_compile_iffeature, ret, done);
/* backlings (derived) can be added no sooner than when all the identities in the current module are present */
COMPILE_ARRAY_GOTO(ctx, ident_p->exts, ident->exts, options, u, lys_compile_ext, ret, done);
ident->flags = ident_p->flags;
done:
return ret;
}
/**
* @brief Check circular dependency of identities - identity MUST NOT reference itself (via their base statement).
*
* The function works in the same way as lys_compile_feature_circular_check() with different structures and error messages.
*
* @param[in] ctx Compile context for logging.
* @param[in] ident The base identity (its derived list is being extended by the identity being currently processed).
* @param[in] derived The list of derived identities of the identity being currently processed (not the one provided as @p ident)
* @return LY_SUCCESS if everything is ok.
* @return LY_EVALID if the identity is derived from itself.
*/
static LY_ERR
lys_compile_identity_circular_check(struct lysc_ctx *ctx, struct lysc_ident *ident, struct lysc_ident **derived)
{
LY_ERR ret = LY_EVALID;
unsigned int u, v;
struct ly_set recursion = {0};
struct lysc_ident *drv;
if (!derived) {
return LY_SUCCESS;
}
for (u = 0; u < LY_ARRAY_SIZE(derived); ++u) {
if (ident == derived[u]) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Identity \"%s\" is indirectly derived from itself.", ident->name);
goto cleanup;
}
ly_set_add(&recursion, derived[u], 0);
}
for (v = 0; v < recursion.count; ++v) {
drv = recursion.objs[v];
if (!drv->derived) {
continue;
}
for (u = 0; u < LY_ARRAY_SIZE(drv->derived); ++u) {
if (ident == drv->derived[u]) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Identity \"%s\" is indirectly derived from itself.", ident->name);
goto cleanup;
}
ly_set_add(&recursion, drv->derived[u], 0);
}
}
ret = LY_SUCCESS;
cleanup:
ly_set_erase(&recursion, NULL);
return ret;
}
/**
* @brief Find and process the referenced base identities from another identity or identityref
*
* For bases in identity se backlinks to them from the base identities. For identityref, store
* the array of pointers to the base identities. So one of the ident or bases parameter must be set
* to distinguish these two use cases.
*
* @param[in] ctx Compile context, not only for logging but also to get the current module to resolve prefixes.
* @param[in] bases_p Array of names (including prefix if necessary) of base identities.
* @param[in] ident Referencing identity to work with.
* @param[in] bases Array of bases of identityref to fill in.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_identity_bases(struct lysc_ctx *ctx, const char **bases_p, struct lysc_ident *ident, struct lysc_ident ***bases)
{
unsigned int u, v;
const char *s, *name;
struct lys_module *mod;
struct lysc_ident **idref;
assert(ident || bases);
if (LY_ARRAY_SIZE(bases_p) > 1 && ctx->mod_def->version < 2) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Multiple bases in %s are allowed only in YANG 1.1 modules.", ident ? "identity" : "identityref type");
return LY_EVALID;
}
for (u = 0; u < LY_ARRAY_SIZE(bases_p); ++u) {
s = strchr(bases_p[u], ':');
if (s) {
/* prefixed identity */
name = &s[1];
mod = lys_module_find_prefix(ctx->mod_def, bases_p[u], s - bases_p[u]);
} else {
name = bases_p[u];
mod = ctx->mod_def;
}
if (!mod) {
if (ident) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid prefix used for base (%s) of identity \"%s\".", bases_p[u], ident->name);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid prefix used for base (%s) of identityref.", bases_p[u]);
}
return LY_EVALID;
}
idref = NULL;
if (mod->compiled && mod->compiled->identities) {
for (v = 0; v < LY_ARRAY_SIZE(mod->compiled->identities); ++v) {
if (!strcmp(name, mod->compiled->identities[v].name)) {
if (ident) {
if (ident == &mod->compiled->identities[v]) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Identity \"%s\" is derived from itself.", ident->name);
return LY_EVALID;
}
LY_CHECK_RET(lys_compile_identity_circular_check(ctx, &mod->compiled->identities[v], ident->derived));
/* we have match! store the backlink */
LY_ARRAY_NEW_RET(ctx->ctx, mod->compiled->identities[v].derived, idref, LY_EMEM);
*idref = ident;
} else {
/* we have match! store the found identity */
LY_ARRAY_NEW_RET(ctx->ctx, *bases, idref, LY_EMEM);
*idref = &mod->compiled->identities[v];
}
break;
}
}
}
if (!idref || !(*idref)) {
if (ident) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Unable to find base (%s) of identity \"%s\".", bases_p[u], ident->name);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Unable to find base (%s) of identityref.", bases_p[u]);
}
return LY_EVALID;
}
}
return LY_SUCCESS;
}
/**
* @brief For the given array of identities, set the backlinks from all their base identities.
* @param[in] ctx Compile context, not only for logging but also to get the current module to resolve prefixes.
* @param[in] idents_p Array of identities definitions from the parsed schema structure.
* @param[in] idents Array of referencing identities to which the backlinks are supposed to be set.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_identities_derived(struct lysc_ctx *ctx, struct lysp_ident *idents_p, struct lysc_ident *idents)
{
unsigned int i;
for (i = 0; i < LY_ARRAY_SIZE(idents_p); ++i) {
if (!idents_p[i].bases) {
continue;
}
LY_CHECK_RET(lys_compile_identity_bases(ctx, idents_p[i].bases, &idents[i], NULL));
}
return LY_SUCCESS;
}
LY_ERR
lys_feature_precompile(struct ly_ctx *ctx, struct lysp_feature *features_p, struct lysc_feature **features)
{
unsigned int offset = 0, u;
struct lysc_ctx context = {0};
assert(ctx);
context.ctx = ctx;
if (!features_p) {
return LY_SUCCESS;
}
if (*features) {
offset = LY_ARRAY_SIZE(*features);
}
LY_ARRAY_CREATE_RET(ctx, *features, LY_ARRAY_SIZE(features_p), LY_EMEM);
LY_ARRAY_FOR(features_p, u) {
LY_ARRAY_INCREMENT(*features);
COMPILE_CHECK_UNIQUENESS(&context, *features, name, &(*features)[offset + u], "feature", features_p[u].name);
DUP_STRING(ctx, features_p[u].name, (*features)[offset + u].name);
DUP_STRING(ctx, features_p[u].dsc, (*features)[offset + u].dsc);
DUP_STRING(ctx, features_p[u].ref, (*features)[offset + u].ref);
(*features)[offset + u].flags = features_p[u].flags;
}
return LY_SUCCESS;
}
/**
* @brief Check circular dependency of features - feature MUST NOT reference itself (via their if-feature statement).
*
* The function works in the same way as lys_compile_identity_circular_check() with different structures and error messages.
*
* @param[in] ctx Compile context for logging.
* @param[in] feature The feature referenced in if-feature statement (its depfeatures list is being extended by the feature
* being currently processed).
* @param[in] depfeatures The list of depending features of the feature being currently processed (not the one provided as @p feature)
* @return LY_SUCCESS if everything is ok.
* @return LY_EVALID if the feature references indirectly itself.
*/
static LY_ERR
lys_compile_feature_circular_check(struct lysc_ctx *ctx, struct lysc_feature *feature, struct lysc_feature **depfeatures)
{
LY_ERR ret = LY_EVALID;
unsigned int u, v;
struct ly_set recursion = {0};
struct lysc_feature *drv;
if (!depfeatures) {
return LY_SUCCESS;
}
for (u = 0; u < LY_ARRAY_SIZE(depfeatures); ++u) {
if (feature == depfeatures[u]) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Feature \"%s\" is indirectly referenced from itself.", feature->name);
goto cleanup;
}
ly_set_add(&recursion, depfeatures[u], 0);
}
for (v = 0; v < recursion.count; ++v) {
drv = recursion.objs[v];
if (!drv->depfeatures) {
continue;
}
for (u = 0; u < LY_ARRAY_SIZE(drv->depfeatures); ++u) {
if (feature == drv->depfeatures[u]) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Feature \"%s\" is indirectly referenced from itself.", feature->name);
goto cleanup;
}
ly_set_add(&recursion, drv->depfeatures[u], 0);
}
}
ret = LY_SUCCESS;
cleanup:
ly_set_erase(&recursion, NULL);
return ret;
}
/**
* @brief Create pre-compiled features array.
*
* See lys_feature_precompile() for more details.
*
* @param[in] ctx Compile context.
* @param[in] feature_p Parsed feature definition to compile.
* @param[in] options Various options to modify compiler behavior, see [compile flags](@ref scflags).
* @param[in,out] features List of already (pre)compiled features to find the corresponding precompiled feature structure.
* @return LY_ERR value.
*/
static LY_ERR
lys_feature_precompile_finish(struct lysc_ctx *ctx, struct lysp_feature *feature_p, int options, struct lysc_feature *features)
{
unsigned int u, v, x;
struct lysc_feature *feature, **df;
LY_ERR ret = LY_SUCCESS;
/* find the preprecompiled feature */
LY_ARRAY_FOR(features, x) {
if (strcmp(features[x].name, feature_p->name)) {
continue;
}
feature = &features[x];
/* finish compilation started in lys_feature_precompile() */
COMPILE_ARRAY_GOTO(ctx, feature_p->exts, feature->exts, options, u, lys_compile_ext, ret, done);
COMPILE_ARRAY_GOTO(ctx, feature_p->iffeatures, feature->iffeatures, options, u, lys_compile_iffeature, ret, done);
if (feature->iffeatures) {
for (u = 0; u < LY_ARRAY_SIZE(feature->iffeatures); ++u) {
if (feature->iffeatures[u].features) {
for (v = 0; v < LY_ARRAY_SIZE(feature->iffeatures[u].features); ++v) {
/* check for circular dependency - direct reference first,... */
if (feature == feature->iffeatures[u].features[v]) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Feature \"%s\" is referenced from itself.", feature->name);
return LY_EVALID;
}
/* ... and indirect circular reference */
LY_CHECK_RET(lys_compile_feature_circular_check(ctx, feature->iffeatures[u].features[v], feature->depfeatures));
/* add itself into the dependants list */
LY_ARRAY_NEW_RET(ctx->ctx, feature->iffeatures[u].features[v]->depfeatures, df, LY_EMEM);
*df = feature;
}
}
}
}
done:
return ret;
}
LOGINT(ctx->ctx);
return LY_EINT;
}
/**
* @brief Revert compiled list of features back to the precompiled state.
*
* Function is needed in case the compilation failed and the schema is expected to revert back to the non-compiled status.
* The features are supposed to be stored again as off_features in ::lys_module structure.
*
* @param[in] ctx Compilation context.
* @param[in] mod The module structure still holding the compiled (but possibly not finished, only the list of compiled features is taken) schema
* and supposed to hold the off_features list.
*/
static void
lys_feature_precompile_revert(struct lysc_ctx *ctx, struct lys_module *mod)
{
unsigned int u, v;
/* keep the off_features list until the complete lys_module is freed */
mod->off_features = mod->compiled->features;
mod->compiled->features = NULL;
/* in the off_features list, remove all the parts (from finished compiling process)
* which may points into the data being freed here */
LY_ARRAY_FOR(mod->off_features, u) {
LY_ARRAY_FOR(mod->off_features[u].iffeatures, v) {
lysc_iffeature_free(ctx->ctx, &mod->off_features[u].iffeatures[v]);
}
LY_ARRAY_FREE(mod->off_features[u].iffeatures);
mod->off_features[u].iffeatures = NULL;
LY_ARRAY_FOR(mod->off_features[u].exts, v) {
lysc_ext_instance_free(ctx->ctx, &(mod->off_features[u].exts)[v]);
}
LY_ARRAY_FREE(mod->off_features[u].exts);
mod->off_features[u].exts = NULL;
}
}
/**
* @brief Validate and normalize numeric value from a range definition.
* @param[in] ctx Compile context.
* @param[in] basetype Base YANG built-in type of the node connected with the range restriction. Actually only LY_TYPE_DEC64 is important to
* allow processing of the fractions. The fraction point is extracted from the value which is then normalize according to given frdigits into
* valcopy to allow easy parsing and storing of the value. libyang stores decimal number without the decimal point which is always recovered from
* the known fraction-digits value. So, with fraction-digits 2, number 3.14 is stored as 314 and number 1 is stored as 100.
* @param[in] frdigits The fraction-digits of the type in case of LY_TYPE_DEC64.
* @param[in] value String value of the range boundary.
* @param[out] len Number of the processed bytes from the value. Processing stops on the first character which is not part of the number boundary.
* @param[out] valcopy NULL-terminated string with the numeric value to parse and store.
* @return LY_ERR value - LY_SUCCESS, LY_EMEM, LY_EVALID (no number) or LY_EINVAL (decimal64 not matching fraction-digits value).
*/
static LY_ERR
range_part_check_value_syntax(struct lysc_ctx *ctx, LY_DATA_TYPE basetype, uint8_t frdigits, const char *value, size_t *len, char **valcopy)
{
size_t fraction = 0, size;
*len = 0;
assert(value);
/* parse value */
if (!isdigit(value[*len]) && (value[*len] != '-') && (value[*len] != '+')) {
return LY_EVALID;
}
if ((value[*len] == '-') || (value[*len] == '+')) {
++(*len);
}
while (isdigit(value[*len])) {
++(*len);
}
if ((basetype != LY_TYPE_DEC64) || (value[*len] != '.') || !isdigit(value[*len + 1])) {
if (basetype == LY_TYPE_DEC64) {
goto decimal;
} else {
*valcopy = strndup(value, *len);
return LY_SUCCESS;
}
}
fraction = *len;
++(*len);
while (isdigit(value[*len])) {
++(*len);
}
if (basetype == LY_TYPE_DEC64) {
decimal:
assert(frdigits);
if (*len - 1 - fraction > frdigits) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Range boundary \"%.*s\" of decimal64 type exceeds defined number (%u) of fraction digits.",
*len, value, frdigits);
return LY_EINVAL;
}
if (fraction) {
size = (*len) + (frdigits - ((*len) - 1 - fraction));
} else {
size = (*len) + frdigits + 1;
}
*valcopy = malloc(size * sizeof **valcopy);
LY_CHECK_ERR_RET(!(*valcopy), LOGMEM(ctx->ctx), LY_EMEM);
(*valcopy)[size - 1] = '\0';
if (fraction) {
memcpy(&(*valcopy)[0], &value[0], fraction);
memcpy(&(*valcopy)[fraction], &value[fraction + 1], (*len) - 1 - (fraction));
memset(&(*valcopy)[(*len) - 1], '0', frdigits - ((*len) - 1 - fraction));
} else {
memcpy(&(*valcopy)[0], &value[0], *len);
memset(&(*valcopy)[*len], '0', frdigits);
}
}
return LY_SUCCESS;
}
/**
* @brief Check that values in range are in ascendant order.
* @param[in] unsigned_value Flag to note that we are working with unsigned values.
* @param[in] max Flag to distinguish if checking min or max value. min value must be strictly higher than previous,
* max can be also equal.
* @param[in] value Current value to check.
* @param[in] prev_value The last seen value.
* @return LY_SUCCESS or LY_EEXIST for invalid order.
*/
static LY_ERR
range_part_check_ascendancy(int unsigned_value, int max, int64_t value, int64_t prev_value)
{
if (unsigned_value) {
if ((max && (uint64_t)prev_value > (uint64_t)value) || (!max && (uint64_t)prev_value >= (uint64_t)value)) {
return LY_EEXIST;
}
} else {
if ((max && prev_value > value) || (!max && prev_value >= value)) {
return LY_EEXIST;
}
}
return LY_SUCCESS;
}
/**
* @brief Set min/max value of the range part.
* @param[in] ctx Compile context.
* @param[in] part Range part structure to fill.
* @param[in] max Flag to distinguish if storing min or max value.
* @param[in] prev The last seen value to check that all values in range are specified in ascendant order.
* @param[in] basetype Type of the value to get know implicit min/max values and other checking rules.
* @param[in] first Flag for the first value of the range to avoid ascendancy order.
* @param[in] length_restr Flag to distinguish between range and length restrictions. Only for logging.
* @param[in] frdigits The fraction-digits value in case of LY_TYPE_DEC64 basetype.
* @param[in] base_range Range from the type from which the current type is derived (if not built-in) to get type's min and max values.
* @param[in,out] value Numeric range value to be stored, if not provided the type's min/max value is set.
* @return LY_ERR value - LY_SUCCESS, LY_EDENIED (value brokes type's boundaries), LY_EVALID (not a number),
* LY_EEXIST (value is smaller than the previous one), LY_EINVAL (decimal64 value does not corresponds with the
* frdigits value), LY_EMEM.
*/
static LY_ERR
range_part_minmax(struct lysc_ctx *ctx, struct lysc_range_part *part, int max, int64_t prev, LY_DATA_TYPE basetype, int first, int length_restr,
uint8_t frdigits, struct lysc_range *base_range, const char **value)
{
LY_ERR ret = LY_SUCCESS;
char *valcopy = NULL;
size_t len;
if (value) {
ret = range_part_check_value_syntax(ctx, basetype, frdigits, *value, &len, &valcopy);
LY_CHECK_GOTO(ret, finalize);
}
if (!valcopy && base_range) {
if (max) {
part->max_64 = base_range->parts[LY_ARRAY_SIZE(base_range->parts) - 1].max_64;
} else {
part->min_64 = base_range->parts[0].min_64;
}
if (!first) {
ret = range_part_check_ascendancy(basetype <= LY_TYPE_STRING ? 1 : 0, max, max ? part->max_64 : part->min_64, prev);
}
goto finalize;
}
switch (basetype) {
case LY_TYPE_INT8: /* range */
if (valcopy) {
ret = ly_parse_int(valcopy, INT64_C(-128), INT64_C(127), 10, max ? &part->max_64 : &part->min_64);
} else if (max) {
part->max_64 = INT64_C(127);
} else {
part->min_64 = INT64_C(-128);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(0, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_INT16: /* range */
if (valcopy) {
ret = ly_parse_int(valcopy, INT64_C(-32768), INT64_C(32767), 10, max ? &part->max_64 : &part->min_64);
} else if (max) {
part->max_64 = INT64_C(32767);
} else {
part->min_64 = INT64_C(-32768);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(0, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_INT32: /* range */
if (valcopy) {
ret = ly_parse_int(valcopy, INT64_C(-2147483648), INT64_C(2147483647), 10, max ? &part->max_64 : &part->min_64);
} else if (max) {
part->max_64 = INT64_C(2147483647);
} else {
part->min_64 = INT64_C(-2147483648);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(0, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_INT64: /* range */
case LY_TYPE_DEC64: /* range */
if (valcopy) {
ret = ly_parse_int(valcopy, INT64_C(-9223372036854775807) - INT64_C(1), INT64_C(9223372036854775807), 10,
max ? &part->max_64 : &part->min_64);
} else if (max) {
part->max_64 = INT64_C(9223372036854775807);
} else {
part->min_64 = INT64_C(-9223372036854775807) - INT64_C(1);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(0, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_UINT8: /* range */
if (valcopy) {
ret = ly_parse_uint(valcopy, UINT64_C(255), 10, max ? &part->max_u64 : &part->min_u64);
} else if (max) {
part->max_u64 = UINT64_C(255);
} else {
part->min_u64 = UINT64_C(0);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(1, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_UINT16: /* range */
if (valcopy) {
ret = ly_parse_uint(valcopy, UINT64_C(65535), 10, max ? &part->max_u64 : &part->min_u64);
} else if (max) {
part->max_u64 = UINT64_C(65535);
} else {
part->min_u64 = UINT64_C(0);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(1, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_UINT32: /* range */
if (valcopy) {
ret = ly_parse_uint(valcopy, UINT64_C(4294967295), 10, max ? &part->max_u64 : &part->min_u64);
} else if (max) {
part->max_u64 = UINT64_C(4294967295);
} else {
part->min_u64 = UINT64_C(0);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(1, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_UINT64: /* range */
case LY_TYPE_STRING: /* length */
case LY_TYPE_BINARY: /* length */
if (valcopy) {
ret = ly_parse_uint(valcopy, UINT64_C(18446744073709551615), 10, max ? &part->max_u64 : &part->min_u64);
} else if (max) {
part->max_u64 = UINT64_C(18446744073709551615);
} else {
part->min_u64 = UINT64_C(0);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(1, max, max ? part->max_64 : part->min_64, prev);
}
break;
default:
LOGINT(ctx->ctx);
ret = LY_EINT;
}
finalize:
if (ret == LY_EDENIED) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - value \"%s\" does not fit the type limitations.",
length_restr ? "length" : "range", valcopy ? valcopy : *value);
} else if (ret == LY_EVALID) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - invalid value \"%s\".",
length_restr ? "length" : "range", valcopy ? valcopy : *value);
} else if (ret == LY_EEXIST) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - values are not in ascending order (%s).",
length_restr ? "length" : "range",
(valcopy && basetype != LY_TYPE_DEC64) ? valcopy : value ? *value : max ? "max" : "min");
} else if (!ret && value) {
*value = *value + len;
}
free(valcopy);
return ret;
}
/**
* @brief Compile the parsed range restriction.
* @param[in] ctx Compile context.
* @param[in] range_p Parsed range structure to compile.
* @param[in] basetype Base YANG built-in type of the node with the range restriction.
* @param[in] length_restr Flag to distinguish between range and length restrictions. Only for logging.
* @param[in] frdigits The fraction-digits value in case of LY_TYPE_DEC64 basetype.
* @param[in] base_range Range restriction of the type from which the current type is derived. The current
* range restriction must be more restrictive than the base_range.
* @param[in,out] range Pointer to the created current range structure.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_type_range(struct lysc_ctx *ctx, struct lysp_restr *range_p, LY_DATA_TYPE basetype, int length_restr, uint8_t frdigits,
struct lysc_range *base_range, struct lysc_range **range)
{
LY_ERR ret = LY_EVALID;
const char *expr;
struct lysc_range_part *parts = NULL, *part;
int range_expected = 0, uns;
unsigned int parts_done = 0, u, v;
assert(range);
assert(range_p);
expr = range_p->arg;
while(1) {
if (isspace(*expr)) {
++expr;
} else if (*expr == '\0') {
if (range_expected) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - unexpected end of the expression after \"..\" (%s).",
length_restr ? "length" : "range", range_p->arg);
goto cleanup;
} else if (!parts || parts_done == LY_ARRAY_SIZE(parts)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - unexpected end of the expression (%s).",
length_restr ? "length" : "range", range_p->arg);
goto cleanup;
}
parts_done++;
break;
} else if (!strncmp(expr, "min", 3)) {
if (parts) {
/* min cannot be used elsewhere than in the first part */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - unexpected data before min keyword (%.*s).", length_restr ? "length" : "range",
expr - range_p->arg, range_p->arg);
goto cleanup;
}
expr += 3;
LY_ARRAY_NEW_GOTO(ctx->ctx, parts, part, ret, cleanup);
LY_CHECK_GOTO(range_part_minmax(ctx, part, 0, 0, basetype, 1, length_restr, frdigits, base_range, NULL), cleanup);
part->max_64 = part->min_64;
} else if (*expr == '|') {
if (!parts || range_expected) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - unexpected beginning of the expression (%s).", length_restr ? "length" : "range", expr);
goto cleanup;
}
expr++;
parts_done++;
/* process next part of the expression */
} else if (!strncmp(expr, "..", 2)) {
expr += 2;
while (isspace(*expr)) {
expr++;
}
if (!parts || LY_ARRAY_SIZE(parts) == parts_done) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - unexpected \"..\" without a lower bound.", length_restr ? "length" : "range");
goto cleanup;
}
/* continue expecting the upper boundary */
range_expected = 1;
} else if (isdigit(*expr) || (*expr == '-') || (*expr == '+')) {
/* number */
if (range_expected) {
part = &parts[LY_ARRAY_SIZE(parts) - 1];
LY_CHECK_GOTO(range_part_minmax(ctx, part, 1, part->min_64, basetype, 0, length_restr, frdigits, NULL, &expr), cleanup);
range_expected = 0;
} else {
LY_ARRAY_NEW_GOTO(ctx->ctx, parts, part, ret, cleanup);
LY_CHECK_GOTO(range_part_minmax(ctx, part, 0, parts_done ? parts[LY_ARRAY_SIZE(parts) - 2].max_64 : 0,
basetype, parts_done ? 0 : 1, length_restr, frdigits, NULL, &expr), cleanup);
part->max_64 = part->min_64;
}
/* continue with possible another expression part */
} else if (!strncmp(expr, "max", 3)) {
expr += 3;
while (isspace(*expr)) {
expr++;
}
if (*expr != '\0') {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "Invalid %s restriction - unexpected data after max keyword (%s).",
length_restr ? "length" : "range", expr);
goto cleanup;
}
if (range_expected) {
part = &parts[LY_ARRAY_SIZE(parts) - 1];
LY_CHECK_GOTO(range_part_minmax(ctx, part, 1, part->min_64, basetype, 0, length_restr, frdigits, base_range, NULL), cleanup);
range_expected = 0;
} else {
LY_ARRAY_NEW_GOTO(ctx->ctx, parts, part, ret, cleanup);
LY_CHECK_GOTO(range_part_minmax(ctx, part, 1, parts_done ? parts[LY_ARRAY_SIZE(parts) - 2].max_64 : 0,
basetype, parts_done ? 0 : 1, length_restr, frdigits, base_range, NULL), cleanup);
part->min_64 = part->max_64;
}
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "Invalid %s restriction - unexpected data (%s).",
length_restr ? "length" : "range", expr);
goto cleanup;
}
}
/* check with the previous range/length restriction */
if (base_range) {
switch (basetype) {
case LY_TYPE_BINARY:
case LY_TYPE_UINT8:
case LY_TYPE_UINT16:
case LY_TYPE_UINT32:
case LY_TYPE_UINT64:
case LY_TYPE_STRING:
uns = 1;
break;
case LY_TYPE_DEC64:
case LY_TYPE_INT8:
case LY_TYPE_INT16:
case LY_TYPE_INT32:
case LY_TYPE_INT64:
uns = 0;
break;
default:
LOGINT(ctx->ctx);
ret = LY_EINT;
goto cleanup;
}
for (u = v = 0; u < parts_done && v < LY_ARRAY_SIZE(base_range->parts); ++u) {
if ((uns && parts[u].min_u64 < base_range->parts[v].min_u64) || (!uns && parts[u].min_64 < base_range->parts[v].min_64)) {
goto baseerror;
}
/* current lower bound is not lower than the base */
if (base_range->parts[v].min_64 == base_range->parts[v].max_64) {
/* base has single value */
if (base_range->parts[v].min_64 == parts[u].min_64) {
/* both lower bounds are the same */
if (parts[u].min_64 != parts[u].max_64) {
/* current continues with a range */
goto baseerror;
} else {
/* equal single values, move both forward */
++v;
continue;
}
} else {
/* base is single value lower than current range, so the
* value from base range is removed in the current,
* move only base and repeat checking */
++v;
--u;
continue;
}
} else {
/* base is the range */
if (parts[u].min_64 == parts[u].max_64) {
/* current is a single value */
if ((uns && parts[u].max_u64 > base_range->parts[v].max_u64) || (!uns && parts[u].max_64 > base_range->parts[v].max_64)) {
/* current is behind the base range, so base range is omitted,
* move the base and keep the current for further check */
++v;
--u;
} /* else it is within the base range, so move the current, but keep the base */
continue;
} else {
/* both are ranges - check the higher bound, the lower was already checked */
if ((uns && parts[u].max_u64 > base_range->parts[v].max_u64) || (!uns && parts[u].max_64 > base_range->parts[v].max_64)) {
/* higher bound is higher than the current higher bound */
if ((uns && parts[u].min_u64 > base_range->parts[v].max_u64) || (!uns && parts[u].min_64 > base_range->parts[v].max_64)) {
/* but the current lower bound is also higher, so the base range is omitted,
* continue with the same current, but move the base */
--u;
++v;
continue;
}
/* current range starts within the base range but end behind it */
goto baseerror;
} else {
/* current range is smaller than the base,
* move current, but stay with the base */
continue;
}
}
}
}
if (u != parts_done) {
baseerror:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - the derived restriction (%s) is not equally or more limiting.",
length_restr ? "length" : "range", range_p->arg);
goto cleanup;
}
}
if (!(*range)) {
*range = calloc(1, sizeof **range);
LY_CHECK_ERR_RET(!(*range), LOGMEM(ctx->ctx), LY_EMEM);
}
/* we rewrite the following values as the types chain is being processed */
if (range_p->eapptag) {
lydict_remove(ctx->ctx, (*range)->eapptag);
(*range)->eapptag = lydict_insert(ctx->ctx, range_p->eapptag, 0);
}
if (range_p->emsg) {
lydict_remove(ctx->ctx, (*range)->emsg);
(*range)->emsg = lydict_insert(ctx->ctx, range_p->emsg, 0);
}
if (range_p->dsc) {
lydict_remove(ctx->ctx, (*range)->dsc);
(*range)->dsc = lydict_insert(ctx->ctx, range_p->dsc, 0);
}
if (range_p->ref) {
lydict_remove(ctx->ctx, (*range)->ref);
(*range)->ref = lydict_insert(ctx->ctx, range_p->ref, 0);
}
/* extensions are taken only from the last range by the caller */
(*range)->parts = parts;
parts = NULL;
ret = LY_SUCCESS;
cleanup:
LY_ARRAY_FREE(parts);
return ret;
}
/**
* @brief Checks pattern syntax.
*
* @param[in] ctx Compile context.
* @param[in] pattern Pattern to check.
* @param[in,out] pcre_precomp Precompiled PCRE pattern. If NULL, the compiled information used to validate pattern are freed.
* @return LY_ERR value - LY_SUCCESS, LY_EMEM, LY_EVALID.
*/
static LY_ERR
lys_compile_type_pattern_check(struct lysc_ctx *ctx, const char *pattern, pcre **pcre_precomp)
{
int idx, idx2, start, end, err_offset, count;
char *perl_regex, *ptr;
const char *err_msg, *orig_ptr;
pcre *precomp;
#define URANGE_LEN 19
char *ublock2urange[][2] = {
{"BasicLatin", "[\\x{0000}-\\x{007F}]"},
{"Latin-1Supplement", "[\\x{0080}-\\x{00FF}]"},
{"LatinExtended-A", "[\\x{0100}-\\x{017F}]"},
{"LatinExtended-B", "[\\x{0180}-\\x{024F}]"},
{"IPAExtensions", "[\\x{0250}-\\x{02AF}]"},
{"SpacingModifierLetters", "[\\x{02B0}-\\x{02FF}]"},
{"CombiningDiacriticalMarks", "[\\x{0300}-\\x{036F}]"},
{"Greek", "[\\x{0370}-\\x{03FF}]"},
{"Cyrillic", "[\\x{0400}-\\x{04FF}]"},
{"Armenian", "[\\x{0530}-\\x{058F}]"},
{"Hebrew", "[\\x{0590}-\\x{05FF}]"},
{"Arabic", "[\\x{0600}-\\x{06FF}]"},
{"Syriac", "[\\x{0700}-\\x{074F}]"},
{"Thaana", "[\\x{0780}-\\x{07BF}]"},
{"Devanagari", "[\\x{0900}-\\x{097F}]"},
{"Bengali", "[\\x{0980}-\\x{09FF}]"},
{"Gurmukhi", "[\\x{0A00}-\\x{0A7F}]"},
{"Gujarati", "[\\x{0A80}-\\x{0AFF}]"},
{"Oriya", "[\\x{0B00}-\\x{0B7F}]"},
{"Tamil", "[\\x{0B80}-\\x{0BFF}]"},
{"Telugu", "[\\x{0C00}-\\x{0C7F}]"},
{"Kannada", "[\\x{0C80}-\\x{0CFF}]"},
{"Malayalam", "[\\x{0D00}-\\x{0D7F}]"},
{"Sinhala", "[\\x{0D80}-\\x{0DFF}]"},
{"Thai", "[\\x{0E00}-\\x{0E7F}]"},
{"Lao", "[\\x{0E80}-\\x{0EFF}]"},
{"Tibetan", "[\\x{0F00}-\\x{0FFF}]"},
{"Myanmar", "[\\x{1000}-\\x{109F}]"},
{"Georgian", "[\\x{10A0}-\\x{10FF}]"},
{"HangulJamo", "[\\x{1100}-\\x{11FF}]"},
{"Ethiopic", "[\\x{1200}-\\x{137F}]"},
{"Cherokee", "[\\x{13A0}-\\x{13FF}]"},
{"UnifiedCanadianAboriginalSyllabics", "[\\x{1400}-\\x{167F}]"},
{"Ogham", "[\\x{1680}-\\x{169F}]"},
{"Runic", "[\\x{16A0}-\\x{16FF}]"},
{"Khmer", "[\\x{1780}-\\x{17FF}]"},
{"Mongolian", "[\\x{1800}-\\x{18AF}]"},
{"LatinExtendedAdditional", "[\\x{1E00}-\\x{1EFF}]"},
{"GreekExtended", "[\\x{1F00}-\\x{1FFF}]"},
{"GeneralPunctuation", "[\\x{2000}-\\x{206F}]"},
{"SuperscriptsandSubscripts", "[\\x{2070}-\\x{209F}]"},
{"CurrencySymbols", "[\\x{20A0}-\\x{20CF}]"},
{"CombiningMarksforSymbols", "[\\x{20D0}-\\x{20FF}]"},
{"LetterlikeSymbols", "[\\x{2100}-\\x{214F}]"},
{"NumberForms", "[\\x{2150}-\\x{218F}]"},
{"Arrows", "[\\x{2190}-\\x{21FF}]"},
{"MathematicalOperators", "[\\x{2200}-\\x{22FF}]"},
{"MiscellaneousTechnical", "[\\x{2300}-\\x{23FF}]"},
{"ControlPictures", "[\\x{2400}-\\x{243F}]"},
{"OpticalCharacterRecognition", "[\\x{2440}-\\x{245F}]"},
{"EnclosedAlphanumerics", "[\\x{2460}-\\x{24FF}]"},
{"BoxDrawing", "[\\x{2500}-\\x{257F}]"},
{"BlockElements", "[\\x{2580}-\\x{259F}]"},
{"GeometricShapes", "[\\x{25A0}-\\x{25FF}]"},
{"MiscellaneousSymbols", "[\\x{2600}-\\x{26FF}]"},
{"Dingbats", "[\\x{2700}-\\x{27BF}]"},
{"BraillePatterns", "[\\x{2800}-\\x{28FF}]"},
{"CJKRadicalsSupplement", "[\\x{2E80}-\\x{2EFF}]"},
{"KangxiRadicals", "[\\x{2F00}-\\x{2FDF}]"},
{"IdeographicDescriptionCharacters", "[\\x{2FF0}-\\x{2FFF}]"},
{"CJKSymbolsandPunctuation", "[\\x{3000}-\\x{303F}]"},
{"Hiragana", "[\\x{3040}-\\x{309F}]"},
{"Katakana", "[\\x{30A0}-\\x{30FF}]"},
{"Bopomofo", "[\\x{3100}-\\x{312F}]"},
{"HangulCompatibilityJamo", "[\\x{3130}-\\x{318F}]"},
{"Kanbun", "[\\x{3190}-\\x{319F}]"},
{"BopomofoExtended", "[\\x{31A0}-\\x{31BF}]"},
{"EnclosedCJKLettersandMonths", "[\\x{3200}-\\x{32FF}]"},
{"CJKCompatibility", "[\\x{3300}-\\x{33FF}]"},
{"CJKUnifiedIdeographsExtensionA", "[\\x{3400}-\\x{4DB5}]"},
{"CJKUnifiedIdeographs", "[\\x{4E00}-\\x{9FFF}]"},
{"YiSyllables", "[\\x{A000}-\\x{A48F}]"},
{"YiRadicals", "[\\x{A490}-\\x{A4CF}]"},
{"HangulSyllables", "[\\x{AC00}-\\x{D7A3}]"},
{"PrivateUse", "[\\x{E000}-\\x{F8FF}]"},
{"CJKCompatibilityIdeographs", "[\\x{F900}-\\x{FAFF}]"},
{"AlphabeticPresentationForms", "[\\x{FB00}-\\x{FB4F}]"},
{"ArabicPresentationForms-A", "[\\x{FB50}-\\x{FDFF}]"},
{"CombiningHalfMarks", "[\\x{FE20}-\\x{FE2F}]"},
{"CJKCompatibilityForms", "[\\x{FE30}-\\x{FE4F}]"},
{"SmallFormVariants", "[\\x{FE50}-\\x{FE6F}]"},
{"ArabicPresentationForms-B", "[\\x{FE70}-\\x{FEFE}]"},
{"HalfwidthandFullwidthForms", "[\\x{FF00}-\\x{FFEF}]"},
{NULL, NULL}
};
/* adjust the expression to a Perl equivalent
* http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/#regexs */
/* we need to replace all "$" with "\$", count them now */
for (count = 0, ptr = strpbrk(pattern, "^$"); ptr; ++count, ptr = strpbrk(ptr + 1, "^$"));
perl_regex = malloc((strlen(pattern) + 4 + count) * sizeof(char));
LY_CHECK_ERR_RET(!perl_regex, LOGMEM(ctx->ctx), LY_EMEM);
perl_regex[0] = '\0';
ptr = perl_regex;
if (strncmp(pattern + strlen(pattern) - 2, ".*", 2)) {
/* we will add line-end anchoring */
ptr[0] = '(';
++ptr;
}
for (orig_ptr = pattern; orig_ptr[0]; ++orig_ptr) {
if (orig_ptr[0] == '$') {
ptr += sprintf(ptr, "\\$");
} else if (orig_ptr[0] == '^') {
ptr += sprintf(ptr, "\\^");
} else {
ptr[0] = orig_ptr[0];
++ptr;
}
}
if (strncmp(pattern + strlen(pattern) - 2, ".*", 2)) {
ptr += sprintf(ptr, ")$");
} else {
ptr[0] = '\0';
++ptr;
}
/* substitute Unicode Character Blocks with exact Character Ranges */
while ((ptr = strstr(perl_regex, "\\p{Is"))) {
start = ptr - perl_regex;
ptr = strchr(ptr, '}');
if (!ptr) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_INREGEXP,
pattern, perl_regex + start + 2, "unterminated character property");
free(perl_regex);
return LY_EVALID;
}
end = (ptr - perl_regex) + 1;
/* need more space */
if (end - start < URANGE_LEN) {
perl_regex = ly_realloc(perl_regex, strlen(perl_regex) + (URANGE_LEN - (end - start)) + 1);
LY_CHECK_ERR_RET(!perl_regex, LOGMEM(ctx->ctx); free(perl_regex), LY_EMEM);
}
/* find our range */
for (idx = 0; ublock2urange[idx][0]; ++idx) {
if (!strncmp(perl_regex + start + 5, ublock2urange[idx][0], strlen(ublock2urange[idx][0]))) {
break;
}
}
if (!ublock2urange[idx][0]) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_INREGEXP,
pattern, perl_regex + start + 5, "unknown block name");
free(perl_regex);
return LY_EVALID;
}
/* make the space in the string and replace the block (but we cannot include brackets if it was already enclosed in them) */
for (idx2 = 0, count = 0; idx2 < start; ++idx2) {
if ((perl_regex[idx2] == '[') && (!idx2 || (perl_regex[idx2 - 1] != '\\'))) {
++count;
}
if ((perl_regex[idx2] == ']') && (!idx2 || (perl_regex[idx2 - 1] != '\\'))) {
--count;
}
}
if (count) {
/* skip brackets */
memmove(perl_regex + start + (URANGE_LEN - 2), perl_regex + end, strlen(perl_regex + end) + 1);
memcpy(perl_regex + start, ublock2urange[idx][1] + 1, URANGE_LEN - 2);
} else {
memmove(perl_regex + start + URANGE_LEN, perl_regex + end, strlen(perl_regex + end) + 1);
memcpy(perl_regex + start, ublock2urange[idx][1], URANGE_LEN);
}
}
/* must return 0, already checked during parsing */
precomp = pcre_compile(perl_regex, PCRE_UTF8 | PCRE_ANCHORED | PCRE_DOLLAR_ENDONLY | PCRE_NO_AUTO_CAPTURE,
&err_msg, &err_offset, NULL);
if (!precomp) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_INREGEXP, pattern, perl_regex + err_offset, err_msg);
free(perl_regex);
return LY_EVALID;
}
free(perl_regex);
if (pcre_precomp) {
*pcre_precomp = precomp;
} else {
free(precomp);
}
return LY_SUCCESS;
#undef URANGE_LEN
}
/**
* @brief Compile parsed pattern restriction in conjunction with the patterns from base type.
* @param[in] ctx Compile context.
* @param[in] patterns_p Array of parsed patterns from the current type to compile.
* @param[in] options Various options to modify compiler behavior, see [compile flags](@ref scflags).
* @param[in] base_patterns Compiled patterns from the type from which the current type is derived.
* Patterns from the base type are inherited to have all the patterns that have to match at one place.
* @param[out] patterns Pointer to the storage for the patterns of the current type.
* @return LY_ERR LY_SUCCESS, LY_EMEM, LY_EVALID.
*/
static LY_ERR
lys_compile_type_patterns(struct lysc_ctx *ctx, struct lysp_restr *patterns_p, int options,
struct lysc_pattern **base_patterns, struct lysc_pattern ***patterns)
{
struct lysc_pattern **pattern;
unsigned int u, v;
const char *err_msg;
LY_ERR ret = LY_SUCCESS;
/* first, copy the patterns from the base type */
if (base_patterns) {
*patterns = lysc_patterns_dup(ctx->ctx, base_patterns);
LY_CHECK_ERR_RET(!(*patterns), LOGMEM(ctx->ctx), LY_EMEM);
}
LY_ARRAY_FOR(patterns_p, u) {
LY_ARRAY_NEW_RET(ctx->ctx, (*patterns), pattern, LY_EMEM);
*pattern = calloc(1, sizeof **pattern);
++(*pattern)->refcount;
ret = lys_compile_type_pattern_check(ctx, &patterns_p[u].arg[1], &(*pattern)->expr);
LY_CHECK_RET(ret);
(*pattern)->expr_extra = pcre_study((*pattern)->expr, 0, &err_msg);
if (err_msg) {
LOGWRN(ctx->ctx, "Studying pattern \"%s\" failed (%s).", pattern, err_msg);
}
if (patterns_p[u].arg[0] == 0x15) {
(*pattern)->inverted = 1;
}
DUP_STRING(ctx->ctx, patterns_p[u].eapptag, (*pattern)->eapptag);
DUP_STRING(ctx->ctx, patterns_p[u].emsg, (*pattern)->emsg);
DUP_STRING(ctx->ctx, patterns_p[u].dsc, (*pattern)->dsc);
DUP_STRING(ctx->ctx, patterns_p[u].ref, (*pattern)->ref);
COMPILE_ARRAY_GOTO(ctx, patterns_p[u].exts, (*pattern)->exts,
options, v, lys_compile_ext, ret, done);
}
done:
return ret;
}
/**
* @brief map of the possible restrictions combination for the specific built-in type.
*/
static uint16_t type_substmt_map[LY_DATA_TYPE_COUNT] = {
0 /* LY_TYPE_UNKNOWN */,
LYS_SET_LENGTH /* LY_TYPE_BINARY */,
LYS_SET_RANGE /* LY_TYPE_UINT8 */,
LYS_SET_RANGE /* LY_TYPE_UINT16 */,
LYS_SET_RANGE /* LY_TYPE_UINT32 */,
LYS_SET_RANGE /* LY_TYPE_UINT64 */,
LYS_SET_LENGTH | LYS_SET_PATTERN /* LY_TYPE_STRING */,
LYS_SET_BIT /* LY_TYPE_BITS */,
0 /* LY_TYPE_BOOL */,
LYS_SET_FRDIGITS | LYS_SET_RANGE /* LY_TYPE_DEC64 */,
0 /* LY_TYPE_EMPTY */,
LYS_SET_ENUM /* LY_TYPE_ENUM */,
LYS_SET_BASE /* LY_TYPE_IDENT */,
LYS_SET_REQINST /* LY_TYPE_INST */,
LYS_SET_REQINST | LYS_SET_PATH /* LY_TYPE_LEAFREF */,
LYS_SET_TYPE /* LY_TYPE_UNION */,
LYS_SET_RANGE /* LY_TYPE_INT8 */,
LYS_SET_RANGE /* LY_TYPE_INT16 */,
LYS_SET_RANGE /* LY_TYPE_INT32 */,
LYS_SET_RANGE /* LY_TYPE_INT64 */
};
/**
* @brief stringification of the YANG built-in data types
*/
const char* ly_data_type2str[LY_DATA_TYPE_COUNT] = {"unknown", "binary", "8bit unsigned integer", "16bit unsigned integer",
"32bit unsigned integer", "64bit unsigned integer", "string", "bits", "boolean", "decimal64", "empty", "enumeration",
"identityref", "instance-identifier", "leafref", "union", "8bit integer", "16bit integer", "32bit integer", "64bit integer"
};
/**
* @brief Compile parsed type's enum structures (for enumeration and bits types).
* @param[in] ctx Compile context.
* @param[in] enums_p Array of the parsed enum structures to compile.
* @param[in] basetype Base YANG built-in type from which the current type is derived. Only LY_TYPE_ENUM and LY_TYPE_BITS are expected.
* @param[in] options Various options to modify compiler behavior, see [compile flags](@ref scflags).
* @param[in] base_enums Array of the compiled enums information from the (latest) base type to check if the current enums are compatible.
* @param[out] enums Newly created array of the compiled enums information for the current type.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_type_enums(struct lysc_ctx *ctx, struct lysp_type_enum *enums_p, LY_DATA_TYPE basetype, int options,
struct lysc_type_enum_item *base_enums, struct lysc_type_enum_item **enums)
{
LY_ERR ret = LY_SUCCESS;
unsigned int u, v, match;
int32_t value = 0;
uint32_t position = 0;
struct lysc_type_enum_item *e, storage;
if (base_enums && ctx->mod_def->version < 2) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "%s type can be subtyped only in YANG 1.1 modules.",
basetype == LY_TYPE_ENUM ? "Enumeration" : "Bits");
return LY_EVALID;
}
LY_ARRAY_FOR(enums_p, u) {
LY_ARRAY_NEW_RET(ctx->ctx, *enums, e, LY_EMEM);
DUP_STRING(ctx->ctx, enums_p[u].name, e->name);
DUP_STRING(ctx->ctx, enums_p[u].ref, e->dsc);
DUP_STRING(ctx->ctx, enums_p[u].ref, e->ref);
if (base_enums) {
/* check the enum/bit presence in the base type - the set of enums/bits in the derived type must be a subset */
LY_ARRAY_FOR(base_enums, v) {
if (!strcmp(e->name, base_enums[v].name)) {
break;
}
}
if (v == LY_ARRAY_SIZE(base_enums)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s - derived type adds new item \"%s\".",
basetype == LY_TYPE_ENUM ? "enumeration" : "bits", e->name);
return LY_EVALID;
}
match = v;
}
if (basetype == LY_TYPE_ENUM) {
if (enums_p[u].flags & LYS_SET_VALUE) {
e->value = (int32_t)enums_p[u].value;
if (!u || e->value >= value) {
value = e->value + 1;
}
/* check collision with other values */
for (v = 0; v < LY_ARRAY_SIZE(*enums) - 1; ++v) {
if (e->value == (*enums)[v].value) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid enumeration - value %d collide in items \"%s\" and \"%s\".",
e->value, e->name, (*enums)[v].name);
return LY_EVALID;
}
}
} else if (base_enums) {
/* inherit the assigned value */
e->value = base_enums[match].value;
if (!u || e->value >= value) {
value = e->value + 1;
}
} else {
/* assign value automatically */
if (u && value == INT32_MIN) {
/* counter overflow */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid enumeration - it is not possible to auto-assign enum value for "
"\"%s\" since the highest value is already 2147483647.", e->name);
return LY_EVALID;
}
e->value = value++;
}
} else { /* LY_TYPE_BITS */
if (enums_p[u].flags & LYS_SET_VALUE) {
e->value = (int32_t)enums_p[u].value;
if (!u || (uint32_t)e->value >= position) {
position = (uint32_t)e->value + 1;
}
/* check collision with other values */
for (v = 0; v < LY_ARRAY_SIZE(*enums) - 1; ++v) {
if (e->value == (*enums)[v].value) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid bits - position %u collide in items \"%s\" and \"%s\".",
(uint32_t)e->value, e->name, (*enums)[v].name);
return LY_EVALID;
}
}
} else if (base_enums) {
/* inherit the assigned value */
e->value = base_enums[match].value;
if (!u || (uint32_t)e->value >= position) {
position = (uint32_t)e->value + 1;
}
} else {
/* assign value automatically */
if (u && position == 0) {
/* counter overflow */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid bits - it is not possible to auto-assign bit position for "
"\"%s\" since the highest value is already 4294967295.", e->name);
return LY_EVALID;
}
e->value = position++;
}
}
if (base_enums) {
/* the assigned values must not change from the derived type */
if (e->value != base_enums[match].value) {
if (basetype == LY_TYPE_ENUM) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid enumeration - value of the item \"%s\" has changed from %d to %d in the derived type.",
e->name, base_enums[match].value, e->value);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid bits - position of the item \"%s\" has changed from %u to %u in the derived type.",
e->name, (uint32_t)base_enums[match].value, (uint32_t)e->value);
}
return LY_EVALID;
}
}
COMPILE_ARRAY_GOTO(ctx, enums_p[u].iffeatures, e->iffeatures, options, v, lys_compile_iffeature, ret, done);
COMPILE_ARRAY_GOTO(ctx, enums_p[u].exts, e->exts, options, v, lys_compile_ext, ret, done);
if (basetype == LY_TYPE_BITS) {
/* keep bits ordered by position */
for (v = u; v && (*enums)[v - 1].value > e->value; --v);
if (v != u) {
memcpy(&storage, e, sizeof *e);
memmove(&(*enums)[v + 1], &(*enums)[v], (u - v) * sizeof **enums);
memcpy(&(*enums)[v], &storage, sizeof storage);
}
}
}
done:
return ret;
}
#define MOVE_PATH_PARENT(NODE, LIMIT_COND, TERM, ERR_MSG, ...) \
for ((NODE) = (NODE)->parent; \
(NODE) && !((NODE)->nodetype & (LYS_CONTAINER | LYS_LIST | LYS_ACTION | LYS_NOTIF | LYS_ACTION)); \
(NODE) = (NODE)->parent); \
if (!(NODE) && (LIMIT_COND)) { /* we are going higher than top-level */ \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, ERR_MSG, ##__VA_ARGS__); \
TERM; \
}
/**
* @brief Validate the predicate(s) from the leafref path.
* @param[in] ctx Compile context
* @param[in, out] predicate Pointer to the predicate in the leafref path. The pointer is moved after the validated predicate(s).
* Since there can be multiple adjacent predicates for lists with multiple keys, all such predicates are validated.
* @param[in] start_node Path context node (where the path is instantiated).
* @param[in] context_node Predicate context node (where the predicate is placed).
* @param[in] path_context Schema where the path was defined to correct resolve of the prefixes.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_leafref_predicate_validate(struct lysc_ctx *ctx, const char **predicate, const struct lysc_node *start_node,
const struct lysc_node_list *context_node, const struct lys_module *path_context)
{
LY_ERR ret = LY_EVALID;
const struct lys_module *mod;
const struct lysc_node *src_node, *dst_node;
const char *path_key_expr, *pke_start, *src, *src_prefix, *dst, *dst_prefix;
size_t src_len, src_prefix_len, dst_len, dst_prefix_len;
unsigned int dest_parent_times, c, u;
const char *start, *end, *pke_end;
struct ly_set keys = {0};
int i;
assert(path_context);
while (**predicate == '[') {
start = (*predicate)++;
while (isspace(**predicate)) {
++(*predicate);
}
LY_CHECK_GOTO(lys_parse_nodeid(predicate, &src_prefix, &src_prefix_len, &src, &src_len), cleanup);
while (isspace(**predicate)) {
++(*predicate);
}
if (**predicate != '=') {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid leafref path predicate \"%.*s\" - missing \"=\" after node-identifier.",
*predicate - start + 1, start);
goto cleanup;
}
++(*predicate);
while (isspace(**predicate)) {
++(*predicate);
}
if ((end = pke_end = strchr(*predicate, ']')) == NULL) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid leafref path predicate \"%s\" - missing predicate termination.", start);
goto cleanup;
}
--pke_end;
while (isspace(*pke_end)) {
--pke_end;
}
++pke_end;
/* localize path-key-expr */
pke_start = path_key_expr = *predicate;
/* move after the current predicate */
*predicate = end + 1;
/* source (must be leaf or leaf-list) */
if (src_prefix) {
mod = lys_module_find_prefix(path_context, src_prefix, src_prefix_len);
if (!mod) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid leafref path predicate \"%.*s\" - prefix \"%.*s\" not defined in module \"%s\".",
*predicate - start, start, src_prefix_len, src_prefix, path_context->name);
goto cleanup;
}
} else {
mod = start_node->module;
}
src_node = NULL;
if (context_node->keys) {
for (u = 0; u < LY_ARRAY_SIZE(context_node->keys); ++u) {
if (!strncmp(src, context_node->keys[u]->name, src_len) && context_node->keys[u]->name[src_len] == '\0') {
src_node = (const struct lysc_node*)context_node->keys[u];
break;
}
}
}
if (!src_node) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid leafref path predicate \"%.*s\" - predicate's key node \"%.*s\" not found.",
*predicate - start, start, src_len, src, mod->name);
goto cleanup;
}
/* check that there is only one predicate for the */
c = keys.count;
i = ly_set_add(&keys, (void*)src_node, 0);
LY_CHECK_GOTO(i == -1, cleanup);
if (keys.count == c) { /* node was already present in the set */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid leafref path predicate \"%.*s\" - multiple equality tests for the key \"%s\".",
*predicate - start, start, src_node->name);
goto cleanup;
}
/* destination */
dest_parent_times = 0;
dst_node = start_node;
/* current-function-invocation *WSP "/" *WSP rel-path-keyexpr */
if (strncmp(path_key_expr, "current()", 9)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid leafref path predicate \"%.*s\" - missing current-function-invocation.",
*predicate - start, start);
goto cleanup;
}
path_key_expr += 9;
while (isspace(*path_key_expr)) {
++path_key_expr;
}
if (*path_key_expr != '/') {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid leafref path predicate \"%.*s\" - missing \"/\" after current-function-invocation.",
*predicate - start, start);
goto cleanup;
}
++path_key_expr;
while (isspace(*path_key_expr)) {
++path_key_expr;
}
/* rel-path-keyexpr:
* 1*(".." *WSP "/" *WSP) *(node-identifier *WSP "/" *WSP) node-identifier */
while (!strncmp(path_key_expr, "..", 2)) {
++dest_parent_times;
path_key_expr += 2;
while (isspace(*path_key_expr)) {
++path_key_expr;
}
if (*path_key_expr != '/') {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid leafref path predicate \"%.*s\" - missing \"/\" in \"../\" rel-path-keyexpr pattern.",
*predicate - start, start);
goto cleanup;
}
++path_key_expr;
while (isspace(*path_key_expr)) {
++path_key_expr;
}
/* path is supposed to be evaluated in data tree, so we have to skip
* all schema nodes that cannot be instantiated in data tree */
MOVE_PATH_PARENT(dst_node, !strncmp(path_key_expr, "..", 2), goto cleanup,
"Invalid leafref path predicate \"%.*s\" - too many \"..\" in rel-path-keyexpr.",
*predicate - start, start);
}
if (!dest_parent_times) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid leafref path predicate \"%.*s\" - at least one \"..\" is expected in rel-path-keyexpr.",
*predicate - start, start);
goto cleanup;
}
if (path_key_expr == pke_end) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid leafref path predicate \"%.*s\" - at least one node-identifier is expected in rel-path-keyexpr.",
*predicate - start, start);
goto cleanup;
}
while(path_key_expr != pke_end) {
if (lys_parse_nodeid(&path_key_expr, &dst_prefix, &dst_prefix_len, &dst, &dst_len)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid node identifier in leafref path predicate - character %d (of %.*s).",
path_key_expr - start + 1, *predicate - start, start);
goto cleanup;
}
if (dst_prefix) {
mod = lys_module_find_prefix(path_context, dst_prefix, dst_prefix_len);
} else {
mod = start_node->module;
}
if (!mod) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid leafref path predicate \"%.*s\" - unable to find module of the node \"%.*s\" in rel-path_keyexpr.",
*predicate - start, start, dst_len, dst);
goto cleanup;
}
dst_node = lys_child(dst_node, mod, dst, dst_len, 0, LYS_GETNEXT_NOSTATECHECK);
if (!dst_node) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid leafref path predicate \"%.*s\" - unable to find node \"%.*s\" in the rel-path_keyexpr.",
*predicate - start, start, path_key_expr - pke_start, pke_start);
goto cleanup;
}
}
if (!(dst_node->nodetype & (dst_node->module->version < LYS_VERSION_1_1 ? LYS_LEAF : LYS_LEAF | LYS_LEAFLIST))) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid leafref path predicate \"%.*s\" - rel-path_keyexpr \"%.*s\" refers %s instead of leaf.",
*predicate - start, start, path_key_expr - pke_start, pke_start, lys_nodetype2str(dst_node->nodetype));
goto cleanup;
}
}
ret = LY_SUCCESS;
cleanup:
ly_set_erase(&keys, NULL);
return ret;
}
/**
* @brief Parse path-arg (leafref). Get tokens of the path by repetitive calls of the function.
*
* path-arg = absolute-path / relative-path
* absolute-path = 1*("/" (node-identifier *path-predicate))
* relative-path = 1*(".." "/") descendant-path
*
* @param[in,out] path Path to parse.
* @param[out] prefix Prefix of the token, NULL if there is not any.
* @param[out] pref_len Length of the prefix, 0 if there is not any.
* @param[out] name Name of the token.
* @param[out] nam_len Length of the name.
* @param[out] parent_times Number of leading ".." in the path. Must be 0 on the first call,
* must not be changed between consecutive calls. -1 if the
* path is absolute.
* @param[out] has_predicate Flag to mark whether there is a predicate specified.
* @return LY_ERR value: LY_SUCCESS or LY_EINVAL in case of invalid character in the path.
*/
static LY_ERR
lys_path_token(const char **path, const char **prefix, size_t *prefix_len, const char **name, size_t *name_len,
int *parent_times, int *has_predicate)
{
int par_times = 0;
assert(path && *path);
assert(parent_times);
assert(prefix);
assert(prefix_len);
assert(name);
assert(name_len);
assert(has_predicate);
*prefix = NULL;
*prefix_len = 0;
*name = NULL;
*name_len = 0;
*has_predicate = 0;
if (!*parent_times) {
if (!strncmp(*path, "..", 2)) {
*path += 2;
++par_times;
while (!strncmp(*path, "/..", 3)) {
*path += 3;
++par_times;
}
}
if (par_times) {
*parent_times = par_times;
} else {
*parent_times = -1;
}
}
if (**path != '/') {
return LY_EINVAL;
}
/* skip '/' */
++(*path);
/* node-identifier ([prefix:]name) */
LY_CHECK_RET(lys_parse_nodeid(path, prefix, prefix_len, name, name_len));
if ((**path == '/' && (*path)[1]) || !**path) {
/* path continues by another token or this is the last token */
return LY_SUCCESS;
} else if ((*path)[0] != '[') {
/* unexpected character */
return LY_EINVAL;
} else {
/* predicate starting with [ */
*has_predicate = 1;
return LY_SUCCESS;
}
}
/**
* @brief Check the features used in if-feature statements applicable to the leafref and its target.
*
* The set of features used for target must be a subset of features used for the leafref.
* This is not a perfect, we should compare the truth tables but it could require too much resources
* and RFC 7950 does not require it explicitely, so we simplify that.
*
* @param[in] refnode The leafref node.
* @param[in] target Tha target node of the leafref.
* @return LY_SUCCESS or LY_EVALID;
*/
static LY_ERR
lys_compile_leafref_features_validate(const struct lysc_node *refnode, const struct lysc_node *target)
{
LY_ERR ret = LY_EVALID;
const struct lysc_node *iter;
unsigned int u, v, count;
struct ly_set features = {0};
for (iter = refnode; iter; iter = iter->parent) {
if (iter->iffeatures) {
LY_ARRAY_FOR(iter->iffeatures, u) {
LY_ARRAY_FOR(iter->iffeatures[u].features, v) {
LY_CHECK_GOTO(ly_set_add(&features, iter->iffeatures[u].features[v], 0) == -1, cleanup);
}
}
}
}
/* we should have, in features set, a superset of features applicable to the target node.
* So when adding features applicable to the target into the features set, we should not be
* able to actually add any new feature, otherwise it is not a subset of features applicable
* to the leafref itself. */
count = features.count;
for (iter = target; iter; iter = iter->parent) {
if (iter->iffeatures) {
LY_ARRAY_FOR(iter->iffeatures, u) {
LY_ARRAY_FOR(iter->iffeatures[u].features, v) {
if ((unsigned int)ly_set_add(&features, iter->iffeatures[u].features[v], 0) >= count) {
/* new feature was added (or LY_EMEM) */
goto cleanup;
}
}
}
}
}
ret = LY_SUCCESS;
cleanup:
ly_set_erase(&features, NULL);
return ret;
}
/**
* @brief Validate the leafref path.
* @param[in] ctx Compile context
* @param[in] startnode Path context node (where the leafref path begins/is placed).
* @param[in] leafref Leafref to validate.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_leafref_validate(struct lysc_ctx *ctx, struct lysc_node *startnode, struct lysc_type_leafref *leafref)
{
const struct lysc_node *node = NULL, *parent = NULL;
const struct lys_module *mod;
struct lysc_type *type;
const char *id, *prefix, *name;
size_t prefix_len, name_len;
int parent_times = 0, has_predicate;
unsigned int iter, u;
LY_ERR ret = LY_SUCCESS;
assert(ctx);
assert(startnode);
assert(leafref);
/* TODO leafref targets may be not implemented, in such a case we actually could make (we did it in libyang1) such a models implemented */
iter = 0;
id = leafref->path;
while(*id && (ret = lys_path_token(&id, &prefix, &prefix_len, &name, &name_len, &parent_times, &has_predicate)) == LY_SUCCESS) {
if (!iter) { /* first iteration */
/* precess ".." in relative paths */
if (parent_times > 0) {
/* move from the context node */
for (u = 0, parent = startnode; u < (unsigned int)parent_times; u++) {
/* path is supposed to be evaluated in data tree, so we have to skip
* all schema nodes that cannot be instantiated in data tree */
MOVE_PATH_PARENT(parent, u < (unsigned int)parent_times - 1, return LY_EVALID,
"Invalid leafref path \"%s\" - too many \"..\" in the path.", leafref->path);
}
}
}
if (prefix) {
mod = lys_module_find_prefix(leafref->path_context, prefix, prefix_len);
} else {
mod = startnode->module;
}
if (!mod) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid leafref path - unable to find module connected with the prefix of the node \"%.*s\".",
id - leafref->path, leafref->path);
return LY_EVALID;
}
node = lys_child(parent, mod, name, name_len, 0, LYS_GETNEXT_NOSTATECHECK);
if (!node) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid leafref path - unable to find \"%.*s\".", id - leafref->path, leafref->path);
return LY_EVALID;
}
parent = node;
if (has_predicate) {
/* we have predicate, so the current result must be list */
if (node->nodetype != LYS_LIST) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid leafref path - node \"%.*s\" is expected to be a list, but it is %s.",
id - leafref->path, leafref->path, lys_nodetype2str(node->nodetype));
return LY_EVALID;
}
LY_CHECK_RET(lys_compile_leafref_predicate_validate(ctx, &id, startnode, (struct lysc_node_list*)node, leafref->path_context),
LY_EVALID);
}
++iter;
}
if (ret) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid leafref path at character %d (%s).", id - leafref->path + 1, leafref->path);
return LY_EVALID;
}
if (!(node->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid leafref path \"%s\" - target node is %s instead of leaf or leaf-list.",
leafref->path, lys_nodetype2str(node->nodetype));
return LY_EVALID;
}
/* check status */
if (lysc_check_status(ctx, startnode->flags, startnode->module, startnode->name, node->flags, node->module, node->name)) {
return LY_EVALID;
}
/* check config */
if (leafref->require_instance && (startnode->flags & LYS_CONFIG_W)) {
if (node->flags & LYS_CONFIG_R) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid leafref path \"%s\" - target is supposed to represent configuration data (as the leafref does), but it does not.",
leafref->path);
return LY_EVALID;
}
}
/* store the target's type and check for circular chain of leafrefs */
leafref->realtype = ((struct lysc_node_leaf*)node)->type;
for (type = leafref->realtype; type && type->basetype == LY_TYPE_LEAFREF; type = ((struct lysc_type_leafref*)type)->realtype) {
if (type == (struct lysc_type*)leafref) {
/* circular chain detected */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid leafref path \"%s\" - circular chain of leafrefs detected.", leafref->path);
return LY_EVALID;
}
}
/* check if leafref and its target are under common if-features */
if (lys_compile_leafref_features_validate(startnode, node)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid leafref path \"%s\" - set of features applicable to the leafref target is not a subset of features applicable to the leafref itself.",
leafref->path);
return LY_EVALID;
}
return LY_SUCCESS;
}
static LY_ERR lys_compile_type(struct lysc_ctx *ctx, struct lysp_node *context_node_p, uint16_t context_flags, struct lysp_module *context_mod, const char *context_name,
struct lysp_type *type_p, int options, struct lysc_type **type, const char **units);
/**
* @brief The core of the lys_compile_type() - compile information about the given type (from typedef or leaf/leaf-list).
* @param[in] ctx Compile context.
* @param[in] context_node_p Schema node where the type/typedef is placed to correctly find the base types.
* @param[in] context_flags Flags of the context node or the referencing typedef to correctly check status of referencing and referenced objects.
* @param[in] context_mod Module of the context node or the referencing typedef to correctly check status of referencing and referenced objects.
* @param[in] context_name Name of the context node or referencing typedef for logging.
* @param[in] type_p Parsed type to compile.
* @param[in] module Context module for the leafref path (to correctly resolve prefixes in path)
* @param[in] basetype Base YANG built-in type of the type to compile.
* @param[in] options Various options to modify compiler behavior, see [compile flags](@ref scflags).
* @param[in] tpdfname Name of the type's typedef, serves as a flag - if it is leaf/leaf-list's type, it is NULL.
* @param[in] base The latest base (compiled) type from which the current type is being derived.
* @param[out] type Newly created type structure with the filled information about the type.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_type_(struct lysc_ctx *ctx, struct lysp_node *context_node_p, uint16_t context_flags, struct lysp_module *context_mod, const char *context_name,
struct lysp_type *type_p, struct lys_module *module, LY_DATA_TYPE basetype, int options, const char *tpdfname,
struct lysc_type *base, struct lysc_type **type)
{
LY_ERR ret = LY_SUCCESS;
unsigned int u, v, additional;
struct lysc_type_bin *bin;
struct lysc_type_num *num;
struct lysc_type_str *str;
struct lysc_type_bits *bits;
struct lysc_type_enum *enumeration;
struct lysc_type_dec *dec;
struct lysc_type_identityref *idref;
struct lysc_type_union *un, *un_aux;
void *p;
switch (basetype) {
case LY_TYPE_BINARY:
bin = (struct lysc_type_bin*)(*type);
/* RFC 7950 9.8.1, 9.4.4 - length, number of octets it contains */
if (type_p->length) {
ret = lys_compile_type_range(ctx, type_p->length, basetype, 1, 0,
base ? ((struct lysc_type_bin*)base)->length : NULL, &bin->length);
LY_CHECK_RET(ret);
if (!tpdfname) {
COMPILE_ARRAY_GOTO(ctx, type_p->length->exts, bin->length->exts,
options, u, lys_compile_ext, ret, done);
}
}
if (tpdfname) {
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_bin));
}
break;
case LY_TYPE_BITS:
/* RFC 7950 9.7 - bits */
bits = (struct lysc_type_bits*)(*type);
if (type_p->bits) {
ret = lys_compile_type_enums(ctx, type_p->bits, basetype, options,
base ? (struct lysc_type_enum_item*)((struct lysc_type_bits*)base)->bits : NULL,
(struct lysc_type_enum_item**)&bits->bits);
LY_CHECK_RET(ret);
}
if (!base && !type_p->flags) {
/* type derived from bits built-in type must contain at least one bit */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "bit", "bits type ", tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "bit", "bits type", "");
free(*type);
*type = NULL;
}
return LY_EVALID;
}
if (tpdfname) {
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_bits));
}
break;
case LY_TYPE_DEC64:
dec = (struct lysc_type_dec*)(*type);
/* RFC 7950 9.3.4 - fraction-digits */
if (!base) {
if (!type_p->fraction_digits) {
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "fraction-digits", "decimal64 type ", tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "fraction-digits", "decimal64 type", "");
free(*type);
*type = NULL;
}
return LY_EVALID;
}
} else if (type_p->fraction_digits) {
/* fraction digits is prohibited in types not directly derived from built-in decimal64 */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid fraction-digits substatement for type \"%s\" not directly derived from decimal64 built-in type.",
tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid fraction-digits substatement for type not directly derived from decimal64 built-in type.");
free(*type);
*type = NULL;
}
return LY_EVALID;
}
dec->fraction_digits = type_p->fraction_digits;
/* RFC 7950 9.2.4 - range */
if (type_p->range) {
ret = lys_compile_type_range(ctx, type_p->range, basetype, 0, dec->fraction_digits,
base ? ((struct lysc_type_dec*)base)->range : NULL, &dec->range);
LY_CHECK_RET(ret);
if (!tpdfname) {
COMPILE_ARRAY_GOTO(ctx, type_p->range->exts, dec->range->exts,
options, u, lys_compile_ext, ret, done);
}
}
if (tpdfname) {
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_dec));
}
break;
case LY_TYPE_STRING:
str = (struct lysc_type_str*)(*type);
/* RFC 7950 9.4.4 - length */
if (type_p->length) {
ret = lys_compile_type_range(ctx, type_p->length, basetype, 1, 0,
base ? ((struct lysc_type_str*)base)->length : NULL, &str->length);
LY_CHECK_RET(ret);
if (!tpdfname) {
COMPILE_ARRAY_GOTO(ctx, type_p->length->exts, str->length->exts,
options, u, lys_compile_ext, ret, done);
}
} else if (base && ((struct lysc_type_str*)base)->length) {
str->length = lysc_range_dup(ctx->ctx, ((struct lysc_type_str*)base)->length);
}
/* RFC 7950 9.4.5 - pattern */
if (type_p->patterns) {
ret = lys_compile_type_patterns(ctx, type_p->patterns, options,
base ? ((struct lysc_type_str*)base)->patterns : NULL, &str->patterns);
LY_CHECK_RET(ret);
} else if (base && ((struct lysc_type_str*)base)->patterns) {
str->patterns = lysc_patterns_dup(ctx->ctx, ((struct lysc_type_str*)base)->patterns);
}
if (tpdfname) {
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_str));
}
break;
case LY_TYPE_ENUM:
enumeration = (struct lysc_type_enum*)(*type);
/* RFC 7950 9.6 - enum */
if (type_p->enums) {
ret = lys_compile_type_enums(ctx, type_p->enums, basetype, options,
base ? ((struct lysc_type_enum*)base)->enums : NULL, &enumeration->enums);
LY_CHECK_RET(ret);
}
if (!base && !type_p->flags) {
/* type derived from enumerations built-in type must contain at least one enum */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "enum", "enumeration type ", tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "enum", "enumeration type", "");
free(*type);
*type = NULL;
}
return LY_EVALID;
}
if (tpdfname) {
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_enum));
}
break;
case LY_TYPE_INT8:
case LY_TYPE_UINT8:
case LY_TYPE_INT16:
case LY_TYPE_UINT16:
case LY_TYPE_INT32:
case LY_TYPE_UINT32:
case LY_TYPE_INT64:
case LY_TYPE_UINT64:
num = (struct lysc_type_num*)(*type);
/* RFC 6020 9.2.4 - range */
if (type_p->range) {
ret = lys_compile_type_range(ctx, type_p->range, basetype, 0, 0,
base ? ((struct lysc_type_num*)base)->range : NULL, &num->range);
LY_CHECK_RET(ret);
if (!tpdfname) {
COMPILE_ARRAY_GOTO(ctx, type_p->range->exts, num->range->exts,
options, u, lys_compile_ext, ret, done);
}
}
if (tpdfname) {
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_num));
}
break;
case LY_TYPE_IDENT:
idref = (struct lysc_type_identityref*)(*type);
/* RFC 7950 9.10.2 - base */
if (type_p->bases) {
if (base) {
/* only the directly derived identityrefs can contain base specification */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid base substatement for the type \"%s\" not directly derived from identityref built-in type.",
tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid base substatement for the type not directly derived from identityref built-in type.");
free(*type);
*type = NULL;
}
return LY_EVALID;
}
ret = lys_compile_identity_bases(ctx, type_p->bases, NULL, &idref->bases);
LY_CHECK_RET(ret);
}
if (!base && !type_p->flags) {
/* type derived from identityref built-in type must contain at least one base */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "base", "identityref type ", tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "base", "identityref type", "");
free(*type);
*type = NULL;
}
return LY_EVALID;
}
if (tpdfname) {
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_identityref));
}
break;
case LY_TYPE_LEAFREF:
/* RFC 7950 9.9.3 - require-instance */
if (type_p->flags & LYS_SET_REQINST) {
if (context_mod->mod->version < LYS_VERSION_1_1) {
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Leafref type \"%s\" can be restricted by require-instance statement only in YANG 1.1 modules.", tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Leafref type can be restricted by require-instance statement only in YANG 1.1 modules.");
free(*type);
*type = NULL;
}
return LY_EVALID;
}
((struct lysc_type_leafref*)(*type))->require_instance = type_p->require_instance;
} else if (base) {
/* inherit */
((struct lysc_type_leafref*)(*type))->require_instance = ((struct lysc_type_leafref*)base)->require_instance;
} else {
/* default is true */
((struct lysc_type_leafref*)(*type))->require_instance = 1;
}
if (type_p->path) {
DUP_STRING(ctx->ctx, (void*)type_p->path, ((struct lysc_type_leafref*)(*type))->path);
((struct lysc_type_leafref*)(*type))->path_context = module;
} else if (base) {
DUP_STRING(ctx->ctx, ((struct lysc_type_leafref*)base)->path, ((struct lysc_type_leafref*)(*type))->path);
((struct lysc_type_leafref*)(*type))->path_context = ((struct lysc_type_leafref*)base)->path_context;
} else if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "path", "leafref type ", tpdfname);
return LY_EVALID;
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "path", "leafref type", "");
free(*type);
*type = NULL;
return LY_EVALID;
}
if (tpdfname) {
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_leafref));
}
break;
case LY_TYPE_INST:
/* RFC 7950 9.9.3 - require-instance */
if (type_p->flags & LYS_SET_REQINST) {
((struct lysc_type_instanceid*)(*type))->require_instance = type_p->require_instance;
} else {
/* default is true */
((struct lysc_type_instanceid*)(*type))->require_instance = 1;
}
if (tpdfname) {
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_instanceid));
}
break;
case LY_TYPE_UNION:
un = (struct lysc_type_union*)(*type);
/* RFC 7950 7.4 - type */
if (type_p->types) {
if (base) {
/* only the directly derived union can contain types specification */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid type substatement for the type \"%s\" not directly derived from union built-in type.",
tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid type substatement for the type not directly derived from union built-in type.");
free(*type);
*type = NULL;
}
return LY_EVALID;
}
/* compile the type */
additional = 0;
LY_ARRAY_CREATE_RET(ctx->ctx, un->types, LY_ARRAY_SIZE(type_p->types), LY_EVALID);
for (u = 0; u < LY_ARRAY_SIZE(type_p->types); ++u) {
ret = lys_compile_type(ctx, context_node_p, context_flags, context_mod, context_name, &type_p->types[u], options, &un->types[u + additional], NULL);
if (un->types[u + additional]->basetype == LY_TYPE_UNION) {
/* add space for additional types from the union subtype */
un_aux = (struct lysc_type_union *)un->types[u + additional];
p = ly_realloc(((uint32_t*)(un->types) - 1), sizeof(uint32_t) + ((LY_ARRAY_SIZE(type_p->types) + additional + LY_ARRAY_SIZE(un_aux->types) - 1) * sizeof *(un->types)));
LY_CHECK_ERR_RET(!p, LOGMEM(ctx->ctx);lysc_type_free(ctx->ctx, (struct lysc_type*)un_aux), LY_EMEM);
un->types = (void*)((uint32_t*)(p) + 1);
/* copy subtypes of the subtype union */
for (v = 0; v < LY_ARRAY_SIZE(un_aux->types); ++v) {
if (un_aux->types[v]->basetype == LY_TYPE_LEAFREF) {
/* duplicate the whole structure because of the instance-specific path resolving for realtype */
un->types[u + additional] = calloc(1, sizeof(struct lysc_type_leafref));
LY_CHECK_ERR_RET(!un->types[u + additional], LOGMEM(ctx->ctx);lysc_type_free(ctx->ctx, (struct lysc_type*)un_aux), LY_EMEM);
((struct lysc_type_leafref*)un->types[u + additional])->basetype = LY_TYPE_LEAFREF;
DUP_STRING(ctx->ctx, ((struct lysc_type_leafref*)un_aux->types[v])->path, ((struct lysc_type_leafref*)un->types[u + additional])->path);
((struct lysc_type_leafref*)un->types[u + additional])->refcount = 1;
((struct lysc_type_leafref*)un->types[u + additional])->require_instance = ((struct lysc_type_leafref*)un_aux->types[v])->require_instance;
((struct lysc_type_leafref*)un->types[u + additional])->path_context = ((struct lysc_type_leafref*)un_aux->types[v])->path_context;
/* TODO extensions */
} else {
un->types[u + additional] = un_aux->types[v];
++un_aux->types[v]->refcount;
}
++additional;
LY_ARRAY_INCREMENT(un->types);
}
/* compensate u increment in main loop */
--additional;
/* free the replaced union subtype */
lysc_type_free(ctx->ctx, (struct lysc_type*)un_aux);
} else {
LY_ARRAY_INCREMENT(un->types);
}
LY_CHECK_RET(ret);
}
}
if (!base && !type_p->flags) {
/* type derived from union built-in type must contain at least one type */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "type", "union type ", tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "type", "union type", "");
free(*type);
*type = NULL;
}
return LY_EVALID;
}
if (tpdfname) {
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_union));
}
break;
case LY_TYPE_BOOL:
case LY_TYPE_EMPTY:
case LY_TYPE_UNKNOWN: /* just to complete switch */
break;
}
LY_CHECK_ERR_RET(!(*type), LOGMEM(ctx->ctx), LY_EMEM);
done:
return ret;
}
/**
* @brief Compile information about the leaf/leaf-list's type.
* @param[in] ctx Compile context.
* @param[in] context_node_p Schema node where the type/typedef is placed to correctly find the base types.
* @param[in] context_flags Flags of the context node or the referencing typedef to correctly check status of referencing and referenced objects.
* @param[in] context_mod Module of the context node or the referencing typedef to correctly check status of referencing and referenced objects.
* @param[in] context_name Name of the context node or referencing typedef for logging.
* @param[in] type_p Parsed type to compile.
* @param[in] options Various options to modify compiler behavior, see [compile flags](@ref scflags).
* @param[out] type Newly created (or reused with increased refcount) type structure with the filled information about the type.
* @param[out] units Storage for inheriting units value from the typedefs the current type derives from.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_type(struct lysc_ctx *ctx, struct lysp_node *context_node_p, uint16_t context_flags, struct lysp_module *context_mod, const char *context_name,
struct lysp_type *type_p, int options, struct lysc_type **type, const char **units)
{
LY_ERR ret = LY_SUCCESS;
unsigned int u;
int dummyloops = 0;
struct type_context {
const struct lysp_tpdf *tpdf;
struct lysp_node *node;
struct lysp_module *mod;
} *tctx, *tctx_prev = NULL;
LY_DATA_TYPE basetype = LY_TYPE_UNKNOWN;
struct lysc_type *base = NULL, *prev_type;
struct ly_set tpdf_chain = {0};
const char *dflt = NULL;
(*type) = NULL;
tctx = calloc(1, sizeof *tctx);
LY_CHECK_ERR_RET(!tctx, LOGMEM(ctx->ctx), LY_EMEM);
for (ret = lysp_type_find(type_p->name, context_node_p, ctx->mod_def->parsed,
&basetype, &tctx->tpdf, &tctx->node, &tctx->mod);
ret == LY_SUCCESS;
ret = lysp_type_find(tctx_prev->tpdf->type.name, tctx_prev->node, tctx_prev->mod,
&basetype, &tctx->tpdf, &tctx->node, &tctx->mod)) {
if (basetype) {
break;
}
/* check status */
ret = lysc_check_status(ctx, context_flags, context_mod, context_name,
tctx->tpdf->flags, tctx->mod, tctx->node ? tctx->node->name : tctx->tpdf->name);
LY_CHECK_ERR_GOTO(ret, free(tctx), cleanup);
if (units && !*units) {
/* inherit units */
DUP_STRING(ctx->ctx, tctx->tpdf->units, *units);
}
if (!dflt) {
/* inherit default */
dflt = tctx->tpdf->dflt;
}
if (dummyloops && (!units || *units) && dflt) {
basetype = ((struct type_context*)tpdf_chain.objs[tpdf_chain.count - 1])->tpdf->type.compiled->basetype;
break;
}
if (tctx->tpdf->type.compiled) {
/* it is not necessary to continue, the rest of the chain was already compiled,
* but we still may need to inherit default and units values, so start dummy loops */
basetype = tctx->tpdf->type.compiled->basetype;
ly_set_add(&tpdf_chain, tctx, LY_SET_OPT_USEASLIST);
if ((units && !*units) || !dflt) {
dummyloops = 1;
goto preparenext;
} else {
tctx = NULL;
break;
}
}
/* store information for the following processing */
ly_set_add(&tpdf_chain, tctx, LY_SET_OPT_USEASLIST);
preparenext:
/* prepare next loop */
tctx_prev = tctx;
tctx = calloc(1, sizeof *tctx);
LY_CHECK_ERR_RET(!tctx, LOGMEM(ctx->ctx), LY_EMEM);
}
free(tctx);
/* allocate type according to the basetype */
switch (basetype) {
case LY_TYPE_BINARY:
*type = calloc(1, sizeof(struct lysc_type_bin));
break;
case LY_TYPE_BITS:
*type = calloc(1, sizeof(struct lysc_type_bits));
break;
case LY_TYPE_BOOL:
case LY_TYPE_EMPTY:
*type = calloc(1, sizeof(struct lysc_type));
break;
case LY_TYPE_DEC64:
*type = calloc(1, sizeof(struct lysc_type_dec));
break;
case LY_TYPE_ENUM:
*type = calloc(1, sizeof(struct lysc_type_enum));
break;
case LY_TYPE_IDENT:
*type = calloc(1, sizeof(struct lysc_type_identityref));
break;
case LY_TYPE_INST:
*type = calloc(1, sizeof(struct lysc_type_instanceid));
break;
case LY_TYPE_LEAFREF:
*type = calloc(1, sizeof(struct lysc_type_leafref));
break;
case LY_TYPE_STRING:
*type = calloc(1, sizeof(struct lysc_type_str));
break;
case LY_TYPE_UNION:
*type = calloc(1, sizeof(struct lysc_type_union));
break;
case LY_TYPE_INT8:
case LY_TYPE_UINT8:
case LY_TYPE_INT16:
case LY_TYPE_UINT16:
case LY_TYPE_INT32:
case LY_TYPE_UINT32:
case LY_TYPE_INT64:
case LY_TYPE_UINT64:
*type = calloc(1, sizeof(struct lysc_type_num));
break;
case LY_TYPE_UNKNOWN:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Referenced type \"%s\" not found.", tctx_prev ? tctx_prev->tpdf->type.name : type_p->name);
ret = LY_EVALID;
goto cleanup;
}
LY_CHECK_ERR_GOTO(!(*type), LOGMEM(ctx->ctx), cleanup);
if (~type_substmt_map[basetype] & type_p->flags) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "Invalid type restrictions for %s type.",
ly_data_type2str[basetype]);
free(*type);
(*type) = NULL;
ret = LY_EVALID;
goto cleanup;
}
/* get restrictions from the referred typedefs */
for (u = tpdf_chain.count - 1; u + 1 > 0; --u) {
tctx = (struct type_context*)tpdf_chain.objs[u];
if (tctx->tpdf->type.compiled) {
base = tctx->tpdf->type.compiled;
continue;
} else if (basetype != LY_TYPE_LEAFREF && (u != tpdf_chain.count - 1) && !(tctx->tpdf->type.flags)) {
/* no change, just use the type information from the base */
base = ((struct lysp_tpdf*)tctx->tpdf)->type.compiled = ((struct type_context*)tpdf_chain.objs[u + 1])->tpdf->type.compiled;
++base->refcount;
continue;
}
++(*type)->refcount;
if (~type_substmt_map[basetype] & tctx->tpdf->type.flags) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "Invalid type \"%s\" restriction(s) for %s type.",
tctx->tpdf->name, ly_data_type2str[basetype]);
ret = LY_EVALID;
goto cleanup;
} else if (basetype == LY_TYPE_EMPTY && tctx->tpdf->dflt) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid type \"%s\" - \"empty\" type must not have a default value (%s).",
tctx->tpdf->name, tctx->tpdf->dflt);
ret = LY_EVALID;
goto cleanup;
}
(*type)->basetype = basetype;
prev_type = *type;
ret = lys_compile_type_(ctx, tctx->node, tctx->tpdf->flags, tctx->mod, tctx->tpdf->name, &((struct lysp_tpdf*)tctx->tpdf)->type,
basetype & (LY_TYPE_LEAFREF | LY_TYPE_UNION) ? lysp_find_module(ctx->ctx, tctx->mod) : NULL,
basetype, options, tctx->tpdf->name, base, type);
LY_CHECK_GOTO(ret, cleanup);
base = prev_type;
}
/* process the type definition in leaf */
if (type_p->flags || !base || basetype == LY_TYPE_LEAFREF) {
/* get restrictions from the node itself */
(*type)->basetype = basetype;
++(*type)->refcount;
ret = lys_compile_type_(ctx, context_node_p, context_flags, context_mod, context_name, type_p, ctx->mod_def, basetype, options, NULL, base, type);
LY_CHECK_GOTO(ret, cleanup);
} else {
/* no specific restriction in leaf's type definition, copy from the base */
free(*type);
(*type) = base;
++(*type)->refcount;
}
if (!(*type)->dflt) {
DUP_STRING(ctx->ctx, dflt, (*type)->dflt);
}
COMPILE_ARRAY_GOTO(ctx, type_p->exts, (*type)->exts, options, u, lys_compile_ext, ret, cleanup);
cleanup:
ly_set_erase(&tpdf_chain, free);
return ret;
}
static LY_ERR lys_compile_node(struct lysc_ctx *ctx, struct lysp_node *node_p, int options, struct lysc_node *parent, uint16_t uses_status);
/**
* @brief Compile parsed container node information.
* @param[in] ctx Compile context
* @param[in] node_p Parsed container node.
* @param[in] options Various options to modify compiler behavior, see [compile flags](@ref scflags).
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the container-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_container(struct lysc_ctx *ctx, struct lysp_node *node_p, int options, struct lysc_node *node)
{
struct lysp_node_container *cont_p = (struct lysp_node_container*)node_p;
struct lysc_node_container *cont = (struct lysc_node_container*)node;
struct lysp_node *child_p;
unsigned int u;
LY_ERR ret = LY_SUCCESS;
if (cont_p->presence) {
cont->flags |= LYS_PRESENCE;
}
LY_LIST_FOR(cont_p->child, child_p) {
LY_CHECK_RET(lys_compile_node(ctx, child_p, options, node, 0));
}
COMPILE_ARRAY_GOTO(ctx, cont_p->musts, cont->musts, options, u, lys_compile_must, ret, done);
//COMPILE_ARRAY_GOTO(ctx, cont_p->actions, cont->actions, options, u, lys_compile_action, ret, done);
//COMPILE_ARRAY_GOTO(ctx, cont_p->notifs, cont->notifs, options, u, lys_compile_notif, ret, done);
done:
return ret;
}
/**
* @brief Compile parsed leaf node information.
* @param[in] ctx Compile context
* @param[in] node_p Parsed leaf node.
* @param[in] options Various options to modify compiler behavior, see [compile flags](@ref scflags).
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the leaf-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_leaf(struct lysc_ctx *ctx, struct lysp_node *node_p, int options, struct lysc_node *node)
{
struct lysp_node_leaf *leaf_p = (struct lysp_node_leaf*)node_p;
struct lysc_node_leaf *leaf = (struct lysc_node_leaf*)node;
unsigned int u;
LY_ERR ret = LY_SUCCESS;
COMPILE_ARRAY_GOTO(ctx, leaf_p->musts, leaf->musts, options, u, lys_compile_must, ret, done);
if (leaf_p->units) {
leaf->units = lydict_insert(ctx->ctx, leaf_p->units, 0);
leaf->flags |= LYS_SET_UNITS;
}
if (leaf_p->dflt) {
leaf->dflt = lydict_insert(ctx->ctx, leaf_p->dflt, 0);
leaf->flags |= LYS_SET_DFLT;
}
ret = lys_compile_type(ctx, node_p, node_p->flags, ctx->mod_def->parsed, node_p->name, &leaf_p->type, options, &leaf->type,
leaf->units ? NULL : &leaf->units);
LY_CHECK_GOTO(ret, done);
if (!leaf->dflt && !(leaf->flags & LYS_MAND_TRUE)) {
DUP_STRING(ctx->ctx, leaf->type->dflt, leaf->dflt);
}
if (leaf->type->basetype == LY_TYPE_LEAFREF) {
/* store to validate the path in the current context at the end of schema compiling when all the nodes are present */
ly_set_add(&ctx->unres, leaf, 0);
} else if (leaf->type->basetype == LY_TYPE_UNION) {
LY_ARRAY_FOR(((struct lysc_type_union*)leaf->type)->types, u) {
if (((struct lysc_type_union*)leaf->type)->types[u]->basetype == LY_TYPE_LEAFREF) {
/* store to validate the path in the current context at the end of schema compiling when all the nodes are present */
ly_set_add(&ctx->unres, leaf, 0);
}
}
} else if (leaf->type->basetype == LY_TYPE_EMPTY && leaf_p->dflt) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Leaf of type \"empty\" must not have a default value (%s).",leaf_p->dflt);
return LY_EVALID;
}
/* TODO validate default value according to the type, possibly postpone the check when the leafref target is known */
done:
return ret;
}
/**
* @brief Compile parsed leaf-list node information.
* @param[in] ctx Compile context
* @param[in] node_p Parsed leaf-list node.
* @param[in] options Various options to modify compiler behavior, see [compile flags](@ref scflags).
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the leaf-list-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_leaflist(struct lysc_ctx *ctx, struct lysp_node *node_p, int options, struct lysc_node *node)
{
struct lysp_node_leaflist *llist_p = (struct lysp_node_leaflist*)node_p;
struct lysc_node_leaflist *llist = (struct lysc_node_leaflist*)node;
unsigned int u, v;
LY_ERR ret = LY_SUCCESS;
COMPILE_ARRAY_GOTO(ctx, llist_p->musts, llist->musts, options, u, lys_compile_must, ret, done);
if (llist_p->units) {
llist->units = lydict_insert(ctx->ctx, llist_p->units, 0);
llist->flags |= LYS_SET_UNITS;
}
if (llist_p->dflts) {
LY_ARRAY_CREATE_GOTO(ctx->ctx, llist->dflts, LY_ARRAY_SIZE(llist_p->dflts), ret, done);
LY_ARRAY_FOR(llist_p->dflts, u) {
DUP_STRING(ctx->ctx, llist_p->dflts[u], llist->dflts[u]);
LY_ARRAY_INCREMENT(llist->dflts);
}
llist->flags |= LYS_SET_DFLT;
}
llist->min = llist_p->min;
if (llist->min) {
llist->flags |= LYS_MAND_TRUE;
}
llist->max = llist_p->max ? llist_p->max : (uint32_t)-1;
ret = lys_compile_type(ctx, node_p, node_p->flags, ctx->mod_def->parsed, node_p->name, &llist_p->type, options, &llist->type,
llist->units ? NULL : &llist->units);
LY_CHECK_GOTO(ret, done);
if (llist->type->dflt && !llist->dflts && !llist->min) {
LY_ARRAY_CREATE_GOTO(ctx->ctx, llist->dflts, 1, ret, done);
DUP_STRING(ctx->ctx, llist->type->dflt, llist->dflts[0]);
LY_ARRAY_INCREMENT(llist->dflts);
}
if (llist->type->basetype == LY_TYPE_LEAFREF) {
/* store to validate the path in the current context at the end of schema compiling when all the nodes are present */
ly_set_add(&ctx->unres, llist, 0);
} else if (llist->type->basetype == LY_TYPE_UNION) {
LY_ARRAY_FOR(((struct lysc_type_union*)llist->type)->types, u) {
if (((struct lysc_type_union*)llist->type)->types[u]->basetype == LY_TYPE_LEAFREF) {
/* store to validate the path in the current context at the end of schema compiling when all the nodes are present */
ly_set_add(&ctx->unres, llist, 0);
}
}
} else if (llist->type->basetype == LY_TYPE_EMPTY) {
if (ctx->mod_def->version < LYS_VERSION_1_1) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Leaf-list of type \"empty\" is allowed only in YANG 1.1 modules.");
return LY_EVALID;
} else if (llist_p->dflts) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Leaf-list of type \"empty\" must not have a default value (%s).", llist_p->dflts[0]);
return LY_EVALID;
}
}
if ((llist->flags & LYS_CONFIG_W) && llist->dflts && LY_ARRAY_SIZE(llist->dflts)) {
/* configuration data values must be unique - so check the default values */
LY_ARRAY_FOR(llist->dflts, u) {
for (v = u + 1; v < LY_ARRAY_SIZE(llist->dflts); ++v) {
if (!strcmp(llist->dflts[u], llist->dflts[v])) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Configuration leaf-list has multiple defaults of the same value \"%s\".", llist->dflts[v]);
return LY_EVALID;
}
}
}
}
/* TODO validate default value according to the type, possibly postpone the check when the leafref target is known */
done:
return ret;
}
/**
* @brief Compile information about list's uniques.
* @param[in] ctx Compile context.
* @param[in] context_module Module where the prefixes are going to be resolved.
* @param[in] uniques Sized array list of unique statements.
* @param[in] list Compiled list where the uniques are supposed to be resolved and stored.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_node_list_unique(struct lysc_ctx *ctx, struct lys_module *context_module, const char **uniques, struct lysc_node_list *list)
{
LY_ERR ret = LY_SUCCESS;
struct lysc_node_leaf **key, ***unique;
const char *keystr, *delim;
size_t len;
unsigned int v;
int config;
for (v = 0; v < LY_ARRAY_SIZE(uniques); ++v) {
config = -1;
LY_ARRAY_NEW_RET(ctx->ctx, list->uniques, unique, LY_EMEM);
keystr = uniques[v];
while (keystr) {
delim = strpbrk(keystr, " \t\n");
if (delim) {
len = delim - keystr;
while (isspace(*delim)) {
++delim;
}
} else {
len = strlen(keystr);
}
/* unique node must be present */
LY_ARRAY_NEW_RET(ctx->ctx, *unique, key, LY_EMEM);
ret = lys_resolve_schema_nodeid(ctx, keystr, len, (struct lysc_node*)list, context_module, LYS_LEAF, 0, (const struct lysc_node**)key);
if (ret != LY_SUCCESS) {
if (ret == LY_EDENIED) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Unique's descendant-schema-nodeid \"%.*s\" refers to a %s node instead of a leaf.",
len, keystr, lys_nodetype2str((*key)->nodetype));
}
return LY_EVALID;
}
/* all referenced leafs must be of the same config type */
if (config != -1 && ((((*key)->flags & LYS_CONFIG_W) && config == 0) || (((*key)->flags & LYS_CONFIG_R) && config == 1))) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Unique statement \"%s\" refers to leafs with different config type.", uniques[v]);
return LY_EVALID;
} else if ((*key)->flags & LYS_CONFIG_W) {
config = 1;
} else { /* LYS_CONFIG_R */
config = 0;
}
/* check status */
LY_CHECK_RET(lysc_check_status(ctx, list->flags, list->module, list->name,
(*key)->flags, (*key)->module, (*key)->name));
/* mark leaf as unique */
(*key)->flags |= LYS_UNIQUE;
/* next unique value in line */
keystr = delim;
}
/* next unique definition */
}
return LY_SUCCESS;
}
/**
* @brief Compile parsed list node information.
* @param[in] ctx Compile context
* @param[in] node_p Parsed list node.
* @param[in] options Various options to modify compiler behavior, see [compile flags](@ref scflags).
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the list-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_list(struct lysc_ctx *ctx, struct lysp_node *node_p, int options, struct lysc_node *node)
{
struct lysp_node_list *list_p = (struct lysp_node_list*)node_p;
struct lysc_node_list *list = (struct lysc_node_list*)node;
struct lysp_node *child_p;
struct lysc_node_leaf **key;
size_t len;
unsigned int u;
const char *keystr, *delim;
LY_ERR ret = LY_SUCCESS;
list->min = list_p->min;
if (list->min) {
list->flags |= LYS_MAND_TRUE;
}
list->max = list_p->max ? list_p->max : (uint32_t)-1;
LY_LIST_FOR(list_p->child, child_p) {
LY_CHECK_RET(lys_compile_node(ctx, child_p, options, node, 0));
}
COMPILE_ARRAY_GOTO(ctx, list_p->musts, list->musts, options, u, lys_compile_must, ret, done);
/* keys */
if ((list->flags & LYS_CONFIG_W) && (!list_p->key || !list_p->key[0])) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS, "Missing key in list representing configuration data.");
return LY_EVALID;
}
/* find all the keys (must be direct children) */
keystr = list_p->key;
while (keystr) {
delim = strpbrk(keystr, " \t\n");
if (delim) {
len = delim - keystr;
while (isspace(*delim)) {
++delim;
}
} else {
len = strlen(keystr);
}
/* key node must be present */
LY_ARRAY_NEW_RET(ctx->ctx, list->keys, key, LY_EMEM);
*key = (struct lysc_node_leaf*)lys_child(node, node->module, keystr, len, LYS_LEAF, LYS_GETNEXT_NOCHOICE | LYS_GETNEXT_NOSTATECHECK);
if (!(*key)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"The list's key \"%.*s\" not found.", len, keystr);
return LY_EVALID;
}
/* keys must be unique */
for(u = 0; u < LY_ARRAY_SIZE(list->keys) - 1; ++u) {
if (*key == list->keys[u]) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Duplicated key identifier \"%.*s\".", len, keystr);
return LY_EVALID;
}
}
/* key must have the same config flag as the list itself */
if ((list->flags & LYS_CONFIG_MASK) != ((*key)->flags & LYS_CONFIG_MASK)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS, "Key of the configuration list must not be status leaf.");
return LY_EVALID;
}
if (ctx->mod_def->version < LYS_VERSION_1_1) {
/* YANG 1.0 denies key to be of empty type */
if ((*key)->type->basetype == LY_TYPE_EMPTY) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Key of a list can be of type \"empty\" only in YANG 1.1 modules.");
return LY_EVALID;
}
} else {
/* when and if-feature are illegal on list keys */
if ((*key)->when) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"List's key \"%s\" must not have any \"when\" statement.", (*key)->name);
return LY_EVALID;
}
if ((*key)->iffeatures) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"List's key \"%s\" must not have any \"if-feature\" statement.", (*key)->name);
return LY_EVALID;
}
}
/* check status */
LY_CHECK_RET(lysc_check_status(ctx, list->flags, list->module, list->name,
(*key)->flags, (*key)->module, (*key)->name));
/* ignore default values of the key */
if ((*key)->dflt) {
lydict_remove(ctx->ctx, (*key)->dflt);
(*key)->dflt = NULL;
}
/* mark leaf as key */
(*key)->flags |= LYS_KEY;
/* next key value */
keystr = delim;
}
/* uniques */
if (list_p->uniques) {
LY_CHECK_RET(lys_compile_node_list_unique(ctx, list->module, list_p->uniques, list));
}
//COMPILE_ARRAY_GOTO(ctx, list_p->actions, list->actions, options, u, lys_compile_action, ret, done);
//COMPILE_ARRAY_GOTO(ctx, list_p->notifs, list->notifs, options, u, lys_compile_notif, ret, done);
done:
return ret;
}
/**
* @brief Do some checks and set the default choice's case.
*
* Selects (and stores into ::lysc_node_choice#dflt) the default case and set LYS_SET_DFLT flag on it.
*
* @param[in] ctx Compile context.
* @param[in] dflt Name of the default branch. Can contain even the prefix, but it make sense only in case it is the prefix of the module itself,
* not the reference to the imported module.
* @param[in,out] ch The compiled choice node, its dflt member is filled to point to the default case node of the choice.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_node_choice_dflt(struct lysc_ctx *ctx, const char *dflt, struct lysc_node_choice *ch)
{
struct lysc_node *iter, *node = (struct lysc_node*)ch;
const char *prefix = NULL, *name;
size_t prefix_len = 0;
/* could use lys_parse_nodeid(), but it checks syntax which is already done in this case by the parsers */
name = strchr(dflt, ':');
if (name) {
prefix = dflt;
prefix_len = name - prefix;
++name;
} else {
name = dflt;
}
if (prefix && (strncmp(prefix, node->module->prefix, prefix_len) || node->module->prefix[prefix_len] != '\0')) {
/* prefixed default case make sense only for the prefix of the schema itself */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid default case referencing a case from different YANG module (by prefix \"%.*s\").",
prefix_len, prefix);
return LY_EVALID;
}
ch->dflt = (struct lysc_node_case*)lys_child(node, node->module, name, 0, LYS_CASE, LYS_GETNEXT_NOSTATECHECK | LYS_GETNEXT_WITHCASE);
if (!ch->dflt) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Default case \"%s\" not found.", dflt);
return LY_EVALID;
}
/* no mandatory nodes directly under the default case */
LY_LIST_FOR(ch->dflt->child, iter) {
if (iter->parent != (struct lysc_node*)ch->dflt) {
break;
}
if (iter->flags & LYS_MAND_TRUE) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Mandatory node \"%s\" under the default case \"%s\".", iter->name, dflt);
return LY_EVALID;
}
}
ch->dflt->flags |= LYS_SET_DFLT;
return LY_SUCCESS;
}
static LY_ERR
lys_compile_deviation_set_choice_dflt(struct lysc_ctx *ctx, const char *devnodeid, const char *dflt, struct lysc_node_choice *ch)
{
struct lys_module *mod;
const char *prefix = NULL, *name;
size_t prefix_len = 0;
struct lysc_node_case *cs;
struct lysc_node *node;
/* could use lys_parse_nodeid(), but it checks syntax which is already done in this case by the parsers */
name = strchr(dflt, ':');
if (name) {
prefix = dflt;
prefix_len = name - prefix;
++name;
} else {
name = dflt;
}
/* this code is for deviation, so we allow as the default case even the cases from other modules than the choice (augments) */
if (prefix) {
if (!(mod = lys_module_find_prefix(ctx->mod, prefix, prefix_len))) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid deviation (%s) adding \"default\" property \"%s\" of choice. "
"The prefix does not match any imported module of the deviation module.",
devnodeid, dflt);
return LY_EVALID;
}
} else {
mod = ctx->mod;
}
/* get the default case */
cs = (struct lysc_node_case*)lys_child((struct lysc_node*)ch, mod, name, 0, LYS_CASE, LYS_GETNEXT_NOSTATECHECK | LYS_GETNEXT_WITHCASE);
if (!cs) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid deviation (%s) adding \"default\" property \"%s\" of choice - the specified case does not exists.",
devnodeid, dflt);
return LY_EVALID;
}
/* check that there is no mandatory node */
LY_LIST_FOR(cs->child, node) {
if (node->parent != (struct lysc_node*)cs) {
break;
}
if (node->flags & LYS_MAND_TRUE) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid deviation (%s) adding \"default\" property \"%s\" of choice - "
"mandatory node \"%s\" under the default case.", devnodeid, dflt, node->name);
return LY_EVALID;
}
}
/* set the default case in choice */
ch->dflt = cs;
cs->flags |= LYS_SET_DFLT;
return LY_SUCCESS;
}
/**
* @brief Compile parsed choice node information.
* @param[in] ctx Compile context
* @param[in] node_p Parsed choice node.
* @param[in] options Various options to modify compiler behavior, see [compile flags](@ref scflags).
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the choice-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_choice(struct lysc_ctx *ctx, struct lysp_node *node_p, int options, struct lysc_node *node)
{
struct lysp_node_choice *ch_p = (struct lysp_node_choice*)node_p;
struct lysc_node_choice *ch = (struct lysc_node_choice*)node;
struct lysp_node *child_p, *case_child_p;
struct lys_module;
LY_ERR ret = LY_SUCCESS;
LY_LIST_FOR(ch_p->child, child_p) {
if (child_p->nodetype == LYS_CASE) {
LY_LIST_FOR(((struct lysp_node_case*)child_p)->child, case_child_p) {
LY_CHECK_RET(lys_compile_node(ctx, case_child_p, options, node, 0));
}
} else {
LY_CHECK_RET(lys_compile_node(ctx, child_p, options, node, 0));
}
}
/* default branch */
if (ch_p->dflt) {
LY_CHECK_RET(lys_compile_node_choice_dflt(ctx, ch_p->dflt, ch));
}
return ret;
}
/**
* @brief Compile parsed anydata or anyxml node information.
* @param[in] ctx Compile context
* @param[in] node_p Parsed anydata or anyxml node.
* @param[in] options Various options to modify compiler behavior, see [compile flags](@ref scflags).
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the any-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_any(struct lysc_ctx *ctx, struct lysp_node *node_p, int options, struct lysc_node *node)
{
struct lysp_node_anydata *any_p = (struct lysp_node_anydata*)node_p;
struct lysc_node_anydata *any = (struct lysc_node_anydata*)node;
unsigned int u;
LY_ERR ret = LY_SUCCESS;
COMPILE_ARRAY_GOTO(ctx, any_p->musts, any->musts, options, u, lys_compile_must, ret, done);
if (any->flags & LYS_CONFIG_W) {
LOGWRN(ctx->ctx, "Use of %s to define configuration data is not recommended.",
ly_stmt2str(any->nodetype == LYS_ANYDATA ? YANG_ANYDATA : YANG_ANYXML));
}
done:
return ret;
}
/**
* @brief Compile status information of the given node.
*
* To simplify getting status of the node, the flags are set following inheritance rules, so all the nodes
* has the status correctly set during the compilation.
*
* @param[in] ctx Compile context
* @param[in,out] node Compiled node which status is supposed to be resolved. If the status was set explicitely on the node, it is already set in the
* flags value and we just check the compatibility with the parent's status value.
* @param[in] parent_flags Flags of the parent node to check/inherit the status value.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_status(struct lysc_ctx *ctx, struct lysc_node *node, uint16_t parent_flags)
{
/* status - it is not inherited by specification, but it does not make sense to have
* current in deprecated or deprecated in obsolete, so we do print warning and inherit status */
if (!(node->flags & LYS_STATUS_MASK)) {
if (parent_flags & (LYS_STATUS_DEPRC | LYS_STATUS_OBSLT)) {
if ((parent_flags & 0x3) != 0x3) {
/* do not print the warning when inheriting status from uses - the uses_status value has a special
* combination of bits (0x3) which marks the uses_status value */
LOGWRN(ctx->ctx, "Missing explicit \"%s\" status that was already specified in parent, inheriting.",
(parent_flags & LYS_STATUS_DEPRC) ? "deprecated" : "obsolete");
}
node->flags |= parent_flags & LYS_STATUS_MASK;
} else {
node->flags |= LYS_STATUS_CURR;
}
} else if (parent_flags & LYS_STATUS_MASK) {
/* check status compatibility with the parent */
if ((parent_flags & LYS_STATUS_MASK) > (node->flags & LYS_STATUS_MASK)) {
if (node->flags & LYS_STATUS_CURR) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"A \"current\" status is in conflict with the parent's \"%s\" status.",
(parent_flags & LYS_STATUS_DEPRC) ? "deprecated" : "obsolete");
} else { /* LYS_STATUS_DEPRC */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"A \"deprecated\" status is in conflict with the parent's \"obsolete\" status.");
}
return LY_EVALID;
}
}
return LY_SUCCESS;
}
/**
* @brief Check uniqness of the node/action/notification name.
*
* Data nodes, actions/RPCs and Notifications are stored separately (in distinguish lists) in the schema
* structures, but they share the namespace so we need to check their name collisions.
*
* @param[in] ctx Compile context.
* @param[in] children List (linked list) of data nodes to go through.
* @param[in] actions List (sized array) of actions or RPCs to go through.
* @param[in] notifs List (sized array) of Notifications to go through.
* @param[in] name Name of the item to find in the given lists.
* @param[in] exclude Pointer to an object to exclude from the name checking - for the case that the object
* with the @p name being checked is already inserted into one of the list so we need to skip it when searching for duplicity.
* @return LY_SUCCESS in case of unique name, LY_EEXIST otherwise.
*/
static LY_ERR
lys_compile_node_uniqness(struct lysc_ctx *ctx, const struct lysc_node *children,
const struct lysc_action *actions, const struct lysc_notif *notifs,
const char *name, void *exclude)
{
const struct lysc_node *iter;
unsigned int u;
LY_LIST_FOR(children, iter) {
if (iter != exclude && iter->module == ctx->mod && !strcmp(name, iter->name)) {
goto error;
}
}
LY_ARRAY_FOR(actions, u) {
if (&actions[u] != exclude && actions[u].module == ctx->mod && !strcmp(name, actions[u].name)) {
goto error;
}
}
LY_ARRAY_FOR(notifs, u) {
if (&notifs[u] != exclude && notifs[u].module == ctx->mod && !strcmp(name, notifs[u].name)) {
goto error;
}
}
return LY_SUCCESS;
error:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DUPIDENT, name, "data definition");
return LY_EEXIST;
}
/**
* @brief Connect the node into the siblings list and check its name uniqueness.
*
* @param[in] ctx Compile context
* @param[in] parent Parent node holding the children list, in case of node from a choice's case,
* the choice itself is expected instead of a specific case node.
* @param[in] node Schema node to connect into the list.
* @return LY_ERR value - LY_SUCCESS or LY_EEXIST.
*/
static LY_ERR
lys_compile_node_connect(struct lysc_ctx *ctx, struct lysc_node *parent, struct lysc_node *node)
{
struct lysc_node **children;
if (node->nodetype == LYS_CASE) {
children = (struct lysc_node**)&((struct lysc_node_choice*)parent)->cases;
} else {
children = lysc_node_children_p(parent);
}
if (children) {
if (!(*children)) {
/* first child */
*children = node;
} else if (*children != node) {
/* by the condition in previous branch we cover the choice/case children
* - the children list is shared by the choice and the the first case, in addition
* the first child of each case must be referenced from the case node. So the node is
* actually always already inserted in case it is the first children - so here such
* a situation actually corresponds to the first branch */
/* insert at the end of the parent's children list */
(*children)->prev->next = node;
node->prev = (*children)->prev;
(*children)->prev = node;
/* check the name uniqueness */
if (lys_compile_node_uniqness(ctx, *children, lysc_node_actions(parent),
lysc_node_notifs(parent), node->name, node)) {
return LY_EEXIST;
}
}
}
return LY_SUCCESS;
}
/**
* @brief Get the XPath context node for the given schema node.
* @param[in] start The schema node where the XPath expression appears.
* @return The context node to evaluate XPath expression in given schema node.
* @return NULL in case the context node is the root node.
*/
static struct lysc_node *
lysc_xpath_context(struct lysc_node *start)
{
for (; start && !(start->nodetype & (LYS_CONTAINER | LYS_LEAF | LYS_LEAFLIST | LYS_LIST | LYS_ANYDATA | LYS_ACTION | LYS_NOTIF));
start = start->parent);
return start;
}
/**
* @brief Prepare the case structure in choice node for the new data node.
*
* It is able to handle implicit as well as explicit cases and the situation when the case has multiple data nodes and the case was already
* created in the choice when the first child was processed.
*
* @param[in] ctx Compile context.
* @param[in] node_p Node image from the parsed tree. If the case is explicit, it is the LYS_CASE node, but in case of implicit case,
* it is the LYS_CHOICE node or LYS_AUGMENT node.
* @param[in] options Various options to modify compiler behavior, see [compile flags](@ref scflags).
* @param[in] ch The compiled choice structure where the new case structures are created (if needed).
* @param[in] child The new data node being part of a case (no matter if explicit or implicit).
* @return The case structure where the child node belongs to, NULL in case of error. Note that the child is not connected into the siblings list,
* it is linked from the case structure only in case it is its first child.
*/
static struct lysc_node_case*
lys_compile_node_case(struct lysc_ctx *ctx, struct lysp_node *node_p, int options, struct lysc_node_choice *ch, struct lysc_node *child)
{
struct lysc_node *iter;
struct lysc_node_case *cs;
struct lysc_when **when;
unsigned int u;
LY_ERR ret;
#define UNIQUE_CHECK(NAME, MOD) \
LY_LIST_FOR((struct lysc_node*)ch->cases, iter) { \
if (iter->module == MOD && !strcmp(iter->name, NAME)) { \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DUPIDENT, NAME, "case"); \
return NULL; \
} \
}
if (node_p->nodetype == LYS_CHOICE || node_p->nodetype == LYS_AUGMENT) {
UNIQUE_CHECK(child->name, ctx->mod);
/* we have to add an implicit case node into the parent choice */
cs = calloc(1, sizeof(struct lysc_node_case));
DUP_STRING(ctx->ctx, child->name, cs->name);
cs->flags = ch->flags & LYS_STATUS_MASK;
} else if (node_p->nodetype == LYS_CASE) {
if (ch->cases && (node_p == ch->cases->prev->sp)) {
/* the case is already present since the child is not its first children */
return (struct lysc_node_case*)ch->cases->prev;
}
UNIQUE_CHECK(node_p->name, ctx->mod);
/* explicit parent case is not present (this is its first child) */
cs = calloc(1, sizeof(struct lysc_node_case));
DUP_STRING(ctx->ctx, node_p->name, cs->name);
cs->flags = LYS_STATUS_MASK & node_p->flags;
cs->sp = node_p;
/* check the case's status (don't need to solve uses_status since case statement cannot be directly in grouping statement */
LY_CHECK_RET(lys_compile_status(ctx, (struct lysc_node*)cs, ch->flags), NULL);
if (node_p->when) {
LY_ARRAY_NEW_GOTO(ctx->ctx, cs->when, when, ret, error);
ret = lys_compile_when(ctx, node_p->when, options, when);
LY_CHECK_GOTO(ret, error);
(*when)->context = lysc_xpath_context(ch->parent);
}
COMPILE_ARRAY_GOTO(ctx, node_p->iffeatures, cs->iffeatures, options, u, lys_compile_iffeature, ret, error);
} else {
LOGINT(ctx->ctx);
goto error;
}
cs->module = ctx->mod;
cs->prev = (struct lysc_node*)cs;
cs->nodetype = LYS_CASE;
lys_compile_node_connect(ctx, (struct lysc_node*)ch, (struct lysc_node*)cs);
cs->parent = (struct lysc_node*)ch;
cs->child = child;
return cs;
error:
return NULL;
#undef UNIQUE_CHECK
}
/**
* @brief Apply refined or deviated config to the target node.
*
* @param[in] ctx Compile context.
* @param[in] node Target node where the config is supposed to be changed.
* @param[in] config_flag Node's config flag to be applied to the @p node.
* @param[in] nodeid Schema nodeid used to identify target of refine/deviation (for logging).
* @param[in] inheriting Flag (inverted) to check the refined config compatibility with the node's parent. This is
* done only on the node for which the refine was created. The function applies also recursively to apply the config change
* to the complete subtree (except the subnodes with explicit config set) and the test is not needed for the subnodes.
* @param[in] refine_flag Flag to distinguish if the change is caused by refine (flag set) or deviation (for logging).
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_change_config(struct lysc_ctx *ctx, struct lysc_node *node, uint16_t config_flag,
const char *nodeid, int inheriting, int refine_flag)
{
struct lysc_node *child;
uint16_t config = config_flag & LYS_CONFIG_MASK;
if (config == (node->flags & LYS_CONFIG_MASK)) {
/* nothing to do */
return LY_SUCCESS;
}
if (!inheriting) {
/* explicit change */
if (config == LYS_CONFIG_W && node->parent && (node->parent->flags & LYS_CONFIG_R)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid %s of config in \"%s\" - configuration node cannot be child of any state data node.",
refine_flag ? "refine" : "deviation", nodeid);
return LY_EVALID;
}
node->flags |= LYS_SET_CONFIG;
} else {
if (node->flags & LYS_SET_CONFIG) {
if ((node->flags & LYS_CONFIG_W) && (config == LYS_CONFIG_R)) {
/* setting config flags, but have node with explicit config true */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid %s of config in \"%s\" - configuration node cannot be child of any state data node.",
refine_flag ? "refine" : "deviation", nodeid);
return LY_EVALID;
}
/* do not change config on nodes where the config is explicitely set, this does not apply to
* nodes, which are being changed explicitly (targets of refine or deviation) */
return LY_SUCCESS;
}
}
node->flags &= ~LYS_CONFIG_MASK;
node->flags |= config;
/* inherit the change into the children */
LY_LIST_FOR((struct lysc_node*)lysc_node_children(node), child) {
LY_CHECK_RET(lys_compile_change_config(ctx, child, config_flag, nodeid, 1, refine_flag));
}
/* TODO actions and notifications */
return LY_SUCCESS;
}
/**
* @brief Set LYS_MAND_TRUE flag for the non-presence container parents.
*
* A non-presence container is mandatory in case it has at least one mandatory children. This function propagate
* the flag to such parents from a mandatory children.
*
* @param[in] parent A schema node to be examined if the mandatory child make it also mandatory.
* @param[in] add Flag to distinguish adding the mandatory flag (new mandatory children appeared) or removing the flag
* (mandatory children was removed).
*/
void
lys_compile_mandatory_parents(struct lysc_node *parent, int add)
{
struct lysc_node *iter;
if (add) { /* set flag */
for (; parent && parent->nodetype == LYS_CONTAINER && !(parent->flags & LYS_MAND_TRUE) && !(parent->flags & LYS_PRESENCE);
parent = parent->parent) {
parent->flags |= LYS_MAND_TRUE;
}
} else { /* unset flag */
for (; parent && parent->nodetype == LYS_CONTAINER && (parent->flags & LYS_MAND_TRUE); parent = parent->parent) {
for (iter = (struct lysc_node*)lysc_node_children(parent); iter; iter = iter->next) {
if (iter->flags & LYS_MAND_TRUE) {
/* there is another mandatory node */
return;
}
}
/* unset mandatory flag - there is no mandatory children in the non-presence container */
parent->flags &= ~LYS_MAND_TRUE;
}
}
}
/**
* @brief Internal sorting process for the lys_compile_augment_sort().
* @param[in] aug_p The parsed augment structure to insert into the sorter sized array @p result.
* @param[in,out] result Sized array to store the sorted list of augments. The array is expected
* to be allocated to hold the complete list, its size is just incremented by adding another item.
*/
static void
lys_compile_augment_sort_(struct lysp_augment *aug_p, struct lysp_augment **result)
{
unsigned int v;
size_t len;
len = strlen(aug_p->nodeid);
LY_ARRAY_FOR(result, v) {
if (strlen(result[v]->nodeid) <= len) {
continue;
}
if (v < LY_ARRAY_SIZE(result)) {
/* move the rest of array */
memmove(&result[v + 1], &result[v], (LY_ARRAY_SIZE(result) - v) * sizeof *result);
break;
}
}
result[v] = aug_p;
LY_ARRAY_INCREMENT(result);
}
/**
* @brief Sort augments to apply /a/b before /a/b/c (where the /a/b/c was added by the first augment).
*
* The sorting is based only on the length of the augment's path since it guarantee the correct order
* (it doesn't matter the /a/x is done before /a/b/c from the example above).
*
* @param[in] ctx Compile context.
* @param[in] mod_p Parsed module with the global augments (also augments from the submodules are taken).
* @param[in] aug_p Parsed sized array of augments to sort (no matter if global or uses's)
* @param[in] inc_p In case of global augments, sized array of module includes (submodules) to get global augments from submodules.
* @param[out] augments Resulting sorted sized array of pointers to the augments.
* @return LY_ERR value.
*/
LY_ERR
lys_compile_augment_sort(struct lysc_ctx *ctx, struct lysp_augment *aug_p, struct lysp_include *inc_p, struct lysp_augment ***augments)
{
struct lysp_augment **result = NULL;
unsigned int u, v;
size_t count = 0;
assert(augments);
/* get count of the augments in module and all its submodules */
if (aug_p) {
count += LY_ARRAY_SIZE(aug_p);
}
LY_ARRAY_FOR(inc_p, u) {
if (inc_p[u].submodule->augments) {
count += LY_ARRAY_SIZE(inc_p[u].submodule->augments);
}
}
if (!count) {
*augments = NULL;
return LY_SUCCESS;
}
LY_ARRAY_CREATE_RET(ctx->ctx, result, count, LY_EMEM);
/* sort by the length of schema-nodeid - we need to solve /x before /x/xy. It is not necessary to group them
* together, so there can be even /z/y betwwen them. */
LY_ARRAY_FOR(aug_p, u) {
lys_compile_augment_sort_(&aug_p[u], result);
}
LY_ARRAY_FOR(inc_p, u) {
LY_ARRAY_FOR(inc_p[u].submodule->augments, v) {
lys_compile_augment_sort_(&inc_p[u].submodule->augments[v], result);
}
}
*augments = result;
return LY_SUCCESS;
}
/**
* @brief Compile the parsed augment connecting it into its target.
*
* It is expected that all the data referenced in path are present - augments are ordered so that augment B
* targeting data from augment A is being compiled after augment A. Also the modules referenced in the path
* are already implemented and compiled.
*
* @param[in] ctx Compile context.
* @param[in] aug_p Parsed augment to compile.
* @param[in] options Various options to modify compiler behavior, see [compile flags](@ref scflags).
* @param[in] parent Parent node to provide the augment's context. It is NULL for the top level augments and a node holding uses's
* children in case of the augmenting uses data.
* @return LY_SUCCESS on success.
* @return LY_EVALID on failure.
*/
LY_ERR
lys_compile_augment(struct lysc_ctx *ctx, struct lysp_augment *aug_p, int options, const struct lysc_node *parent)
{
LY_ERR ret = LY_SUCCESS;
struct lysp_node *node_p, *case_node_p;
struct lysc_node *target; /* target target of the augment */
struct lysc_node *node;
struct lysc_when **when, *when_shared;
int allow_mandatory = 0;
ret = lys_resolve_schema_nodeid(ctx, aug_p->nodeid, 0, parent, parent ? parent->module : ctx->mod_def,
LYS_CONTAINER | LYS_LIST | LYS_CHOICE | LYS_CASE | LYS_INOUT | LYS_NOTIF,
1, (const struct lysc_node**)&target);
if (ret != LY_SUCCESS) {
if (ret == LY_EDENIED) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Augment's %s-schema-nodeid \"%s\" refers to a %s node which is not an allowed augment's target.",
parent ? "descendant" : "absolute", aug_p->nodeid, lys_nodetype2str(target->nodetype));
}
return LY_EVALID;
}
/* check for mandatory nodes
* - new cases augmenting some choice can have mandatory nodes
* - mandatory nodes are allowed only in case the augmentation is made conditional with a when statement
*/
if (aug_p->when || target->nodetype == LYS_CHOICE || ctx->mod == target->module) {
allow_mandatory = 1;
}
when_shared = NULL;
LY_LIST_FOR(aug_p->child, node_p) {
/* check if the subnode can be connected to the found target (e.g. case cannot be inserted into container) */
if (!(target->nodetype == LYS_CHOICE && node_p->nodetype == LYS_CASE)
&& !((target->nodetype & (LYS_CONTAINER | LYS_LIST)) && (node_p->nodetype & (LYS_ACTION | LYS_NOTIF)))
&& !(target->nodetype != LYS_CHOICE && node_p->nodetype == LYS_USES)
&& !(node_p->nodetype & (LYS_ANYDATA | LYS_CONTAINER | LYS_CHOICE | LYS_LEAF | LYS_LIST | LYS_LEAFLIST))) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid augment (%s) of %s node which is not allowed to contain %s node \"%s\".",
aug_p->nodeid, lys_nodetype2str(target->nodetype), lys_nodetype2str(node_p->nodetype), node_p->name);
return LY_EVALID;
}
/* compile the children */
if (node_p->nodetype != LYS_CASE) {
LY_CHECK_RET(lys_compile_node(ctx, node_p, options, target, 0));
} else {
LY_LIST_FOR(((struct lysp_node_case *)node_p)->child, case_node_p) {
LY_CHECK_RET(lys_compile_node(ctx, case_node_p, options, target, 0));
}
}
/* since the augment node is not present in the compiled tree, we need to pass some of its statements to all its children,
* here we gets the last created node as last children of our parent */
if (target->nodetype == LYS_CASE) {
/* the compiled node is the last child of the target (but it is a case, so we have to be careful and stop) */
for (node = (struct lysc_node*)lysc_node_children(target); node->next && node->next->parent == node->parent; node = node->next);
} else if (target->nodetype == LYS_CHOICE) {
/* to pass when statement, we need the last case no matter if it is explicit or implicit case */
node = ((struct lysc_node_choice*)target)->cases->prev;
} else {
/* the compiled node is the last child of the target */
node = lysc_node_children(target)->prev;
}
if (!allow_mandatory && (node->flags & LYS_CONFIG_W) && (node->flags & LYS_MAND_TRUE)) {
node->flags &= ~LYS_MAND_TRUE;
lys_compile_mandatory_parents(target, 0);
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid augment (%s) adding mandatory node \"%s\" without making it conditional via when statement.",
aug_p->nodeid, node->name);
return LY_EVALID;
}
/* pass augment's when to all the children */
if (aug_p->when) {
LY_ARRAY_NEW_GOTO(ctx->ctx, node->when, when, ret, error);
if (!when_shared) {
ret = lys_compile_when(ctx, aug_p->when, options, when);
LY_CHECK_GOTO(ret, error);
(*when)->context = lysc_xpath_context(target);
when_shared = *when;
} else {
++when_shared->refcount;
(*when) = when_shared;
}
}
}
/* TODO actions, notifications */
error:
return ret;
}
/**
* @brief Apply refined or deviated mandatory flag to the target node.
*
* @param[in] ctx Compile context.
* @param[in] node Target node where the mandatory property is supposed to be changed.
* @param[in] mandatory_flag Node's mandatory flag to be applied to the @p node.
* @param[in] nodeid Schema nodeid used to identify target of refine/deviation (for logging).
* @param[in] refine_flag Flag to distinguish if the change is caused by refine (flag set) or deviation (for logging).
* @param[in] It is also used as a flag for testing for compatibility with default statement. In case of deviations,
* there can be some other deviations of the default properties that we are testing here. To avoid false positive failure,
* the tests are skipped here, but they are supposed to be performed after all the deviations are applied.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_change_mandatory(struct lysc_ctx *ctx, struct lysc_node *node, uint16_t mandatory_flag, const char *nodeid, int refine_flag)
{
if (!(node->nodetype & (LYS_LEAF | LYS_ANYDATA | LYS_ANYXML | LYS_CHOICE))) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid %s of mandatory in \"%s\" - %s cannot hold mandatory statement.",
refine_flag ? "refine" : "deviation", nodeid, lys_nodetype2str(node->nodetype));
return LY_EVALID;
}
if (mandatory_flag & LYS_MAND_TRUE) {
/* check if node has default value */
if (node->nodetype & LYS_LEAF) {
if (node->flags & LYS_SET_DFLT) {
if (refine_flag) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid refine of mandatory in \"%s\" - leaf already has \"default\" statement.", nodeid);
return LY_EVALID;
}
} else {
/* remove the default value taken from the leaf's type */
FREE_STRING(ctx->ctx, ((struct lysc_node_leaf*)node)->dflt);
((struct lysc_node_leaf*)node)->dflt = NULL;
}
} else if ((node->nodetype & LYS_CHOICE) && ((struct lysc_node_choice*)node)->dflt) {
if (refine_flag) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid refine of mandatory in \"%s\" - choice already has \"default\" statement.", nodeid);
return LY_EVALID;
}
}
if (refine_flag && node->parent && (node->parent->flags & LYS_SET_DFLT)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid refine of mandatory in \"%s\" under the default case.", nodeid);
return LY_EVALID;
}
node->flags &= ~LYS_MAND_FALSE;
node->flags |= LYS_MAND_TRUE;
lys_compile_mandatory_parents(node->parent, 1);
} else {
/* make mandatory false */
node->flags &= ~LYS_MAND_TRUE;
node->flags |= LYS_MAND_FALSE;
lys_compile_mandatory_parents(node->parent, 0);
if ((node->nodetype & LYS_LEAF) && !((struct lysc_node_leaf*)node)->dflt) {
/* get the type's default value if any */
DUP_STRING(ctx->ctx, ((struct lysc_node_leaf*)node)->type->dflt, ((struct lysc_node_leaf*)node)->dflt);
}
}
return LY_SUCCESS;
}
/**
* @brief Compile parsed uses statement - resolve target grouping and connect its content into parent.
* If present, also apply uses's modificators.
*
* @param[in] ctx Compile context
* @param[in] uses_p Parsed uses schema node.
* @param[in] options Various options to modify compiler behavior, see [compile flags](@ref scflags).
* @param[in] parent Compiled parent node where the content of the referenced grouping is supposed to be connected. It is
* NULL for top-level nodes, in such a case the module where the node will be connected is taken from
* the compile context.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_uses(struct lysc_ctx *ctx, struct lysp_node_uses *uses_p, int options, struct lysc_node *parent)
{
struct lysp_node *node_p;
struct lysc_node *node, *child;
/* context_node_fake allows us to temporarily isolate the nodes inserted from the grouping instead of uses */
struct lysc_node_container context_node_fake =
{.nodetype = LYS_CONTAINER,
.module = ctx->mod,
.flags = parent ? parent->flags : 0,
.child = NULL, .next = NULL,
.prev = (struct lysc_node*)&context_node_fake};
const struct lysp_grp *grp = NULL;
unsigned int u, v, grp_stack_count;
int found;
const char *id, *name, *prefix;
size_t prefix_len, name_len;
struct lys_module *mod, *mod_old;
struct lysp_refine *rfn;
LY_ERR ret = LY_EVALID;
uint32_t min, max;
struct ly_set refined = {0};
struct lysc_when **when, *when_shared;
struct lysp_augment **augments = NULL;
/* search for the grouping definition */
found = 0;
id = uses_p->name;
lys_parse_nodeid(&id, &prefix, &prefix_len, &name, &name_len);
if (prefix) {
mod = lys_module_find_prefix(ctx->mod_def, prefix, prefix_len);
if (!mod) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid prefix used for grouping reference (%s).", uses_p->name);
return LY_EVALID;
}
} else {
mod = ctx->mod_def;
}
if (mod == ctx->mod_def) {
for (node_p = uses_p->parent; !found && node_p; node_p = node_p->parent) {
grp = lysp_node_groupings(node_p);
LY_ARRAY_FOR(grp, u) {
if (!strcmp(grp[u].name, name)) {
grp = &grp[u];
found = 1;
break;
}
}
}
}
if (!found) {
/* search in top-level groupings of the main module ... */
grp = mod->parsed->groupings;
if (grp) {
for (u = 0; !found && u < LY_ARRAY_SIZE(grp); ++u) {
if (!strcmp(grp[u].name, name)) {
grp = &grp[u];
found = 1;
}
}
}
if (!found && mod->parsed->includes) {
/* ... and all the submodules */
for (u = 0; !found && u < LY_ARRAY_SIZE(mod->parsed->includes); ++u) {
grp = mod->parsed->includes[u].submodule->groupings;
if (grp) {
for (v = 0; !found && v < LY_ARRAY_SIZE(grp); ++v) {
if (!strcmp(grp[v].name, name)) {
grp = &grp[v];
found = 1;
}
}
}
}
}
}
if (!found) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Grouping \"%s\" referenced by a uses statement not found.", uses_p->name);
return LY_EVALID;
}
/* grouping must not reference themselves - stack in ctx maintains list of groupings currently being applied */
grp_stack_count = ctx->groupings.count;
ly_set_add(&ctx->groupings, (void*)grp, 0);
if (grp_stack_count == ctx->groupings.count) {
/* the target grouping is already in the stack, so we are already inside it -> circular dependency */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Grouping \"%s\" references itself through a uses statement.", grp->name);
return LY_EVALID;
}
/* switch context's mod_def */
mod_old = ctx->mod_def;
ctx->mod_def = mod;
/* check status */
LY_CHECK_GOTO(lysc_check_status(ctx, uses_p->flags, mod_old, uses_p->name, grp->flags, mod, grp->name), error);
LY_LIST_FOR(grp->data, node_p) {
/* 0x3 in uses_status is a special bits combination to be able to detect status flags from uses */
LY_CHECK_GOTO(lys_compile_node(ctx, node_p, options, parent, (uses_p->flags & LYS_STATUS_MASK) | 0x3), error);
child = parent ? lysc_node_children(parent)->prev : ctx->mod->compiled->data->prev;
/* some preparation for applying refines */
if (grp->data == node_p) {
/* remember the first child */
context_node_fake.child = child;
}
}
when_shared = NULL;
LY_LIST_FOR(context_node_fake.child, child) {
child->parent = (struct lysc_node*)&context_node_fake;
/* pass uses's when to all the children */
if (uses_p->when) {
LY_ARRAY_NEW_GOTO(ctx->ctx, child->when, when, ret, error);
if (!when_shared) {
LY_CHECK_GOTO(lys_compile_when(ctx, uses_p->when, options, when), error);
(*when)->context = lysc_xpath_context(parent);
when_shared = *when;
} else {
++when_shared->refcount;
(*when) = when_shared;
}
}
}
if (context_node_fake.child) {
child = context_node_fake.child->prev;
context_node_fake.child->prev = parent ? lysc_node_children(parent)->prev : ctx->mod->compiled->data->prev;
}
/* sort and apply augments */
LY_CHECK_GOTO(lys_compile_augment_sort(ctx, uses_p->augments, NULL, &augments), error);
LY_ARRAY_FOR(augments, u) {
LY_CHECK_GOTO(lys_compile_augment(ctx, augments[u], options, (struct lysc_node*)&context_node_fake), error);
}
/* reload previous context's mod_def */
ctx->mod_def = mod_old;
/* apply refine */
LY_ARRAY_FOR(uses_p->refines, struct lysp_refine, rfn) {
LY_CHECK_GOTO(lys_resolve_schema_nodeid(ctx, rfn->nodeid, 0, (struct lysc_node*)&context_node_fake, ctx->mod,
0, 0, (const struct lysc_node**)&node),
error);
ly_set_add(&refined, node, LY_SET_OPT_USEASLIST);
/* default value */
if (rfn->dflts) {
if ((node->nodetype != LYS_LEAFLIST) && LY_ARRAY_SIZE(rfn->dflts) > 1) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid refine of default in \"%s\" - %s cannot hold %d default values.",
rfn->nodeid, lys_nodetype2str(node->nodetype), LY_ARRAY_SIZE(rfn->dflts));
goto error;
}
if (!(node->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_CHOICE))) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid refine of default in \"%s\" - %s cannot hold default value(s).",
rfn->nodeid, lys_nodetype2str(node->nodetype));
goto error;
}
if (node->nodetype == LYS_LEAF) {
FREE_STRING(ctx->ctx, ((struct lysc_node_leaf*)node)->dflt);
DUP_STRING(ctx->ctx, rfn->dflts[0], ((struct lysc_node_leaf*)node)->dflt);
node->flags |= LYS_SET_DFLT;
/* TODO check the default value according to type */
} else if (node->nodetype == LYS_LEAFLIST) {
if (ctx->mod->version < 2) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid refine of default in leaf-list - the default statement is allowed only in YANG 1.1 modules.");
goto error;
}
LY_ARRAY_FOR(((struct lysc_node_leaflist*)node)->dflts, u) {
lydict_remove(ctx->ctx, ((struct lysc_node_leaflist*)node)->dflts[u]);
}
LY_ARRAY_FREE(((struct lysc_node_leaflist*)node)->dflts);
((struct lysc_node_leaflist*)node)->dflts = NULL;
LY_ARRAY_CREATE_GOTO(ctx->ctx, ((struct lysc_node_leaflist*)node)->dflts, LY_ARRAY_SIZE(rfn->dflts), ret, error);
LY_ARRAY_FOR(rfn->dflts, u) {
LY_ARRAY_INCREMENT(((struct lysc_node_leaflist*)node)->dflts);
DUP_STRING(ctx->ctx, rfn->dflts[u], ((struct lysc_node_leaflist*)node)->dflts[u]);
}
/* TODO check the default values according to type */
} else if (node->nodetype == LYS_CHOICE) {
if (((struct lysc_node_choice*)node)->dflt) {
/* unset LYS_SET_DFLT from the current default case */
((struct lysc_node_choice*)node)->dflt->flags &= ~LYS_SET_DFLT;
}
LY_CHECK_GOTO(lys_compile_node_choice_dflt(ctx, rfn->dflts[0], (struct lysc_node_choice*)node), error);
}
}
/* description */
if (rfn->dsc) {
FREE_STRING(ctx->ctx, node->dsc);
node->dsc = lydict_insert(ctx->ctx, rfn->dsc, 0);
}
/* reference */
if (rfn->ref) {
FREE_STRING(ctx->ctx, node->ref);
node->ref = lydict_insert(ctx->ctx, rfn->ref, 0);
}
/* config */
if (rfn->flags & LYS_CONFIG_MASK) {
LY_CHECK_GOTO(lys_compile_change_config(ctx, node, rfn->flags, rfn->nodeid, 0, 1), error);
}
/* mandatory */
if (rfn->flags & LYS_MAND_MASK) {
LY_CHECK_GOTO(lys_compile_change_mandatory(ctx, node, rfn->flags, rfn->nodeid, 1), error);
}
/* presence */
if (rfn->presence) {
if (node->nodetype != LYS_CONTAINER) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid refine of presence statement in \"%s\" - %s cannot hold the presence statement.",
rfn->nodeid, lys_nodetype2str(node->nodetype));
goto error;
}
node->flags |= LYS_PRESENCE;
}
/* must */
if (rfn->musts) {
switch (node->nodetype) {
case LYS_LEAF:
COMPILE_ARRAY_GOTO(ctx, rfn->musts, ((struct lysc_node_leaf*)node)->musts, options, u, lys_compile_must, ret, error);
break;
case LYS_LEAFLIST:
COMPILE_ARRAY_GOTO(ctx, rfn->musts, ((struct lysc_node_leaflist*)node)->musts, options, u, lys_compile_must, ret, error);
break;
case LYS_LIST:
COMPILE_ARRAY_GOTO(ctx, rfn->musts, ((struct lysc_node_list*)node)->musts, options, u, lys_compile_must, ret, error);
break;
case LYS_CONTAINER:
COMPILE_ARRAY_GOTO(ctx, rfn->musts, ((struct lysc_node_container*)node)->musts, options, u, lys_compile_must, ret, error);
break;
case LYS_ANYXML:
case LYS_ANYDATA:
COMPILE_ARRAY_GOTO(ctx, rfn->musts, ((struct lysc_node_anydata*)node)->musts, options, u, lys_compile_must, ret, error);
break;
default:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid refine of must statement in \"%s\" - %s cannot hold any must statement.",
rfn->nodeid, lys_nodetype2str(node->nodetype));
goto error;
}
}
/* min/max-elements */
if (rfn->flags & (LYS_SET_MAX | LYS_SET_MIN)) {
switch (node->nodetype) {
case LYS_LEAFLIST:
if (rfn->flags & LYS_SET_MAX) {
((struct lysc_node_leaflist*)node)->max = rfn->max ? rfn->max : (uint32_t)-1;
}
if (rfn->flags & LYS_SET_MIN) {
((struct lysc_node_leaflist*)node)->min = rfn->min;
if (rfn->min) {
node->flags |= LYS_MAND_TRUE;
lys_compile_mandatory_parents(node->parent, 1);
} else {
node->flags &= ~LYS_MAND_TRUE;
lys_compile_mandatory_parents(node->parent, 0);
}
}
break;
case LYS_LIST:
if (rfn->flags & LYS_SET_MAX) {
((struct lysc_node_list*)node)->max = rfn->max ? rfn->max : (uint32_t)-1;
}
if (rfn->flags & LYS_SET_MIN) {
((struct lysc_node_list*)node)->min = rfn->min;
if (rfn->min) {
node->flags |= LYS_MAND_TRUE;
lys_compile_mandatory_parents(node->parent, 1);
} else {
node->flags &= ~LYS_MAND_TRUE;
lys_compile_mandatory_parents(node->parent, 0);
}
}
break;
default:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid refine of %s statement in \"%s\" - %s cannot hold this statement.",
(rfn->flags & LYS_SET_MAX) ? "max-elements" : "min-elements", rfn->nodeid, lys_nodetype2str(node->nodetype));
goto error;
}
}
/* if-feature */
if (rfn->iffeatures) {
/* any node in compiled tree can get additional if-feature, so do not check nodetype */
COMPILE_ARRAY_GOTO(ctx, rfn->iffeatures, node->iffeatures, options, u, lys_compile_iffeature, ret, error);
}
}
/* fix connection of the children nodes from fake context node back into the parent */
if (context_node_fake.child) {
context_node_fake.child->prev = child;
}
LY_LIST_FOR(context_node_fake.child, child) {
child->parent = parent;
}
/* do some additional checks of the changed nodes when all the refines are applied */
for (u = 0; u < refined.count; ++u) {
node = (struct lysc_node*)refined.objs[u];
rfn = &uses_p->refines[u];
/* check possible conflict with default value (default added, mandatory left true) */
if ((node->flags & LYS_MAND_TRUE) &&
(((node->nodetype & LYS_CHOICE) && ((struct lysc_node_choice*)node)->dflt) ||
((node->nodetype & LYS_LEAF) && (node->flags & LYS_SET_DFLT)))) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid refine of default in \"%s\" - the node is mandatory.", rfn->nodeid);
goto error;
}
if (rfn->flags & (LYS_SET_MAX | LYS_SET_MIN)) {
if (node->nodetype == LYS_LIST) {
min = ((struct lysc_node_list*)node)->min;
max = ((struct lysc_node_list*)node)->max;
} else {
min = ((struct lysc_node_leaflist*)node)->min;
max = ((struct lysc_node_leaflist*)node)->max;
}
if (min > max) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid refine of %s statement in \"%s\" - \"min-elements\" is bigger than \"max-elements\".",
(rfn->flags & LYS_SET_MAX) ? "max-elements" : "min-elements", rfn->nodeid);
goto error;
}
}
}
ret = LY_SUCCESS;
error:
/* reload previous context's mod_def */
ctx->mod_def = mod_old;
/* remove the grouping from the stack for circular groupings dependency check */
ly_set_rm_index(&ctx->groupings, ctx->groupings.count - 1, NULL);
assert(ctx->groupings.count == grp_stack_count);
ly_set_erase(&refined, NULL);
LY_ARRAY_FREE(augments);
return ret;
}
/**
* @brief Compile parsed schema node information.
* @param[in] ctx Compile context
* @param[in] node_p Parsed schema node.
* @param[in] options Various options to modify compiler behavior, see [compile flags](@ref scflags).
* @param[in] parent Compiled parent node where the current node is supposed to be connected. It is
* NULL for top-level nodes, in such a case the module where the node will be connected is taken from
* the compile context.
* @param[in] uses_status If the node is being placed instead of uses, here we have the uses's status value (as node's flags).
* Zero means no uses, non-zero value with no status bit set mean the default status.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node(struct lysc_ctx *ctx, struct lysp_node *node_p, int options, struct lysc_node *parent, uint16_t uses_status)
{
LY_ERR ret = LY_EVALID;
struct lysc_node *node;
struct lysc_node_case *cs;
struct lysc_when **when;
unsigned int u;
LY_ERR (*node_compile_spec)(struct lysc_ctx*, struct lysp_node*, int, struct lysc_node*);
switch (node_p->nodetype) {
case LYS_CONTAINER:
node = (struct lysc_node*)calloc(1, sizeof(struct lysc_node_container));
node_compile_spec = lys_compile_node_container;
break;
case LYS_LEAF:
node = (struct lysc_node*)calloc(1, sizeof(struct lysc_node_leaf));
node_compile_spec = lys_compile_node_leaf;
break;
case LYS_LIST:
node = (struct lysc_node*)calloc(1, sizeof(struct lysc_node_list));
node_compile_spec = lys_compile_node_list;
break;
case LYS_LEAFLIST:
node = (struct lysc_node*)calloc(1, sizeof(struct lysc_node_leaflist));
node_compile_spec = lys_compile_node_leaflist;
break;
case LYS_CHOICE:
node = (struct lysc_node*)calloc(1, sizeof(struct lysc_node_choice));
node_compile_spec = lys_compile_node_choice;
break;
case LYS_ANYXML:
case LYS_ANYDATA:
node = (struct lysc_node*)calloc(1, sizeof(struct lysc_node_anydata));
node_compile_spec = lys_compile_node_any;
break;
case LYS_USES:
return lys_compile_uses(ctx, (struct lysp_node_uses*)node_p, options, parent);
default:
LOGINT(ctx->ctx);
return LY_EINT;
}
LY_CHECK_ERR_RET(!node, LOGMEM(ctx->ctx), LY_EMEM);
node->nodetype = node_p->nodetype;
node->module = ctx->mod;
node->prev = node;
node->flags = node_p->flags & LYS_FLAGS_COMPILED_MASK;
/* config */
if (!(node->flags & LYS_CONFIG_MASK)) {
/* config not explicitely set, inherit it from parent */
if (parent) {
node->flags |= parent->flags & LYS_CONFIG_MASK;
} else {
/* default is config true */
node->flags |= LYS_CONFIG_W;
}
} else {
/* config set explicitely */
node->flags |= LYS_SET_CONFIG;
}
if (parent && (parent->flags & LYS_CONFIG_R) && (node->flags & LYS_CONFIG_W)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Configuration node cannot be child of any state data node.");
goto error;
}
/* *list ordering */
if (node->nodetype & (LYS_LIST | LYS_LEAFLIST)) {
if ((node->flags & LYS_CONFIG_R) && (node->flags & LYS_ORDBY_MASK)) {
LOGWRN(ctx->ctx, "The ordered-by statement is ignored in lists representing state data, "
"RPC/action output parameters or notification content (%s).", ctx->path);
node->flags &= ~LYS_ORDBY_MASK;
node->flags |= LYS_ORDBY_SYSTEM;
} else if (!(node->flags & LYS_ORDBY_MASK)) {
/* default ordering is system */
node->flags |= LYS_ORDBY_SYSTEM;
}
}
/* status - it is not inherited by specification, but it does not make sense to have
* current in deprecated or deprecated in obsolete, so we do print warning and inherit status */
if (!parent || parent->nodetype != LYS_CHOICE) {
/* in case of choice/case's children, postpone the check to the moment we know if
* the parent is choice (parent here) or some case (so we have to get its flags to check) */
LY_CHECK_GOTO(lys_compile_status(ctx, node, uses_status ? uses_status : (parent ? parent->flags : 0)), error);
}
if (!(options & LYSC_OPT_FREE_SP)) {
node->sp = node_p;
}
DUP_STRING(ctx->ctx, node_p->name, node->name);
DUP_STRING(ctx->ctx, node_p->dsc, node->dsc);
DUP_STRING(ctx->ctx, node_p->ref, node->ref);
if (node_p->when) {
LY_ARRAY_NEW_GOTO(ctx->ctx, node->when, when, ret, error);
ret = lys_compile_when(ctx, node_p->when, options, when);
LY_CHECK_GOTO(ret, error);
(*when)->context = lysc_xpath_context(node);
}
COMPILE_ARRAY_GOTO(ctx, node_p->iffeatures, node->iffeatures, options, u, lys_compile_iffeature, ret, error);
COMPILE_ARRAY_GOTO(ctx, node_p->exts, node->exts, options, u, lys_compile_ext, ret, error);
/* nodetype-specific part */
LY_CHECK_GOTO(node_compile_spec(ctx, node_p, options, node), error);
/* inherit LYS_MAND_TRUE in parent containers */
if (node->flags & LYS_MAND_TRUE) {
lys_compile_mandatory_parents(parent, 1);
}
/* insert into parent's children */
if (parent) {
if (parent->nodetype == LYS_CHOICE) {
cs = lys_compile_node_case(ctx, node_p->parent, options, (struct lysc_node_choice*)parent, node);
LY_CHECK_ERR_GOTO(!cs, ret = LY_EVALID, error);
if (uses_status) {
}
/* the postponed status check of the node and its real parent - in case of implicit case,
* it directly gets the same status flags as the choice;
* uses_status cannot be applied here since uses cannot be child statement of choice */
LY_CHECK_GOTO(lys_compile_status(ctx, node, cs->flags), error);
node->parent = (struct lysc_node*)cs;
} else { /* other than choice */
node->parent = parent;
}
LY_CHECK_RET(lys_compile_node_connect(ctx, parent->nodetype == LYS_CASE ? parent->parent : parent, node), LY_EVALID);
} else {
/* top-level element */
if (!ctx->mod->compiled->data) {
ctx->mod->compiled->data = node;
} else {
/* insert at the end of the module's top-level nodes list */
ctx->mod->compiled->data->prev->next = node;
node->prev = ctx->mod->compiled->data->prev;
ctx->mod->compiled->data->prev = node;
}
if (lys_compile_node_uniqness(ctx, ctx->mod->compiled->data, ctx->mod->compiled->rpcs,
ctx->mod->compiled->notifs, node->name, node)) {
return LY_EVALID;
}
}
return LY_SUCCESS;
error:
lysc_node_free(ctx->ctx, node);
return ret;
}
static void
lysc_disconnect(struct lysc_node *node)
{
struct lysc_node *parent, *child, *prev = NULL, *next;
struct lysc_node_case *cs = NULL;
int remove_cs = 0;
parent = node->parent;
/* parent's first child */
if (!parent) {
return;
}
if (parent->nodetype == LYS_CHOICE) {
cs = (struct lysc_node_case*)node;
} else if (parent->nodetype == LYS_CASE) {
/* disconnecting some node in a case */
cs = (struct lysc_node_case*)parent;
parent = cs->parent;
for (child = cs->child; child && child->parent == (struct lysc_node*)cs; child = child->next) {
if (child == node) {
if (cs->child == child) {
if (!child->next || child->next->parent != (struct lysc_node*)cs) {
/* case with a single child -> remove also the case */
child->parent = NULL;
remove_cs = 1;
} else {
cs->child = child->next;
}
}
break;
}
}
if (!remove_cs) {
cs = NULL;
}
} else if (lysc_node_children(parent) == node) {
*lysc_node_children_p(parent) = node->next;
}
if (cs) {
if (remove_cs) {
/* cs has only one child which is being also removed */
lysc_disconnect((struct lysc_node*)cs);
lysc_node_free(cs->module->ctx, (struct lysc_node*)cs);
} else {
if (((struct lysc_node_choice*)parent)->dflt == cs) {
/* default case removed */
((struct lysc_node_choice*)parent)->dflt = NULL;
}
if (((struct lysc_node_choice*)parent)->cases == cs) {
/* first case removed */
((struct lysc_node_choice*)parent)->cases = (struct lysc_node_case*)cs->next;
}
if (cs->child) {
/* cs will be removed and disconnected from its siblings, but we have to take care also about its children */
if (cs->child->prev->parent != (struct lysc_node*)cs) {
prev = cs->child->prev;
} /* else all the children are under a single case */
LY_LIST_FOR_SAFE(cs->child, next, child) {
if (child->parent != (struct lysc_node*)cs) {
break;
}
lysc_node_free(node->module->ctx, child);
}
if (prev) {
if (prev->next) {
prev->next = child;
}
if (child) {
child->prev = prev;
} else {
/* link from the first child under the cases */
((struct lysc_node_choice*)cs->parent)->cases->child->prev = prev;
}
}
}
}
}
/* siblings */
if (node->prev->next) {
node->prev->next = node->next;
}
if (node->next) {
node->next->prev = node->prev;
} else if (node->nodetype != LYS_CASE) {
child = (struct lysc_node*)lysc_node_children(parent);
if (child) {
child->prev = node->prev;
}
} else if (((struct lysc_node_choice*)parent)->cases) {
((struct lysc_node_choice*)parent)->cases->prev = node->prev;
}
}
LY_ERR
lys_compile_deviations(struct lysc_ctx *ctx, struct lysp_module *mod_p, int options)
{
LY_ERR ret = LY_EVALID;
struct ly_set devs_p = {0};
struct ly_set targets = {0};
struct lysc_node *target; /* target target of the deviation */
struct lysc_node_list *list;
struct lysp_deviation *dev;
struct lysp_deviate *d, **dp_new;
struct lysp_deviate_add *d_add;
struct lysp_deviate_del *d_del;
struct lysp_deviate_rpl *d_rpl;
unsigned int u, v, x, y, z;
struct lysc_deviation {
const char *nodeid;
struct lysc_node *target; /* target node of the deviation */
struct lysp_deviate** deviates;/* sized array of pointers to parsed deviate statements to apply on target */
uint8_t not_supported; /* flag if deviates contains not-supported deviate */
} **devs = NULL;
int i;
size_t prefix_len, name_len;
const char *prefix, *name, *nodeid;
struct lys_module *mod;
uint32_t min, max;
/* get all deviations from the module and all its submodules ... */
LY_ARRAY_FOR(mod_p->deviations, u) {
ly_set_add(&devs_p, &mod_p->deviations[u], LY_SET_OPT_USEASLIST);
}
LY_ARRAY_FOR(mod_p->includes, v) {
LY_ARRAY_FOR(mod_p->includes[v].submodule->deviations, u) {
ly_set_add(&devs_p, &mod_p->includes[v].submodule->deviations[u], LY_SET_OPT_USEASLIST);
}
}
if (!devs_p.count) {
/* nothing to do */
return LY_SUCCESS;
}
/* ... and group them by the target node */
devs = calloc(devs_p.count, sizeof *devs);
for (u = 0; u < devs_p.count; ++u) {
dev = devs_p.objs[u];
/* resolve the target */
LY_CHECK_GOTO(lys_resolve_schema_nodeid(ctx, dev->nodeid, 0, NULL, ctx->mod, 0, 1, (const struct lysc_node**)&target), cleanup);
/* insert into the set of targets with duplicity detection */
i = ly_set_add(&targets, target, 0);
if (!devs[i]) {
/* new record */
devs[i] = calloc(1, sizeof **devs);
devs[i]->target = target;
devs[i]->nodeid = dev->nodeid;
}
/* add deviates into the deviation's list of deviates */
for (d = dev->deviates; d; d = d->next) {
LY_ARRAY_NEW_GOTO(ctx->ctx, devs[i]->deviates, dp_new, ret, cleanup);
*dp_new = d;
if (d->mod == LYS_DEV_NOT_SUPPORTED) {
devs[i]->not_supported = 1;
}
}
}
/* MACROS for deviates checking */
#define DEV_CHECK_NODETYPE(NODETYPES, DEVTYPE, PROPERTY) \
if (!(devs[u]->target->nodetype & (NODETYPES))) { \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NODETYPE, devs[u]->nodeid, lys_nodetype2str(devs[u]->target->nodetype), DEVTYPE, PROPERTY);\
goto cleanup; \
}
#define DEV_CHECK_CARDINALITY(ARRAY, MAX, PROPERTY) \
if (LY_ARRAY_SIZE(ARRAY) > MAX) { \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS, "Invalid deviation (%s) of %s with too many (%u) %s properties.", \
devs[u]->nodeid, lys_nodetype2str(devs[u]->target->nodetype), LY_ARRAY_SIZE(ARRAY), PROPERTY); \
goto cleanup; \
}
#define DEV_CHECK_NONPRESENCE(TYPE, COND, MEMBER, PROPERTY, VALUEMEMBER) \
if (((TYPE)devs[u]->target)->MEMBER && (COND)) { \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, \
"Invalid deviation (%s) adding \"%s\" property which already exists (with value \"%s\").", \
devs[u]->nodeid, PROPERTY, ((TYPE)devs[u]->target)->VALUEMEMBER); \
goto cleanup; \
}
#define DEV_CHECK_NONPRESENCE_UINT(TYPE, COND, MEMBER, PROPERTY) \
if (((TYPE)devs[u]->target)->MEMBER COND) { \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, \
"Invalid deviation (%s) adding \"%s\" property which already exists (with value \"%u\").", \
devs[u]->nodeid, PROPERTY, ((TYPE)devs[u]->target)->MEMBER); \
goto cleanup; \
}
#define DEV_CHECK_PRESENCE(TYPE, COND, MEMBER, DEVTYPE, PROPERTY, VALUE) \
if (!((TYPE)devs[u]->target)->MEMBER || COND) { \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NOT_PRESENT, devs[u]->nodeid, DEVTYPE, PROPERTY, VALUE); \
goto cleanup; \
}
#define DEV_CHECK_PRESENCE_UINT(TYPE, COND, MEMBER, PROPERTY) \
if (!(((TYPE)devs[u]->target)->MEMBER COND)) { \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, \
"Invalid deviation (%s) replacing with \"%s\" property \"%u\" which is not present.", \
devs[u]->nodeid, PROPERTY, d_rpl->MEMBER); \
goto cleanup; \
}
#define DEV_DEL_MEMBER(TYPE, MEMBER_TRG, MEMBER_DEV, DELFUNC, PROPERTY) \
DEV_CHECK_PRESENCE(TYPE, 0, MEMBER_TRG, "deleting", PROPERTY, d_del->MEMBER_DEV); \
if (strcmp(((TYPE)devs[u]->target)->MEMBER_TRG, d_del->MEMBER_DEV)) { \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, \
"Invalid deviation (%s) deleting \"%s\" property \"%s\" which does not match the target's property value \"%s\".", \
devs[u]->nodeid, PROPERTY, d_del->MEMBER_DEV, ((TYPE)devs[u]->target)->MEMBER_TRG); \
goto cleanup; \
} \
DELFUNC(ctx->ctx, ((TYPE)devs[u]->target)->MEMBER_TRG); \
((TYPE)devs[u]->target)->MEMBER_TRG = NULL;
#define DEV_DEL_ARRAY(TYPE, ARRAY, VALMEMBER, VALMEMBER_CMP, DELFUNC_DEREF, DELFUNC, PROPERTY) \
DEV_CHECK_PRESENCE(TYPE, 0, ARRAY, "deleting", PROPERTY, d_del->ARRAY[0]VALMEMBER); \
LY_ARRAY_FOR(d_del->ARRAY, x) { \
LY_ARRAY_FOR(((TYPE)devs[u]->target)->ARRAY, y) { \
if (!strcmp(((TYPE)devs[u]->target)->ARRAY[y]VALMEMBER_CMP, d_del->ARRAY[x]VALMEMBER)) { break; } \
} \
if (y == LY_ARRAY_SIZE(((TYPE)devs[u]->target)->ARRAY)) { \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, \
"Invalid deviation (%s) deleting \"%s\" property \"%s\" which does not match any of the target's property values.", \
devs[u]->nodeid, PROPERTY, d_del->ARRAY[x]VALMEMBER); \
goto cleanup; \
} \
LY_ARRAY_DECREMENT(((TYPE)devs[u]->target)->ARRAY); \
DELFUNC(ctx->ctx, DELFUNC_DEREF((TYPE)devs[u]->target)->ARRAY[y]); \
memmove(&((TYPE)devs[u]->target)->ARRAY[y], \
&((TYPE)devs[u]->target)->ARRAY[y + 1], \
(LY_ARRAY_SIZE(((TYPE)devs[u]->target)->ARRAY) - y) * (sizeof *((TYPE)devs[u]->target)->ARRAY)); \
} \
if (!LY_ARRAY_SIZE(((TYPE)devs[u]->target)->ARRAY)) { \
LY_ARRAY_FREE(((TYPE)devs[u]->target)->ARRAY); \
((TYPE)devs[u]->target)->ARRAY = NULL; \
}
/* apply deviations */
for (u = 0; u < devs_p.count && devs[u]; ++u) {
/* not-supported */
if (devs[u]->not_supported) {
if (LY_ARRAY_SIZE(devs[u]->deviates) > 1) {
LOGWRN(ctx->ctx, "Useless multiple (%u) deviates on node \"%s\" since the node is not-supported.",
LY_ARRAY_SIZE(devs[u]->deviates), devs[u]->nodeid);
}
/* remove the target node */
lysc_disconnect(devs[u]->target);
lysc_node_free(ctx->ctx, devs[u]->target);
continue;
}
/* list of deviates (not-supported is not present in the list) */
LY_ARRAY_FOR(devs[u]->deviates, v) {
d = devs[u]->deviates[v];
switch (d->mod) {
case LYS_DEV_ADD:
d_add = (struct lysp_deviate_add*)d;
/* [units-stmt] */
if (d_add->units) {
DEV_CHECK_NODETYPE(LYS_LEAF | LYS_LEAFLIST, "add", "units");
DEV_CHECK_NONPRESENCE(struct lysc_node_leaf*, (devs[u]->target->flags & LYS_SET_UNITS), units, "units", units);
FREE_STRING(ctx->ctx, ((struct lysc_node_leaf*)devs[u]->target)->units);
DUP_STRING(ctx->ctx, d_add->units, ((struct lysc_node_leaf*)devs[u]->target)->units);
}
/* *must-stmt */
if (d_add->musts) {
switch (devs[u]->target->nodetype) {
case LYS_CONTAINER:
case LYS_LIST:
COMPILE_ARRAY_GOTO(ctx, d_add->musts, ((struct lysc_node_container*)devs[u]->target)->musts,
options, x, lys_compile_must, ret, cleanup);
break;
case LYS_LEAF:
case LYS_LEAFLIST:
case LYS_ANYDATA:
COMPILE_ARRAY_GOTO(ctx, d_add->musts, ((struct lysc_node_leaf*)devs[u]->target)->musts,
options, x, lys_compile_must, ret, cleanup);
break;
case LYS_NOTIF:
case LYS_INOUT:
/* TODO */
default:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NODETYPE,
devs[u]->nodeid, lys_nodetype2str(devs[u]->target->nodetype), "add", "must");
goto cleanup;
}
}
/* *unique-stmt */
if (d_add->uniques) {
DEV_CHECK_NODETYPE(LYS_LIST, "add", "unique");
LY_CHECK_GOTO(lys_compile_node_list_unique(ctx, ctx->mod, d_add->uniques, (struct lysc_node_list*)devs[u]->target), cleanup);
}
/* *default-stmt */
if (d_add->dflts) {
switch (devs[u]->target->nodetype) {
case LYS_LEAF:
DEV_CHECK_CARDINALITY(d_add->dflts, 1, "default");
DEV_CHECK_NONPRESENCE(struct lysc_node_leaf*, (devs[u]->target->flags & LYS_SET_DFLT), dflt, "default", dflt);
if (((struct lysc_node_leaf*)devs[u]->target)->dflt) {
/* first, remove the default value taken from the type */
lydict_remove(ctx->ctx, ((struct lysc_node_leaf*)devs[u]->target)->dflt);
((struct lysc_node_leaf*)devs[u]->target)->dflt = NULL;
}
DUP_STRING(ctx->ctx, d_add->dflts[0], ((struct lysc_node_leaf*)devs[u]->target)->dflt);
/* mark the new default values as leaf's own */
devs[u]->target->flags |= LYS_SET_DFLT;
break;
case LYS_LEAFLIST:
if (((struct lysc_node_leaflist*)devs[u]->target)->dflts && !(devs[u]->target->flags & LYS_SET_DFLT)) {
/* first, remove the default value taken from the type */
LY_ARRAY_FOR(((struct lysc_node_leaflist*)devs[u]->target)->dflts, x) {
lydict_remove(ctx->ctx, ((struct lysc_node_leaflist*)devs[u]->target)->dflts[x]);
}
LY_ARRAY_FREE(((struct lysc_node_leaflist*)devs[u]->target)->dflts);
((struct lysc_node_leaflist*)devs[u]->target)->dflts = NULL;
}
/* add new default value(s) */
LY_ARRAY_CREATE_GOTO(ctx->ctx, ((struct lysc_node_leaflist*)devs[u]->target)->dflts,
LY_ARRAY_SIZE(d_add->dflts), ret, cleanup);
for (x = y = LY_ARRAY_SIZE(((struct lysc_node_leaflist*)devs[u]->target)->dflts);
x < LY_ARRAY_SIZE(d_add->dflts) + y; ++x) {
DUP_STRING(ctx->ctx, d_add->dflts[x - y], ((struct lysc_node_leaflist*)devs[u]->target)->dflts[x]);
LY_ARRAY_INCREMENT(((struct lysc_node_leaflist*)devs[u]->target)->dflts);
}
/* mark the new default values as leaf-list's own */
devs[u]->target->flags |= LYS_SET_DFLT;
break;
case LYS_CHOICE:
DEV_CHECK_CARDINALITY(d_add->dflts, 1, "default");
DEV_CHECK_NONPRESENCE(struct lysc_node_choice*, 1, dflt, "default", dflt->name);
/* in contrast to delete, here we strictly resolve the prefix in the module of the deviation
* to allow making the default case even the augmented case from the deviating module */
if (lys_compile_deviation_set_choice_dflt(ctx, devs[u]->nodeid, d_add->dflts[0],
(struct lysc_node_choice*)devs[u]->target)) {
goto cleanup;
}
break;
default:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NODETYPE,
devs[u]->nodeid, lys_nodetype2str(devs[u]->target->nodetype), "add", "default");
goto cleanup;
}
}
/* [config-stmt] */
if (d_add->flags & LYS_CONFIG_MASK) {
if (devs[u]->target->nodetype & (LYS_CASE | LYS_INOUT | LYS_ACTION | LYS_NOTIF)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NODETYPE, devs[u]->nodeid,
lys_nodetype2str(devs[u]->target->nodetype), "add", "config");
goto cleanup;
}
if (devs[u]->target->flags & LYS_SET_CONFIG) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid deviation (%s) adding \"config\" property which already exists (with value \"config %s\").",
devs[u]->nodeid, devs[u]->target->flags & LYS_CONFIG_W ? "true" : "false");
goto cleanup;
}
LY_CHECK_GOTO(lys_compile_change_config(ctx, devs[u]->target, d_add->flags, devs[u]->nodeid, 0, 0), cleanup);
}
/* [mandatory-stmt] */
if (d_add->flags & LYS_MAND_MASK) {
if (devs[u]->target->flags & LYS_MAND_MASK) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid deviation (%s) adding \"mandatory\" property which already exists (with value \"mandatory %s\").",
devs[u]->nodeid, devs[u]->target->flags & LYS_MAND_TRUE ? "true" : "false");
goto cleanup;
}
LY_CHECK_GOTO(lys_compile_change_mandatory(ctx, devs[u]->target, d_add->flags, devs[u]->nodeid, 0), cleanup);
}
/* [min-elements-stmt] */
if (d_add->flags & LYS_SET_MIN) {
if (devs[u]->target->nodetype == LYS_LEAFLIST) {
DEV_CHECK_NONPRESENCE_UINT(struct lysc_node_leaflist*, > 0, min, "min-elements");
/* change value */
((struct lysc_node_leaflist*)devs[u]->target)->min = d_add->min;
} else if (devs[u]->target->nodetype == LYS_LIST) {
DEV_CHECK_NONPRESENCE_UINT(struct lysc_node_list*, > 0, min, "min-elements");
/* change value */
((struct lysc_node_list*)devs[u]->target)->min = d_add->min;
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NODETYPE, devs[u]->nodeid,
lys_nodetype2str(devs[u]->target->nodetype), "add", "min-elements");
goto cleanup;
}
if (d_add->min) {
devs[u]->target->flags |= LYS_MAND_TRUE;
}
}
/* [max-elements-stmt] */
if (d_add->flags & LYS_SET_MAX) {
if (devs[u]->target->nodetype == LYS_LEAFLIST) {
DEV_CHECK_NONPRESENCE_UINT(struct lysc_node_leaflist*, < (uint32_t)-1, max, "max-elements");
/* change value */
((struct lysc_node_leaflist*)devs[u]->target)->max = d_add->max ? d_add->max : (uint32_t)-1;
} else if (devs[u]->target->nodetype == LYS_LIST) {
DEV_CHECK_NONPRESENCE_UINT(struct lysc_node_list*, < (uint32_t)-1, max, "max-elements");
/* change value */
((struct lysc_node_list*)devs[u]->target)->max = d_add->max ? d_add->max : (uint32_t)-1;
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NODETYPE, devs[u]->nodeid,
lys_nodetype2str(devs[u]->target->nodetype), "add", "max-elements");
goto cleanup;
}
}
break;
case LYS_DEV_DELETE:
d_del = (struct lysp_deviate_del*)d;
/* [units-stmt] */
if (d_del->units) {
DEV_CHECK_NODETYPE(LYS_LEAF | LYS_LEAFLIST, "delete", "units");
DEV_DEL_MEMBER(struct lysc_node_leaf*, units, units, lydict_remove, "units");
}
/* *must-stmt */
if (d_del->musts) {
switch (devs[u]->target->nodetype) {
case LYS_CONTAINER:
case LYS_LIST:
DEV_DEL_ARRAY(struct lysc_node_container*, musts, .arg, .cond->expr, &, lysc_must_free, "must");
break;
case LYS_LEAF:
case LYS_LEAFLIST:
case LYS_ANYDATA:
DEV_DEL_ARRAY(struct lysc_node_leaf*, musts, .arg, .cond->expr, &, lysc_must_free, "must");
break;
case LYS_NOTIF:
case LYS_INOUT:
/* TODO */
default:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NODETYPE,
devs[u]->nodeid, lys_nodetype2str(devs[u]->target->nodetype), "delete", "must");
goto cleanup;
}
}
/* *unique-stmt */
if (d_del->uniques) {
DEV_CHECK_NODETYPE(LYS_LIST, "delete", "unique");
list = (struct lysc_node_list*)devs[u]->target; /* shortcut */
LY_ARRAY_FOR(d_del->uniques, x) {
LY_ARRAY_FOR(list->uniques, z) {
for (name = d_del->uniques[x], y = 0; name; name = nodeid, ++y) {
nodeid = strpbrk(name, " \t\n");
if (nodeid) {
if (strncmp(name, list->uniques[z][y]->name, nodeid - name)
|| list->uniques[z][y]->name[nodeid - name] != '\0') {
break;
}
while (isspace(*nodeid)) {
++nodeid;
}
} else {
if (strcmp(name, list->uniques[z][y]->name)) {
break;
}
}
}
if (!name) {
/* complete match - remove the unique */
LY_ARRAY_DECREMENT(list->uniques);
LY_ARRAY_FREE(list->uniques[z]);
memmove(&list->uniques[z], &list->uniques[z + 1], (LY_ARRAY_SIZE(list->uniques) - z) * (sizeof *list->uniques));
--z;
break;
}
}
if (!list->uniques || z == LY_ARRAY_SIZE(list->uniques)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid deviation (%s) deleting \"unique\" property \"%s\" which does not match any of the target's property values.",
devs[u]->nodeid, d_del->uniques[x]);
goto cleanup;
}
}
if (!LY_ARRAY_SIZE(list->uniques)) {
LY_ARRAY_FREE(list->uniques);
list->uniques = NULL;
}
}
/* *default-stmt */
if (d_del->dflts) {
switch (devs[u]->target->nodetype) {
case LYS_LEAF:
DEV_CHECK_CARDINALITY(d_del->dflts, 1, "default");
DEV_CHECK_PRESENCE(struct lysc_node_leaf*, !(devs[u]->target->flags & LYS_SET_DFLT),
dflt, "deleting", "default", d_del->dflts[0]);
DEV_DEL_MEMBER(struct lysc_node_leaf*, dflt, dflts[0], lydict_remove, "default");
devs[u]->target->flags &= ~LYS_SET_DFLT;
break;
case LYS_LEAFLIST:
DEV_DEL_ARRAY(struct lysc_node_leaflist*, dflts, , , , lydict_remove, "default");
if (!((struct lysc_node_leaflist*)devs[u]->target)->dflts) {
devs[u]->target->flags &= ~LYS_SET_DFLT;
}
break;
case LYS_CHOICE:
DEV_CHECK_CARDINALITY(d_del->dflts, 1, "default");
DEV_CHECK_PRESENCE(struct lysc_node_choice*, 0, dflt, "deleting", "default", d_del->dflts[0]);
nodeid = d_del->dflts[0];
LY_CHECK_GOTO(lys_parse_nodeid(&nodeid, &prefix, &prefix_len, &name, &name_len), cleanup);
if (prefix) {
/* use module prefixes from the deviation module to match the module of the default case */
if (!(mod = lys_module_find_prefix(ctx->mod, prefix, prefix_len))) {
LOGVAL(ctx->ctx,LY_VLOG_STR,ctx->path,LYVE_REFERENCE,
"Invalid deviation (%s) deleting \"default\" property \"%s\" of choice. "
"The prefix does not match any imported module of the deviation module.",
devs[u]->nodeid, d_del->dflts[0]);
goto cleanup;
}
if (mod != ((struct lysc_node_choice*)devs[u]->target)->dflt->module) {
LOGVAL(ctx->ctx,LY_VLOG_STR,ctx->path,LYVE_REFERENCE,
"Invalid deviation (%s) deleting \"default\" property \"%s\" of choice. "
"The prefix does not match the default case's module.",
devs[u]->nodeid, d_del->dflts[0]);
goto cleanup;
}
}
/* else {
* strictly, the default prefix would point to the deviation module, but the value should actually
* match the default string in the original module (usually unprefixed), so in this case we do not check
* the module of the default case, just matching its name */
if (strcmp(name, ((struct lysc_node_choice*)devs[u]->target)->dflt->name)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid deviation (%s) deleting \"default\" property \"%s\" of choice does not match the default case name \"%s\".",
devs[u]->nodeid, d_del->dflts[0], ((struct lysc_node_choice*)devs[u]->target)->dflt->name);
goto cleanup;
}
((struct lysc_node_choice*)devs[u]->target)->dflt->flags &= ~LYS_SET_DFLT;
((struct lysc_node_choice*)devs[u]->target)->dflt = NULL;
break;
default:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NODETYPE,
devs[u]->nodeid, lys_nodetype2str(devs[u]->target->nodetype), "delete", "default");
goto cleanup;
}
}
break;
case LYS_DEV_REPLACE:
d_rpl = (struct lysp_deviate_rpl*)d;
/* [type-stmt] */
/* [units-stmt] */
if (d_rpl->units) {
DEV_CHECK_NODETYPE(LYS_LEAF | LYS_LEAFLIST, "replace", "units");
DEV_CHECK_PRESENCE(struct lysc_node_leaf*, !(devs[u]->target->flags & LYS_SET_UNITS),
units, "replacing", "units", d_rpl->units);
lydict_remove(ctx->ctx, ((struct lysc_node_leaf*)devs[u]->target)->units);
DUP_STRING(ctx->ctx, d_rpl->units, ((struct lysc_node_leaf*)devs[u]->target)->units);
}
/* [default-stmt] */
if (d_rpl->dflt) {
switch (devs[u]->target->nodetype) {
case LYS_LEAF:
DEV_CHECK_PRESENCE(struct lysc_node_leaf*, !(devs[u]->target->flags & LYS_SET_DFLT),
dflt, "replacing", "default", d_rpl->dflt);
lydict_remove(ctx->ctx, ((struct lysc_node_leaf*)devs[u]->target)->dflt);
DUP_STRING(ctx->ctx, d_rpl->dflt, ((struct lysc_node_leaf*)devs[u]->target)->dflt);
break;
case LYS_CHOICE:
DEV_CHECK_PRESENCE(struct lysc_node_choice*, 0, dflt, "replacing", "default", d_rpl->dflt);
if (lys_compile_deviation_set_choice_dflt(ctx, devs[u]->nodeid, d_rpl->dflt,
(struct lysc_node_choice*)devs[u]->target)) {
goto cleanup;
}
break;
default:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NODETYPE,
devs[u]->nodeid, lys_nodetype2str(devs[u]->target->nodetype), "replace", "default");
goto cleanup;
}
}
/* [config-stmt] */
if (d_rpl->flags & LYS_CONFIG_MASK) {
if (devs[u]->target->nodetype & (LYS_CASE | LYS_INOUT | LYS_ACTION | LYS_NOTIF)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NODETYPE, devs[u]->nodeid,
lys_nodetype2str(devs[u]->target->nodetype), "replace", "config");
goto cleanup;
}
if (!(devs[u]->target->flags & LYS_SET_CONFIG)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NOT_PRESENT, devs[u]->nodeid,
"replacing", "config", d_rpl->flags & LYS_CONFIG_W ? "config true" : "config false");
goto cleanup;
}
LY_CHECK_GOTO(lys_compile_change_config(ctx, devs[u]->target, d_rpl->flags, devs[u]->nodeid, 0, 0), cleanup);
}
/* [mandatory-stmt] */
if (d_rpl->flags & LYS_MAND_MASK) {
if (!(devs[u]->target->flags & LYS_MAND_MASK)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NOT_PRESENT, devs[u]->nodeid,
"replacing", "mandatory", d_rpl->flags & LYS_MAND_TRUE ? "mandatory true" : "mandatory false");
goto cleanup;
}
LY_CHECK_GOTO(lys_compile_change_mandatory(ctx, devs[u]->target, d_rpl->flags, devs[u]->nodeid, 0), cleanup);
}
/* [min-elements-stmt] */
if (d_rpl->flags & LYS_SET_MIN) {
if (devs[u]->target->nodetype == LYS_LEAFLIST) {
DEV_CHECK_PRESENCE_UINT(struct lysc_node_leaflist*, > 0, min, "min-elements");
/* change value */
((struct lysc_node_leaflist*)devs[u]->target)->min = d_rpl->min;
} else if (devs[u]->target->nodetype == LYS_LIST) {
DEV_CHECK_PRESENCE_UINT(struct lysc_node_list*, > 0, min, "min-elements");
/* change value */
((struct lysc_node_list*)devs[u]->target)->min = d_rpl->min;
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NODETYPE, devs[u]->nodeid,
lys_nodetype2str(devs[u]->target->nodetype), "replace", "min-elements");
goto cleanup;
}
if (d_rpl->min) {
devs[u]->target->flags |= LYS_MAND_TRUE;
}
}
/* [max-elements-stmt] */
if (d_rpl->flags & LYS_SET_MAX) {
if (devs[u]->target->nodetype == LYS_LEAFLIST) {
DEV_CHECK_PRESENCE_UINT(struct lysc_node_leaflist*, < (uint32_t)-1, max, "max-elements");
/* change value */
((struct lysc_node_leaflist*)devs[u]->target)->max = d_rpl->max ? d_rpl->max : (uint32_t)-1;
} else if (devs[u]->target->nodetype == LYS_LIST) {
DEV_CHECK_PRESENCE_UINT(struct lysc_node_list*, < (uint32_t)-1, max, "max-elements");
/* change value */
((struct lysc_node_list*)devs[u]->target)->max = d_rpl->max ? d_rpl->max : (uint32_t)-1;
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NODETYPE, devs[u]->nodeid,
lys_nodetype2str(devs[u]->target->nodetype), "replace", "max-elements");
goto cleanup;
}
}
break;
default:
LOGINT(ctx->ctx);
goto cleanup;
}
}
/* check min-max compatibility */
if (devs[u]->target->nodetype == LYS_LEAFLIST) {
min = ((struct lysc_node_leaflist*)devs[u]->target)->min;
max = ((struct lysc_node_leaflist*)devs[u]->target)->max;
} else if (devs[u]->target->nodetype == LYS_LIST) {
min = ((struct lysc_node_list*)devs[u]->target)->min;
max = ((struct lysc_node_list*)devs[u]->target)->max;
} else {
min = max = 0;
}
if (min > max) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS, "Invalid combination of min-elements and max-elements "
"after deviation (%s): min value %u is bigger than max value %u.",
devs[u]->nodeid, min, max);
goto cleanup;
}
/* check mandatory - default compatibility */
if ((devs[u]->target->nodetype & (LYS_LEAF | LYS_LEAFLIST))
&& (devs[u]->target->flags & LYS_SET_DFLT)
&& (devs[u]->target->flags & LYS_MAND_TRUE)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid deviation (%s) combining default value and mandatory %s.",
devs[u]->nodeid, lys_nodetype2str(devs[u]->target->nodetype));
goto cleanup;
} else if ((devs[u]->target->nodetype & LYS_CHOICE)
&& ((struct lysc_node_choice*)devs[u]->target)->dflt
&& (devs[u]->target->flags & LYS_MAND_TRUE)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid deviation (%s) combining default case and mandatory choice.", devs[u]->nodeid);
goto cleanup;
}
if (devs[u]->target->parent && (devs[u]->target->parent->flags & LYS_SET_DFLT) && (devs[u]->target->flags & LYS_MAND_TRUE)) {
/* mandatory node under a default case */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid deviation (%s) combining mandatory %s \"%s\" in a default choice's case \"%s\".",
devs[u]->nodeid, lys_nodetype2str(devs[u]->target->nodetype), devs[u]->target->name, devs[u]->target->parent->name);
goto cleanup;
}
}
ret = LY_SUCCESS;
cleanup:
for (u = 0; u < devs_p.count && devs[u]; ++u) {
LY_ARRAY_FREE(devs[u]->deviates);
free(devs[u]);
}
free(devs);
ly_set_erase(&targets, NULL);
ly_set_erase(&devs_p, NULL);
return ret;
}
/**
* @brief Compile the given YANG submodule into the main module.
* @param[in] ctx Compile context
* @param[in] inc Include structure from the main module defining the submodule.
* @param[in] options Various options to modify compiler behavior, see [compile flags](@ref scflags).
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
LY_ERR
lys_compile_submodule(struct lysc_ctx *ctx, struct lysp_include *inc, int options)
{
unsigned int u;
LY_ERR ret = LY_SUCCESS;
/* shortcuts */
struct lysp_submodule *submod = inc->submodule;
struct lysc_module *mainmod = ctx->mod->compiled;
if (!mainmod->mod->off_features) {
/* features are compiled directly into the compiled module structure,
* but it must be done in two steps to allow forward references (via if-feature) between the features themselves.
* The features compilation is finished in the main module (lys_compile()). */
ret = lys_feature_precompile(ctx->ctx, submod->features,
mainmod->mod->off_features ? &mainmod->mod->off_features : &mainmod->features);
LY_CHECK_GOTO(ret, error);
}
COMPILE_ARRAY_UNIQUE_GOTO(ctx, submod->identities, mainmod->identities, options, u, lys_compile_identity, ret, error);
error:
return ret;
}
LY_ERR
lys_compile(struct lys_module *mod, int options)
{
struct lysc_ctx ctx = {0};
struct lysc_module *mod_c;
struct lysc_type *type, *typeiter;
struct lysp_module *sp;
struct lysp_node *node_p;
struct lysp_augment **augments = NULL;
struct lys_module *m;
unsigned int u, v;
LY_ERR ret = LY_SUCCESS;
LY_CHECK_ARG_RET(NULL, mod, mod->parsed, mod->ctx, LY_EINVAL);
if (!mod->implemented) {
/* just imported modules are not compiled */
return LY_SUCCESS;
}
sp = mod->parsed;
ctx.ctx = mod->ctx;
ctx.mod = mod;
ctx.mod_def = mod;
mod->compiled = mod_c = calloc(1, sizeof *mod_c);
LY_CHECK_ERR_RET(!mod_c, LOGMEM(mod->ctx), LY_EMEM);
mod_c->mod = mod;
COMPILE_ARRAY_GOTO(&ctx, sp->imports, mod_c->imports, options, u, lys_compile_import, ret, error);
LY_ARRAY_FOR(sp->includes, u) {
ret = lys_compile_submodule(&ctx, &sp->includes[u], options);
LY_CHECK_GOTO(ret != LY_SUCCESS, error);
}
if (mod->off_features) {
/* there is already precompiled array of features */
mod_c->features = mod->off_features;
mod->off_features = NULL;
} else {
/* features are compiled directly into the compiled module structure,
* but it must be done in two steps to allow forward references (via if-feature) between the features themselves */
ret = lys_feature_precompile(ctx.ctx, sp->features, &mod_c->features);
LY_CHECK_GOTO(ret, error);
}
/* finish feature compilation, not only for the main module, but also for the submodules.
* Due to possible forward references, it must be done when all the features (including submodules)
* are present. */
LY_ARRAY_FOR(sp->features, u) {
ret = lys_feature_precompile_finish(&ctx, &sp->features[u], options, mod_c->features);
LY_CHECK_GOTO(ret != LY_SUCCESS, error);
}
LY_ARRAY_FOR(sp->includes, v) {
LY_ARRAY_FOR(sp->includes[v].submodule->features, u) {
ret = lys_feature_precompile_finish(&ctx, &sp->includes[v].submodule->features[u], options, mod_c->features);
LY_CHECK_GOTO(ret != LY_SUCCESS, error);
}
}
COMPILE_ARRAY_UNIQUE_GOTO(&ctx, sp->identities, mod_c->identities, options, u, lys_compile_identity, ret, error);
if (sp->identities) {
LY_CHECK_RET(lys_compile_identities_derived(&ctx, sp->identities, mod_c->identities));
}
/* data nodes */
LY_LIST_FOR(sp->data, node_p) {
ret = lys_compile_node(&ctx, node_p, options, NULL, 0);
LY_CHECK_GOTO(ret, error);
}
//COMPILE_ARRAY_GOTO(ctx, sp->rpcs, mod_c->rpcs, options, u, lys_compile_action, ret, error);
//COMPILE_ARRAY_GOTO(ctx, sp->notifs, mod_c->notifs, options, u, lys_compile_notif, ret, error);
/* augments - sort first to cover augments augmenting other augments */
ret = lys_compile_augment_sort(&ctx, sp->augments, sp->includes, &augments);
LY_CHECK_GOTO(ret, error);
LY_ARRAY_FOR(augments, u) {
ret = lys_compile_augment(&ctx, augments[u], options, NULL);
LY_CHECK_GOTO(ret, error);
}
/* deviations */
ret = lys_compile_deviations(&ctx, sp, options);
LY_CHECK_GOTO(ret, error);
COMPILE_ARRAY_GOTO(&ctx, sp->exts, mod_c->exts, options, u, lys_compile_ext, ret, error);
/* validate leafref's paths and when/must xpaths */
/* for leafref, we need 2 rounds - first detects circular chain by storing the first referred type (which
* can be also leafref, in case it is already resolved, go through the chain and check that it does not
* point to the starting leafref type). The second round stores the first non-leafref type for later data validation. */
for (u = 0; u < ctx.unres.count; ++u) {
if (((struct lysc_node*)ctx.unres.objs[u])->nodetype & (LYS_LEAF | LYS_LEAFLIST)) {
type = ((struct lysc_node_leaf*)ctx.unres.objs[u])->type;
if (type->basetype == LY_TYPE_LEAFREF) {
/* validate the path */
ret = lys_compile_leafref_validate(&ctx, ((struct lysc_node*)ctx.unres.objs[u]), (struct lysc_type_leafref*)type);
LY_CHECK_GOTO(ret, error);
} else if (type->basetype == LY_TYPE_UNION) {
LY_ARRAY_FOR(((struct lysc_type_union*)type)->types, v) {
if (((struct lysc_type_union*)type)->types[v]->basetype == LY_TYPE_LEAFREF) {
/* validate the path */
ret = lys_compile_leafref_validate(&ctx, ((struct lysc_node*)ctx.unres.objs[u]),
(struct lysc_type_leafref*)((struct lysc_type_union*)type)->types[v]);
LY_CHECK_GOTO(ret, error);
}
}
}
}
}
for (u = 0; u < ctx.unres.count; ++u) {
if (((struct lysc_node*)ctx.unres.objs[u])->nodetype & (LYS_LEAF | LYS_LEAFLIST)) {
type = ((struct lysc_node_leaf*)ctx.unres.objs[u])->type;
if (type->basetype == LY_TYPE_LEAFREF) {
/* store pointer to the real type */
for (typeiter = ((struct lysc_type_leafref*)type)->realtype;
typeiter->basetype == LY_TYPE_LEAFREF;
typeiter = ((struct lysc_type_leafref*)typeiter)->realtype);
((struct lysc_type_leafref*)type)->realtype = typeiter;
} else if (type->basetype == LY_TYPE_UNION) {
LY_ARRAY_FOR(((struct lysc_type_union*)type)->types, v) {
if (((struct lysc_type_union*)type)->types[v]->basetype == LY_TYPE_LEAFREF) {
/* store pointer to the real type */
for (typeiter = ((struct lysc_type_leafref*)((struct lysc_type_union*)type)->types[v])->realtype;
typeiter->basetype == LY_TYPE_LEAFREF;
typeiter = ((struct lysc_type_leafref*)typeiter)->realtype);
((struct lysc_type_leafref*)((struct lysc_type_union*)type)->types[v])->realtype = typeiter;
}
}
}
}
}
ly_set_erase(&ctx.unres, NULL);
ly_set_erase(&ctx.groupings, NULL);
LY_ARRAY_FREE(augments);
if (options & LYSC_OPT_FREE_SP) {
lysp_module_free(mod->parsed);
((struct lys_module*)mod)->parsed = NULL;
}
if (!(options & LYSC_OPT_INTERNAL)) {
/* remove flag of the modules implemented by dependency */
for (u = 0; u < ctx.ctx->list.count; ++u) {
m = ctx.ctx->list.objs[u];
if (m->implemented == 2) {
m->implemented = 1;
}
}
}
((struct lys_module*)mod)->compiled = mod_c;
return LY_SUCCESS;
error:
lys_feature_precompile_revert(&ctx, mod);
ly_set_erase(&ctx.unres, NULL);
ly_set_erase(&ctx.groupings, NULL);
LY_ARRAY_FREE(augments);
lysc_module_free(mod_c, NULL);
mod->compiled = NULL;
/* revert compilation of modules implemented by dependency */
for (u = 0; u < ctx.ctx->list.count; ++u) {
m = ctx.ctx->list.objs[u];
if (m->implemented == 2) {
/* revert features list to the precompiled state */
lys_feature_precompile_revert(&ctx, m);
/* mark module as imported-only / not-implemented */
m->implemented = 0;
/* free the compiled version of the module */
lysc_module_free(m->compiled, NULL);
m->compiled = NULL;
}
}
return ret;
}