blob: 8e9bf020a593c83d5371f38d362e7c5874eb5461 [file] [log] [blame]
/**
* @file xpath.c
* @author Michal Vasko <mvasko@cesnet.cz>
* @brief YANG XPath evaluation functions
*
* Copyright (c) 2015 - 2022 CESNET, z.s.p.o.
*
* This source code is licensed under BSD 3-Clause License (the "License").
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*/
#define _GNU_SOURCE /* asprintf, strdup */
#include "xpath.h"
#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "compat.h"
#include "context.h"
#include "dict.h"
#include "hash_table.h"
#include "ly_common.h"
#include "out.h"
#include "parser_data.h"
#include "path.h"
#include "plugins_exts/metadata.h"
#include "plugins_types.h"
#include "printer_data.h"
#include "schema_compile_node.h"
#include "tree.h"
#include "tree_data.h"
#include "tree_data_internal.h"
#include "tree_edit.h"
#include "tree_schema_internal.h"
#include "xml.h"
static LY_ERR reparse_or_expr(const struct ly_ctx *ctx, struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t depth);
static LY_ERR eval_expr_select(const struct lyxp_expr *exp, uint32_t *tok_idx, enum lyxp_expr_type etype,
struct lyxp_set *set, uint32_t options);
static LY_ERR moveto_resolve_model(const char **qname, uint32_t *qname_len, const struct lyxp_set *set,
const struct lysc_node *ctx_scnode, const struct lys_module **moveto_mod);
static LY_ERR moveto_axis_node_next(const struct lyd_node **iter, enum lyxp_node_type *iter_type,
const struct lyd_node *node, enum lyxp_node_type node_type, enum lyxp_axis axis, struct lyxp_set *set);
static LY_ERR moveto_node(struct lyxp_set *set, const struct lys_module *moveto_mod, const char *ncname,
enum lyxp_axis axis, uint32_t options);
static LY_ERR moveto_scnode(struct lyxp_set *set, const struct lys_module *moveto_mod, const char *ncname,
enum lyxp_axis axis, uint32_t options);
static LY_ERR moveto_op_comp(struct lyxp_set *set1, struct lyxp_set *set2, const char *op, ly_bool *result);
/* Functions are divided into the following basic classes:
*
* (re)parse functions:
* Parse functions parse the expression into
* tokens (syntactic analysis).
* Reparse functions perform semantic analysis
* (do not save the result, just a check) of
* the expression and fill repeat indices.
*
* warn functions:
* Warn functions check specific reasonable conditions for schema XPath
* and print a warning if they are not satisfied.
*
* moveto functions:
* They and only they actually change the context (set).
*
* eval functions:
* They execute a parsed XPath expression on some data subtree.
*/
/**
* @brief Print the type of an XPath \p set.
*
* @param[in] set Set to use.
* @return Set type string.
*/
static const char *
print_set_type(struct lyxp_set *set)
{
switch (set->type) {
case LYXP_SET_NODE_SET:
return "node set";
case LYXP_SET_SCNODE_SET:
return "schema node set";
case LYXP_SET_BOOLEAN:
return "boolean";
case LYXP_SET_NUMBER:
return "number";
case LYXP_SET_STRING:
return "string";
}
return NULL;
}
const char *
lyxp_token2str(enum lyxp_token tok)
{
switch (tok) {
case LYXP_TOKEN_PAR1:
return "(";
case LYXP_TOKEN_PAR2:
return ")";
case LYXP_TOKEN_BRACK1:
return "[";
case LYXP_TOKEN_BRACK2:
return "]";
case LYXP_TOKEN_DOT:
return ".";
case LYXP_TOKEN_DDOT:
return "..";
case LYXP_TOKEN_AT:
return "@";
case LYXP_TOKEN_COMMA:
return ",";
case LYXP_TOKEN_DCOLON:
return "::";
case LYXP_TOKEN_NAMETEST:
return "NameTest";
case LYXP_TOKEN_NODETYPE:
return "NodeType";
case LYXP_TOKEN_VARREF:
return "VariableReference";
case LYXP_TOKEN_FUNCNAME:
return "FunctionName";
case LYXP_TOKEN_OPER_LOG:
return "Operator(Logic)";
case LYXP_TOKEN_OPER_EQUAL:
return "Operator(Equal)";
case LYXP_TOKEN_OPER_NEQUAL:
return "Operator(Non-equal)";
case LYXP_TOKEN_OPER_COMP:
return "Operator(Comparison)";
case LYXP_TOKEN_OPER_MATH:
return "Operator(Math)";
case LYXP_TOKEN_OPER_UNI:
return "Operator(Union)";
case LYXP_TOKEN_OPER_PATH:
return "Operator(Path)";
case LYXP_TOKEN_OPER_RPATH:
return "Operator(Recursive Path)";
case LYXP_TOKEN_AXISNAME:
return "AxisName";
case LYXP_TOKEN_LITERAL:
return "Literal";
case LYXP_TOKEN_NUMBER:
return "Number";
default:
LOGINT(NULL);
return "";
}
}
/**
* @brief Transform string into an axis.
*
* @param[in] str String to transform.
* @param[in] str_len Length of @p str.
* @return Transformed axis.
*/
static enum lyxp_axis
str2axis(const char *str, uint32_t str_len)
{
switch (str_len) {
case 4:
assert(!strncmp("self", str, str_len));
return LYXP_AXIS_SELF;
case 5:
assert(!strncmp("child", str, str_len));
return LYXP_AXIS_CHILD;
case 6:
assert(!strncmp("parent", str, str_len));
return LYXP_AXIS_PARENT;
case 8:
assert(!strncmp("ancestor", str, str_len));
return LYXP_AXIS_ANCESTOR;
case 9:
if (str[0] == 'a') {
assert(!strncmp("attribute", str, str_len));
return LYXP_AXIS_ATTRIBUTE;
} else if (str[0] == 'f') {
assert(!strncmp("following", str, str_len));
return LYXP_AXIS_FOLLOWING;
} else {
assert(!strncmp("preceding", str, str_len));
return LYXP_AXIS_PRECEDING;
}
break;
case 10:
assert(!strncmp("descendant", str, str_len));
return LYXP_AXIS_DESCENDANT;
case 16:
assert(!strncmp("ancestor-or-self", str, str_len));
return LYXP_AXIS_ANCESTOR_OR_SELF;
case 17:
if (str[0] == 'f') {
assert(!strncmp("following-sibling", str, str_len));
return LYXP_AXIS_FOLLOWING_SIBLING;
} else {
assert(!strncmp("preceding-sibling", str, str_len));
return LYXP_AXIS_PRECEDING_SIBLING;
}
break;
case 18:
assert(!strncmp("descendant-or-self", str, str_len));
return LYXP_AXIS_DESCENDANT_OR_SELF;
}
LOGINT(NULL);
return 0;
}
/**
* @brief Append a string to a dynamic string variable.
*
* @param[in,out] str String to use.
* @param[in,out] size String size.
* @param[in,out] used String used size excluding terminating zero.
* @param[in] format Message format.
* @param[in] ... Message format arguments.
*/
static void
print_expr_str(char **str, size_t *size, size_t *used, const char *format, ...)
{
int p;
va_list ap;
va_start(ap, format);
/* try to append the string */
p = vsnprintf(*str ? *str + *used : NULL, *size - *used, format, ap);
if ((unsigned)p >= *size - *used) {
/* realloc */
*str = ly_realloc(*str, *size + p + 1);
*size += p + 1;
/* restart ap */
va_end(ap);
va_start(ap, format);
/* print */
p = vsnprintf(*str + *used, *size - *used, format, ap);
}
*used += p;
va_end(ap);
}
/**
* @brief Print the whole expression @p exp to debug output.
*
* @param[in] exp Expression to use.
*/
static void
print_expr_struct_debug(const struct lyxp_expr *exp)
{
char *buf = NULL;
uint32_t i, j;
size_t size = 0, used = 0;
if (!exp || (ly_ll < LY_LLDBG)) {
return;
}
LOGDBG(LY_LDGXPATH, "expression \"%s\":", exp->expr);
for (i = 0; i < exp->used; ++i) {
print_expr_str(&buf, &size, &used, "\ttoken %s, in expression \"%.*s\"",
lyxp_token2str(exp->tokens[i]), exp->tok_len[i], &exp->expr[exp->tok_pos[i]]);
if (exp->repeat && exp->repeat[i]) {
print_expr_str(&buf, &size, &used, " (repeat %d", exp->repeat[i][0]);
for (j = 1; exp->repeat[i][j]; ++j) {
print_expr_str(&buf, &size, &used, ", %d", exp->repeat[i][j]);
}
print_expr_str(&buf, &size, &used, ")");
}
LOGDBG(LY_LDGXPATH, buf);
used = 0;
}
free(buf);
}
#ifndef NDEBUG
/**
* @brief Print XPath set content to debug output.
*
* @param[in] set Set to print.
*/
static void
print_set_debug(struct lyxp_set *set)
{
uint32_t i;
char *str;
struct lyxp_set_node *item;
struct lyxp_set_scnode *sitem;
if (ly_ll < LY_LLDBG) {
return;
}
switch (set->type) {
case LYXP_SET_NODE_SET:
LOGDBG(LY_LDGXPATH, "set NODE SET:");
for (i = 0; i < set->used; ++i) {
item = &set->val.nodes[i];
switch (item->type) {
case LYXP_NODE_NONE:
LOGDBG(LY_LDGXPATH, "\t%d (pos %u): NONE", i + 1, item->pos);
break;
case LYXP_NODE_ROOT:
LOGDBG(LY_LDGXPATH, "\t%d (pos %u): ROOT", i + 1, item->pos);
break;
case LYXP_NODE_ROOT_CONFIG:
LOGDBG(LY_LDGXPATH, "\t%d (pos %u): ROOT CONFIG", i + 1, item->pos);
break;
case LYXP_NODE_ELEM:
if (item->node->schema && (item->node->schema->nodetype == LYS_LIST) &&
(lyd_child(item->node)->schema->nodetype == LYS_LEAF)) {
LOGDBG(LY_LDGXPATH, "\t%d (pos %u): ELEM %s (1st child val: %s)", i + 1, item->pos,
item->node->schema->name, lyd_get_value(lyd_child(item->node)));
} else if ((!item->node->schema && !lyd_child(item->node)) || (item->node->schema->nodetype == LYS_LEAFLIST)) {
LOGDBG(LY_LDGXPATH, "\t%d (pos %u): ELEM %s (val: %s)", i + 1, item->pos,
LYD_NAME(item->node), lyd_get_value(item->node));
} else {
LOGDBG(LY_LDGXPATH, "\t%d (pos %u): ELEM %s", i + 1, item->pos, LYD_NAME(item->node));
}
break;
case LYXP_NODE_TEXT:
if (item->node->schema && (item->node->schema->nodetype & LYS_ANYDATA)) {
LOGDBG(LY_LDGXPATH, "\t%d (pos %u): TEXT <%s>", i + 1, item->pos,
item->node->schema->nodetype == LYS_ANYXML ? "anyxml" : "anydata");
} else {
LOGDBG(LY_LDGXPATH, "\t%d (pos %u): TEXT %s", i + 1, item->pos, lyd_get_value(item->node));
}
break;
case LYXP_NODE_META:
LOGDBG(LY_LDGXPATH, "\t%d (pos %u): META %s = %s", i + 1, item->pos, set->val.meta[i].meta->name,
set->val.meta[i].meta->value);
break;
}
}
break;
case LYXP_SET_SCNODE_SET:
LOGDBG(LY_LDGXPATH, "set SCNODE SET:");
for (i = 0; i < set->used; ++i) {
sitem = &set->val.scnodes[i];
switch (sitem->type) {
case LYXP_NODE_ROOT:
LOGDBG(LY_LDGXPATH, "\t%d (%u): ROOT", i + 1, sitem->in_ctx);
break;
case LYXP_NODE_ROOT_CONFIG:
LOGDBG(LY_LDGXPATH, "\t%d (%u): ROOT CONFIG", i + 1, sitem->in_ctx);
break;
case LYXP_NODE_ELEM:
LOGDBG(LY_LDGXPATH, "\t%d (%u): ELEM %s", i + 1, sitem->in_ctx, sitem->scnode->name);
break;
default:
LOGINT(NULL);
break;
}
}
break;
case LYXP_SET_BOOLEAN:
LOGDBG(LY_LDGXPATH, "set BOOLEAN");
LOGDBG(LY_LDGXPATH, "\t%s", (set->val.bln ? "true" : "false"));
break;
case LYXP_SET_STRING:
LOGDBG(LY_LDGXPATH, "set STRING");
LOGDBG(LY_LDGXPATH, "\t%s", set->val.str);
break;
case LYXP_SET_NUMBER:
LOGDBG(LY_LDGXPATH, "set NUMBER");
if (isnan(set->val.num)) {
str = strdup("NaN");
} else if ((set->val.num == 0) || (set->val.num == -0.0f)) {
str = strdup("0");
} else if (isinf(set->val.num) && !signbit(set->val.num)) {
str = strdup("Infinity");
} else if (isinf(set->val.num) && signbit(set->val.num)) {
str = strdup("-Infinity");
} else if ((long long)set->val.num == set->val.num) {
if (asprintf(&str, "%lld", (long long)set->val.num) == -1) {
str = NULL;
}
} else {
if (asprintf(&str, "%03.1Lf", set->val.num) == -1) {
str = NULL;
}
}
LY_CHECK_ERR_RET(!str, LOGMEM(NULL), );
LOGDBG(LY_LDGXPATH, "\t%s", str);
free(str);
}
}
#endif
/**
* @brief Realloc the string \p str.
*
* @param[in] ctx libyang context for logging.
* @param[in] needed How much free space is required.
* @param[in,out] str Pointer to the string to use.
* @param[in,out] used Used bytes in \p str.
* @param[in,out] size Allocated bytes in \p str.
* @return LY_ERR
*/
static LY_ERR
cast_string_realloc(const struct ly_ctx *ctx, uint64_t needed, char **str, uint32_t *used, uint32_t *size)
{
if (*size - (unsigned)*used < needed) {
do {
if ((UINT32_MAX - *size) < LYXP_STRING_CAST_SIZE_STEP) {
LOGERR(ctx, LY_EINVAL, "XPath string length limit (%" PRIu32 ") reached.", UINT32_MAX);
return LY_EINVAL;
}
*size += LYXP_STRING_CAST_SIZE_STEP;
} while (*size - (unsigned)*used < needed);
*str = ly_realloc(*str, *size * sizeof(char));
LY_CHECK_ERR_RET(!(*str), LOGMEM(ctx), LY_EMEM);
}
return LY_SUCCESS;
}
/**
* @brief Cast nodes recursively to one string @p str.
*
* @param[in] node Node to cast, NULL if root.
* @param[in] set XPath set.
* @param[in] indent Current indent.
* @param[in,out] str Resulting string.
* @param[in,out] used Used bytes in @p str.
* @param[in,out] size Allocated bytes in @p str.
* @return LY_ERR value.
*/
static LY_ERR
cast_string_recursive(const struct lyd_node *node, struct lyxp_set *set, uint32_t indent, char **str, uint32_t *used,
uint32_t *size)
{
char *buf, *line, *ptr = NULL;
const char *value_str;
uint16_t nodetype;
const struct lyd_node *child;
enum lyxp_node_type child_type;
struct lyd_node *tree;
struct lyd_node_any *any;
LY_ERR rc;
if ((set->root_type == LYXP_NODE_ROOT_CONFIG) && node && node->schema && (node->schema->flags & LYS_CONFIG_R)) {
return LY_SUCCESS;
}
if (!node) {
/* fake container */
LY_CHECK_RET(cast_string_realloc(set->ctx, 1, str, used, size));
strcpy(*str + (*used - 1), "\n");
++(*used);
++indent;
/* print all the top-level nodes */
child = NULL;
child_type = 0;
while (!moveto_axis_node_next(&child, &child_type, NULL, set->root_type, LYXP_AXIS_CHILD, set)) {
LY_CHECK_RET(cast_string_recursive(child, set, indent, str, used, size));
}
/* end fake container */
LY_CHECK_RET(cast_string_realloc(set->ctx, 1, str, used, size));
strcpy(*str + (*used - 1), "\n");
++(*used);
--indent;
} else {
if (node->schema) {
nodetype = node->schema->nodetype;
} else if (lyd_child(node)) {
nodetype = LYS_CONTAINER;
} else {
nodetype = LYS_LEAF;
}
switch (nodetype) {
case LYS_CONTAINER:
case LYS_LIST:
case LYS_RPC:
case LYS_NOTIF:
LY_CHECK_RET(cast_string_realloc(set->ctx, 1, str, used, size));
strcpy(*str + (*used - 1), "\n");
++(*used);
for (child = lyd_child(node); child; child = child->next) {
LY_CHECK_RET(cast_string_recursive(child, set, indent + 1, str, used, size));
}
break;
case LYS_LEAF:
case LYS_LEAFLIST:
value_str = lyd_get_value(node);
/* print indent */
LY_CHECK_RET(cast_string_realloc(set->ctx, indent * 2 + strlen(value_str) + 1, str, used, size));
memset(*str + (*used - 1), ' ', indent * 2);
*used += indent * 2;
/* print value */
if (*used == 1) {
sprintf(*str + (*used - 1), "%s", value_str);
*used += strlen(value_str);
} else {
sprintf(*str + (*used - 1), "%s\n", value_str);
*used += strlen(value_str) + 1;
}
break;
case LYS_ANYXML:
case LYS_ANYDATA:
any = (struct lyd_node_any *)node;
if (!(void *)any->value.tree) {
/* no content */
buf = strdup("");
LY_CHECK_ERR_RET(!buf, LOGMEM(set->ctx), LY_EMEM);
} else {
struct ly_out *out;
if (any->value_type == LYD_ANYDATA_LYB) {
/* try to parse it into a data tree */
if (lyd_parse_data_mem((struct ly_ctx *)set->ctx, any->value.mem, LYD_LYB,
LYD_PARSE_ONLY | LYD_PARSE_STRICT, 0, &tree) == LY_SUCCESS) {
/* successfully parsed */
free(any->value.mem);
any->value.tree = tree;
any->value_type = LYD_ANYDATA_DATATREE;
}
/* error is covered by the following switch where LYD_ANYDATA_LYB causes failure */
}
switch (any->value_type) {
case LYD_ANYDATA_STRING:
case LYD_ANYDATA_XML:
case LYD_ANYDATA_JSON:
buf = strdup(any->value.json);
LY_CHECK_ERR_RET(!buf, LOGMEM(set->ctx), LY_EMEM);
break;
case LYD_ANYDATA_DATATREE:
LY_CHECK_RET(ly_out_new_memory(&buf, 0, &out));
rc = lyd_print_all(out, any->value.tree, LYD_XML, 0);
ly_out_free(out, NULL, 0);
LY_CHECK_RET(rc);
break;
case LYD_ANYDATA_LYB:
LOGERR(set->ctx, LY_EINVAL, "Cannot convert LYB anydata into string.");
return LY_EINVAL;
}
}
line = strtok_r(buf, "\n", &ptr);
do {
rc = cast_string_realloc(set->ctx, indent * 2 + strlen(line) + 1, str, used, size);
if (rc != LY_SUCCESS) {
free(buf);
return rc;
}
memset(*str + (*used - 1), ' ', indent * 2);
*used += indent * 2;
strcpy(*str + (*used - 1), line);
*used += strlen(line);
strcpy(*str + (*used - 1), "\n");
*used += 1;
} while ((line = strtok_r(NULL, "\n", &ptr)));
free(buf);
break;
default:
LOGINT_RET(set->ctx);
}
}
return LY_SUCCESS;
}
/**
* @brief Cast an element into a string.
*
* @param[in] node Node to cast, NULL if root.
* @param[in] set XPath set.
* @param[out] str Element cast to dynamically-allocated string.
* @return LY_ERR
*/
static LY_ERR
cast_string_elem(const struct lyd_node *node, struct lyxp_set *set, char **str)
{
uint32_t used, size;
LY_ERR rc;
*str = malloc(LYXP_STRING_CAST_SIZE_START * sizeof(char));
LY_CHECK_ERR_RET(!*str, LOGMEM(set->ctx), LY_EMEM);
(*str)[0] = '\0';
used = 1;
size = LYXP_STRING_CAST_SIZE_START;
rc = cast_string_recursive(node, set, 0, str, &used, &size);
if (rc != LY_SUCCESS) {
free(*str);
return rc;
}
if (size > used) {
*str = ly_realloc(*str, used * sizeof(char));
LY_CHECK_ERR_RET(!*str, LOGMEM(set->ctx), LY_EMEM);
}
return LY_SUCCESS;
}
/**
* @brief Cast a LYXP_SET_NODE_SET set into a string.
* Context position aware.
*
* @param[in] set Set to cast.
* @param[out] str Cast dynamically-allocated string.
* @return LY_ERR
*/
static LY_ERR
cast_node_set_to_string(struct lyxp_set *set, char **str)
{
if (!set->used) {
*str = strdup("");
if (!*str) {
LOGMEM_RET(set->ctx);
}
return LY_SUCCESS;
}
switch (set->val.nodes[0].type) {
case LYXP_NODE_NONE:
/* invalid */
LOGINT_RET(set->ctx);
case LYXP_NODE_ROOT:
case LYXP_NODE_ROOT_CONFIG:
case LYXP_NODE_ELEM:
case LYXP_NODE_TEXT:
return cast_string_elem(set->val.nodes[0].node, set, str);
case LYXP_NODE_META:
*str = strdup(lyd_get_meta_value(set->val.meta[0].meta));
if (!*str) {
LOGMEM_RET(set->ctx);
}
return LY_SUCCESS;
}
LOGINT_RET(set->ctx);
}
/**
* @brief Cast a string into an XPath number.
*
* @param[in] str String to use.
* @return Cast number.
*/
static long double
cast_string_to_number(const char *str)
{
long double num;
char *ptr;
errno = 0;
num = strtold(str, &ptr);
if (errno || *ptr || (ptr == str)) {
num = NAN;
}
return num;
}
/**
* @brief Callback for checking value equality.
*
* Implementation of ::lyht_value_equal_cb.
*
* @param[in] val1_p First value.
* @param[in] val2_p Second value.
* @param[in] mod Whether hash table is being modified.
* @param[in] cb_data Callback data.
* @return Boolean value whether values are equal or not.
*/
static ly_bool
set_values_equal_cb(void *val1_p, void *val2_p, ly_bool UNUSED(mod), void *UNUSED(cb_data))
{
struct lyxp_set_hash_node *val1, *val2;
val1 = (struct lyxp_set_hash_node *)val1_p;
val2 = (struct lyxp_set_hash_node *)val2_p;
if ((val1->node == val2->node) && (val1->type == val2->type)) {
return 1;
}
return 0;
}
/**
* @brief Insert node and its hash into set.
*
* @param[in] set et to insert to.
* @param[in] node Node with hash.
* @param[in] type Node type.
*/
static void
set_insert_node_hash(struct lyxp_set *set, struct lyd_node *node, enum lyxp_node_type type)
{
LY_ERR r;
uint32_t i, hash;
struct lyxp_set_hash_node hnode;
if (!set->ht && (set->used >= LYD_HT_MIN_ITEMS)) {
/* create hash table and add all the nodes */
set->ht = lyht_new(1, sizeof(struct lyxp_set_hash_node), set_values_equal_cb, NULL, 1);
for (i = 0; i < set->used; ++i) {
hnode.node = set->val.nodes[i].node;
hnode.type = set->val.nodes[i].type;
hash = lyht_hash_multi(0, (const char *)&hnode.node, sizeof hnode.node);
hash = lyht_hash_multi(hash, (const char *)&hnode.type, sizeof hnode.type);
hash = lyht_hash_multi(hash, NULL, 0);
r = lyht_insert(set->ht, &hnode, hash, NULL);
assert(!r);
(void)r;
if ((hnode.node == node) && (hnode.type == type)) {
/* it was just added, do not add it twice */
return;
}
}
}
if (set->ht) {
/* add the new node into hash table */
hnode.node = node;
hnode.type = type;
hash = lyht_hash_multi(0, (const char *)&hnode.node, sizeof hnode.node);
hash = lyht_hash_multi(hash, (const char *)&hnode.type, sizeof hnode.type);
hash = lyht_hash_multi(hash, NULL, 0);
r = lyht_insert(set->ht, &hnode, hash, NULL);
assert(!r);
(void)r;
}
}
/**
* @brief Remove node and its hash from set.
*
* @param[in] set Set to remove from.
* @param[in] node Node to remove.
* @param[in] type Node type.
*/
static void
set_remove_node_hash(struct lyxp_set *set, struct lyd_node *node, enum lyxp_node_type type)
{
LY_ERR r;
struct lyxp_set_hash_node hnode;
uint32_t hash;
if (set->ht) {
hnode.node = node;
hnode.type = type;
hash = lyht_hash_multi(0, (const char *)&hnode.node, sizeof hnode.node);
hash = lyht_hash_multi(hash, (const char *)&hnode.type, sizeof hnode.type);
hash = lyht_hash_multi(hash, NULL, 0);
r = lyht_remove(set->ht, &hnode, hash);
assert(!r);
(void)r;
if (!set->ht->used) {
lyht_free(set->ht, NULL);
set->ht = NULL;
}
}
}
/**
* @brief Check whether node is in set based on its hash.
*
* @param[in] set Set to search in.
* @param[in] node Node to search for.
* @param[in] type Node type.
* @param[in] skip_idx Index in @p set to skip.
* @return LY_ERR
*/
static LY_ERR
set_dup_node_hash_check(const struct lyxp_set *set, struct lyd_node *node, enum lyxp_node_type type, int skip_idx)
{
struct lyxp_set_hash_node hnode, *match_p;
uint32_t hash;
hnode.node = node;
hnode.type = type;
hash = lyht_hash_multi(0, (const char *)&hnode.node, sizeof hnode.node);
hash = lyht_hash_multi(hash, (const char *)&hnode.type, sizeof hnode.type);
hash = lyht_hash_multi(hash, NULL, 0);
if (!lyht_find(set->ht, &hnode, hash, (void **)&match_p)) {
if ((skip_idx > -1) && (set->val.nodes[skip_idx].node == match_p->node) && (set->val.nodes[skip_idx].type == match_p->type)) {
/* we found it on the index that should be skipped, find another */
hnode = *match_p;
if (lyht_find_next(set->ht, &hnode, hash, (void **)&match_p)) {
/* none other found */
return LY_SUCCESS;
}
}
return LY_EEXIST;
}
/* not found */
return LY_SUCCESS;
}
void
lyxp_set_free_content(struct lyxp_set *set)
{
if (!set) {
return;
}
if (set->type == LYXP_SET_NODE_SET) {
free(set->val.nodes);
lyht_free(set->ht, NULL);
} else if (set->type == LYXP_SET_SCNODE_SET) {
free(set->val.scnodes);
lyht_free(set->ht, NULL);
} else {
if (set->type == LYXP_SET_STRING) {
free(set->val.str);
}
set->type = LYXP_SET_NODE_SET;
}
set->val.nodes = NULL;
set->used = 0;
set->size = 0;
set->ht = NULL;
set->ctx_pos = 0;
set->ctx_size = 0;
}
/**
* @brief Free dynamically-allocated set.
*
* @param[in] set Set to free.
*/
static void
lyxp_set_free(struct lyxp_set *set)
{
if (!set) {
return;
}
lyxp_set_free_content(set);
free(set);
}
/**
* @brief Initialize set context.
*
* @param[in] new Set to initialize.
* @param[in] set Arbitrary initialized set.
*/
static void
set_init(struct lyxp_set *new, const struct lyxp_set *set)
{
memset(new, 0, sizeof *new);
if (!set) {
return;
}
new->non_child_axis = set->non_child_axis;
new->not_found = set->not_found;
new->ctx = set->ctx;
new->cur_node = set->cur_node;
new->root_type = set->root_type;
new->context_op = set->context_op;
new->tree = set->tree;
new->cur_mod = set->cur_mod;
new->format = set->format;
new->prefix_data = set->prefix_data;
new->vars = set->vars;
}
/**
* @brief Create a deep copy of a set.
*
* @param[in] set Set to copy.
* @return Copy of @p set.
*/
static struct lyxp_set *
set_copy(struct lyxp_set *set)
{
struct lyxp_set *ret;
uint32_t i;
if (!set) {
return NULL;
}
ret = malloc(sizeof *ret);
LY_CHECK_ERR_RET(!ret, LOGMEM(set->ctx), NULL);
set_init(ret, set);
if (set->type == LYXP_SET_SCNODE_SET) {
ret->type = set->type;
for (i = 0; i < set->used; ++i) {
if ((set->val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_CTX) ||
(set->val.scnodes[i].in_ctx == LYXP_SET_SCNODE_START)) {
uint32_t idx;
LY_CHECK_ERR_RET(lyxp_set_scnode_insert_node(ret, set->val.scnodes[i].scnode, set->val.scnodes[i].type,
set->val.scnodes[i].axis, &idx), lyxp_set_free(ret), NULL);
/* coverity seems to think scnodes can be NULL */
if (!ret->val.scnodes) {
lyxp_set_free(ret);
return NULL;
}
ret->val.scnodes[idx].in_ctx = set->val.scnodes[i].in_ctx;
}
}
} else if (set->type == LYXP_SET_NODE_SET) {
ret->type = set->type;
if (set->used) {
ret->val.nodes = malloc(set->used * sizeof *ret->val.nodes);
LY_CHECK_ERR_RET(!ret->val.nodes, LOGMEM(set->ctx); free(ret), NULL);
memcpy(ret->val.nodes, set->val.nodes, set->used * sizeof *ret->val.nodes);
} else {
ret->val.nodes = NULL;
}
ret->used = ret->size = set->used;
ret->ctx_pos = set->ctx_pos;
ret->ctx_size = set->ctx_size;
if (set->ht) {
ret->ht = lyht_dup(set->ht);
}
} else {
memcpy(ret, set, sizeof *ret);
if (set->type == LYXP_SET_STRING) {
ret->val.str = strdup(set->val.str);
LY_CHECK_ERR_RET(!ret->val.str, LOGMEM(set->ctx); free(ret), NULL);
}
}
return ret;
}
/**
* @brief Fill XPath set with a string. Any current data are disposed of.
*
* @param[in] set Set to fill.
* @param[in] string String to fill into \p set.
* @param[in] str_len Length of \p string. 0 is a valid value!
*/
static void
set_fill_string(struct lyxp_set *set, const char *string, uint32_t str_len)
{
lyxp_set_free_content(set);
set->type = LYXP_SET_STRING;
if ((str_len == 0) && (string[0] != '\0')) {
string = "";
}
set->val.str = strndup(string, str_len);
}
/**
* @brief Fill XPath set with a number. Any current data are disposed of.
*
* @param[in] set Set to fill.
* @param[in] number Number to fill into \p set.
*/
static void
set_fill_number(struct lyxp_set *set, long double number)
{
lyxp_set_free_content(set);
set->type = LYXP_SET_NUMBER;
set->val.num = number;
}
/**
* @brief Fill XPath set with a boolean. Any current data are disposed of.
*
* @param[in] set Set to fill.
* @param[in] boolean Boolean to fill into \p set.
*/
static void
set_fill_boolean(struct lyxp_set *set, ly_bool boolean)
{
lyxp_set_free_content(set);
set->type = LYXP_SET_BOOLEAN;
set->val.bln = boolean;
}
/**
* @brief Fill XPath set with the value from another set (deep assign).
* Any current data are disposed of.
*
* @param[in] trg Set to fill.
* @param[in] src Source set to copy into \p trg.
*/
static void
set_fill_set(struct lyxp_set *trg, const struct lyxp_set *src)
{
if (!trg || !src) {
return;
}
lyxp_set_free_content(trg);
set_init(trg, src);
if (src->type == LYXP_SET_SCNODE_SET) {
trg->type = LYXP_SET_SCNODE_SET;
trg->used = src->used;
trg->size = src->used;
if (trg->size) {
trg->val.scnodes = ly_realloc(trg->val.scnodes, trg->size * sizeof *trg->val.scnodes);
LY_CHECK_ERR_RET(!trg->val.scnodes, LOGMEM(src->ctx); memset(trg, 0, sizeof *trg), );
memcpy(trg->val.scnodes, src->val.scnodes, src->used * sizeof *src->val.scnodes);
} else {
trg->val.scnodes = NULL;
}
} else if (src->type == LYXP_SET_BOOLEAN) {
set_fill_boolean(trg, src->val.bln);
} else if (src->type == LYXP_SET_NUMBER) {
set_fill_number(trg, src->val.num);
} else if (src->type == LYXP_SET_STRING) {
set_fill_string(trg, src->val.str, strlen(src->val.str));
} else {
if (trg->type == LYXP_SET_NODE_SET) {
free(trg->val.nodes);
} else if (trg->type == LYXP_SET_STRING) {
free(trg->val.str);
}
assert(src->type == LYXP_SET_NODE_SET);
trg->type = LYXP_SET_NODE_SET;
trg->used = src->used;
trg->size = src->used;
trg->ctx_pos = src->ctx_pos;
trg->ctx_size = src->ctx_size;
if (trg->size) {
trg->val.nodes = malloc(trg->size * sizeof *trg->val.nodes);
LY_CHECK_ERR_RET(!trg->val.nodes, LOGMEM(src->ctx); memset(trg, 0, sizeof *trg), );
memcpy(trg->val.nodes, src->val.nodes, src->used * sizeof *src->val.nodes);
} else {
trg->val.nodes = NULL;
}
if (src->ht) {
trg->ht = lyht_dup(src->ht);
} else {
trg->ht = NULL;
}
}
}
/**
* @brief Clear context of all schema nodes.
*
* @param[in] set Set to clear.
* @param[in] new_ctx New context state for all the nodes currently in the context.
*/
static void
set_scnode_clear_ctx(struct lyxp_set *set, int32_t new_ctx)
{
uint32_t i;
for (i = 0; i < set->used; ++i) {
if (set->val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_CTX) {
set->val.scnodes[i].in_ctx = new_ctx;
} else if (set->val.scnodes[i].in_ctx == LYXP_SET_SCNODE_START) {
set->val.scnodes[i].in_ctx = LYXP_SET_SCNODE_START_USED;
}
}
}
/**
* @brief Remove a node from a set. Removing last node changes
* set into LYXP_SET_EMPTY. Context position aware.
*
* @param[in] set Set to use.
* @param[in] idx Index from @p set of the node to be removed.
*/
static void
set_remove_node(struct lyxp_set *set, uint32_t idx)
{
assert(set && (set->type == LYXP_SET_NODE_SET));
assert(idx < set->used);
set_remove_node_hash(set, set->val.nodes[idx].node, set->val.nodes[idx].type);
--set->used;
if (idx < set->used) {
memmove(&set->val.nodes[idx], &set->val.nodes[idx + 1], (set->used - idx) * sizeof *set->val.nodes);
} else if (!set->used) {
lyxp_set_free_content(set);
}
}
/**
* @brief Remove a node from a set by setting its type to LYXP_NODE_NONE.
*
* @param[in] set Set to use.
* @param[in] idx Index from @p set of the node to be removed.
*/
static void
set_remove_node_none(struct lyxp_set *set, uint32_t idx)
{
assert(set && (set->type == LYXP_SET_NODE_SET));
assert(idx < set->used);
if (set->val.nodes[idx].type == LYXP_NODE_ELEM) {
set_remove_node_hash(set, set->val.nodes[idx].node, set->val.nodes[idx].type);
}
set->val.nodes[idx].type = LYXP_NODE_NONE;
}
/**
* @brief Remove all LYXP_NODE_NONE nodes from a set. Removing last node changes
* set into LYXP_SET_EMPTY. Context position aware.
*
* @param[in] set Set to consolidate.
*/
static void
set_remove_nodes_none(struct lyxp_set *set)
{
uint32_t i, orig_used, end = 0;
int64_t start;
assert(set);
orig_used = set->used;
set->used = 0;
for (i = 0; i < orig_used; ) {
start = -1;
do {
if ((set->val.nodes[i].type != LYXP_NODE_NONE) && (start == -1)) {
start = i;
} else if ((start > -1) && (set->val.nodes[i].type == LYXP_NODE_NONE)) {
end = i;
++i;
break;
}
++i;
if (i == orig_used) {
end = i;
}
} while (i < orig_used);
if (start > -1) {
/* move the whole chunk of valid nodes together */
if (set->used != (unsigned)start) {
memmove(&set->val.nodes[set->used], &set->val.nodes[start], (end - start) * sizeof *set->val.nodes);
}
set->used += end - start;
}
}
}
/**
* @brief Check for duplicates in a node set.
*
* @param[in] set Set to check.
* @param[in] node Node to look for in @p set.
* @param[in] node_type Type of @p node.
* @param[in] skip_idx Index from @p set to skip.
* @return LY_ERR
*/
static LY_ERR
set_dup_node_check(const struct lyxp_set *set, const struct lyd_node *node, enum lyxp_node_type node_type, int skip_idx)
{
uint32_t i;
if (set->ht && node) {
return set_dup_node_hash_check(set, (struct lyd_node *)node, node_type, skip_idx);
}
for (i = 0; i < set->used; ++i) {
if ((skip_idx > -1) && (i == (unsigned)skip_idx)) {
continue;
}
if ((set->val.nodes[i].node == node) && (set->val.nodes[i].type == node_type)) {
return LY_EEXIST;
}
}
return LY_SUCCESS;
}
ly_bool
lyxp_set_scnode_contains(struct lyxp_set *set, const struct lysc_node *node, enum lyxp_node_type node_type, int skip_idx,
uint32_t *index_p)
{
uint32_t i;
for (i = 0; i < set->used; ++i) {
if ((skip_idx > -1) && (i == (unsigned)skip_idx)) {
continue;
}
if ((set->val.scnodes[i].scnode == node) && (set->val.scnodes[i].type == node_type)) {
if (index_p) {
*index_p = i;
}
return 1;
}
}
return 0;
}
void
lyxp_set_scnode_merge(struct lyxp_set *set1, struct lyxp_set *set2)
{
uint32_t orig_used, i, j;
assert((set1->type == LYXP_SET_SCNODE_SET) && (set2->type == LYXP_SET_SCNODE_SET));
if (!set2->used) {
return;
}
if (!set1->used) {
/* release hidden allocated data (lyxp_set.size) */
lyxp_set_free_content(set1);
/* direct copying of the entire structure */
memcpy(set1, set2, sizeof *set1);
return;
}
if (set1->used + set2->used > set1->size) {
set1->size = set1->used + set2->used;
set1->val.scnodes = ly_realloc(set1->val.scnodes, set1->size * sizeof *set1->val.scnodes);
LY_CHECK_ERR_RET(!set1->val.scnodes, LOGMEM(set1->ctx), );
}
orig_used = set1->used;
for (i = 0; i < set2->used; ++i) {
for (j = 0; j < orig_used; ++j) {
/* detect duplicities */
if (set1->val.scnodes[j].scnode == set2->val.scnodes[i].scnode) {
break;
}
}
if (j < orig_used) {
/* node is there, but update its status if needed */
if (set1->val.scnodes[j].in_ctx == LYXP_SET_SCNODE_START_USED) {
set1->val.scnodes[j].in_ctx = set2->val.scnodes[i].in_ctx;
} else if ((set1->val.scnodes[j].in_ctx == LYXP_SET_SCNODE_ATOM_NODE) &&
(set2->val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_VAL)) {
set1->val.scnodes[j].in_ctx = set2->val.scnodes[i].in_ctx;
}
} else {
memcpy(&set1->val.scnodes[set1->used], &set2->val.scnodes[i], sizeof *set2->val.scnodes);
++set1->used;
}
}
lyxp_set_free_content(set2);
set2->type = LYXP_SET_SCNODE_SET;
}
/**
* @brief Insert a node into a set. Context position aware.
*
* @param[in] set Set to use.
* @param[in] node Node to insert to @p set.
* @param[in] pos Sort position of @p node. If left 0, it is filled just before sorting.
* @param[in] node_type Node type of @p node.
* @param[in] idx Index in @p set to insert into.
*/
static void
set_insert_node(struct lyxp_set *set, const struct lyd_node *node, uint32_t pos, enum lyxp_node_type node_type, uint32_t idx)
{
assert(set && (set->type == LYXP_SET_NODE_SET));
if (!set->size) {
/* first item */
if (idx) {
/* no real harm done, but it is a bug */
LOGINT(set->ctx);
idx = 0;
}
set->val.nodes = malloc(LYXP_SET_SIZE_START * sizeof *set->val.nodes);
LY_CHECK_ERR_RET(!set->val.nodes, LOGMEM(set->ctx), );
set->type = LYXP_SET_NODE_SET;
set->used = 0;
set->size = LYXP_SET_SIZE_START;
set->ctx_pos = 1;
set->ctx_size = 1;
set->ht = NULL;
} else {
/* not an empty set */
if (set->used == set->size) {
/* set is full */
set->val.nodes = ly_realloc(set->val.nodes, (set->size * LYXP_SET_SIZE_MUL_STEP) * sizeof *set->val.nodes);
LY_CHECK_ERR_RET(!set->val.nodes, LOGMEM(set->ctx), );
set->size *= LYXP_SET_SIZE_MUL_STEP;
}
if (idx > set->used) {
LOGINT(set->ctx);
idx = set->used;
}
/* make space for the new node */
if (idx < set->used) {
memmove(&set->val.nodes[idx + 1], &set->val.nodes[idx], (set->used - idx) * sizeof *set->val.nodes);
}
}
/* finally assign the value */
set->val.nodes[idx].node = (struct lyd_node *)node;
set->val.nodes[idx].type = node_type;
set->val.nodes[idx].pos = pos;
++set->used;
/* add into hash table */
set_insert_node_hash(set, (struct lyd_node *)node, node_type);
}
LY_ERR
lyxp_set_scnode_insert_node(struct lyxp_set *set, const struct lysc_node *node, enum lyxp_node_type node_type,
enum lyxp_axis axis, uint32_t *index_p)
{
uint32_t index;
assert(set->type == LYXP_SET_SCNODE_SET);
if (!set->size) {
/* first item */
set->val.scnodes = malloc(LYXP_SET_SIZE_START * sizeof *set->val.scnodes);
LY_CHECK_ERR_RET(!set->val.scnodes, LOGMEM(set->ctx), LY_EMEM);
set->type = LYXP_SET_SCNODE_SET;
set->used = 0;
set->size = LYXP_SET_SIZE_START;
set->ctx_pos = 1;
set->ctx_size = 1;
set->ht = NULL;
}
if (lyxp_set_scnode_contains(set, node, node_type, -1, &index)) {
/* BUG if axes differ, this new one is thrown away */
set->val.scnodes[index].in_ctx = LYXP_SET_SCNODE_ATOM_CTX;
} else {
if (set->used == set->size) {
set->val.scnodes = ly_realloc(set->val.scnodes, (set->size * LYXP_SET_SIZE_MUL_STEP) * sizeof *set->val.scnodes);
LY_CHECK_ERR_RET(!set->val.scnodes, LOGMEM(set->ctx), LY_EMEM);
set->size *= LYXP_SET_SIZE_MUL_STEP;
}
index = set->used;
set->val.scnodes[index].scnode = (struct lysc_node *)node;
set->val.scnodes[index].type = node_type;
set->val.scnodes[index].in_ctx = LYXP_SET_SCNODE_ATOM_CTX;
set->val.scnodes[index].axis = axis;
++set->used;
}
if (index_p) {
*index_p = index;
}
return LY_SUCCESS;
}
/**
* @brief Set all nodes with ctx 1 to a new unique context value.
*
* @param[in] set Set to modify.
* @return New context value.
*/
static int32_t
set_scnode_new_in_ctx(struct lyxp_set *set)
{
uint32_t i;
int32_t ret_ctx;
assert(set->type == LYXP_SET_SCNODE_SET);
ret_ctx = LYXP_SET_SCNODE_ATOM_PRED_CTX;
retry:
for (i = 0; i < set->used; ++i) {
if (set->val.scnodes[i].in_ctx >= ret_ctx) {
ret_ctx = set->val.scnodes[i].in_ctx + 1;
goto retry;
}
}
for (i = 0; i < set->used; ++i) {
if (set->val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_CTX) {
set->val.scnodes[i].in_ctx = ret_ctx;
}
}
return ret_ctx;
}
/**
* @brief Get unique @p node position in the data.
*
* @param[in] node Node to find.
* @param[in] node_type Node type of @p node.
* @param[in] root Root node.
* @param[in] root_type Type of the XPath @p root node.
* @param[in] prev Node that we think is before @p node in DFS from @p root. Can optionally
* be used to increase efficiency and start the DFS from this node.
* @param[in] prev_pos Node @p prev position. Optional, but must be set if @p prev is set.
* @return Node position.
*/
static uint32_t
get_node_pos(const struct lyd_node *node, enum lyxp_node_type node_type, const struct lyd_node *root,
enum lyxp_node_type root_type, const struct lyd_node **prev, uint32_t *prev_pos)
{
const struct lyd_node *elem = NULL, *top_sibling;
uint32_t pos = 1;
ly_bool found = 0;
assert(prev && prev_pos && !root->prev->next);
if ((node_type == LYXP_NODE_ROOT) || (node_type == LYXP_NODE_ROOT_CONFIG)) {
return 0;
}
if (*prev) {
/* start from the previous element instead from the root */
pos = *prev_pos;
for (top_sibling = *prev; top_sibling->parent; top_sibling = lyd_parent(top_sibling)) {}
goto dfs_search;
}
LY_LIST_FOR(root, top_sibling) {
LYD_TREE_DFS_BEGIN(top_sibling, elem) {
dfs_search:
LYD_TREE_DFS_continue = 0;
if (*prev && !elem) {
/* resume previous DFS */
elem = LYD_TREE_DFS_next = (struct lyd_node *)*prev;
LYD_TREE_DFS_continue = 0;
}
if ((root_type == LYXP_NODE_ROOT_CONFIG) && elem->schema && (elem->schema->flags & LYS_CONFIG_R)) {
/* skip */
LYD_TREE_DFS_continue = 1;
} else {
if (elem == node) {
found = 1;
break;
}
++pos;
}
LYD_TREE_DFS_END(top_sibling, elem);
}
/* node found */
if (found) {
break;
}
}
if (!found) {
if (!(*prev)) {
/* we went from root and failed to find it, cannot be */
LOGINT(LYD_CTX(node));
return 0;
} else {
/* start the search again from the beginning */
*prev = root;
top_sibling = root;
pos = 1;
goto dfs_search;
}
}
/* remember the last found node for next time */
*prev = node;
*prev_pos = pos;
return pos;
}
/**
* @brief Assign (fill) missing node positions.
*
* @param[in] set Set to fill positions in.
* @param[in] root Context root node.
* @param[in] root_type Context root type.
* @return LY_ERR
*/
static LY_ERR
set_assign_pos(struct lyxp_set *set, const struct lyd_node *root, enum lyxp_node_type root_type)
{
const struct lyd_node *prev = NULL, *tmp_node;
uint32_t i, tmp_pos = 0;
for (i = 0; i < set->used; ++i) {
if (!set->val.nodes[i].pos) {
tmp_node = NULL;
switch (set->val.nodes[i].type) {
case LYXP_NODE_META:
tmp_node = set->val.meta[i].meta->parent;
if (!tmp_node) {
LOGINT_RET(root->schema->module->ctx);
}
/* fall through */
case LYXP_NODE_ELEM:
case LYXP_NODE_TEXT:
if (!tmp_node) {
tmp_node = set->val.nodes[i].node;
}
set->val.nodes[i].pos = get_node_pos(tmp_node, set->val.nodes[i].type, root, root_type, &prev, &tmp_pos);
break;
default:
/* all roots have position 0 */
break;
}
}
}
return LY_SUCCESS;
}
/**
* @brief Get unique @p meta position in the parent metadata.
*
* @param[in] meta Metadata to use.
* @return Metadata position.
*/
static uint32_t
get_meta_pos(struct lyd_meta *meta)
{
uint32_t pos = 0;
struct lyd_meta *meta2;
for (meta2 = meta->parent->meta; meta2 && (meta2 != meta); meta2 = meta2->next) {
++pos;
}
assert(meta2);
return pos;
}
/**
* @brief Compare 2 nodes in respect to XPath document order.
*
* @param[in] item1 1st node.
* @param[in] item2 2nd node.
* @return If 1st > 2nd returns 1, 1st == 2nd returns 0, and 1st < 2nd returns -1.
*/
static int
set_sort_compare(struct lyxp_set_node *item1, struct lyxp_set_node *item2)
{
uint32_t meta_pos1 = 0, meta_pos2 = 0;
if (item1->pos < item2->pos) {
return -1;
}
if (item1->pos > item2->pos) {
return 1;
}
/* node positions are equal, the fun case */
/* 1st ELEM - == - 2nd TEXT, 1st TEXT - == - 2nd ELEM */
/* special case since text nodes are actually saved as their parents */
if ((item1->node == item2->node) && (item1->type != item2->type)) {
if (item1->type == LYXP_NODE_ELEM) {
assert(item2->type == LYXP_NODE_TEXT);
return -1;
} else {
assert((item1->type == LYXP_NODE_TEXT) && (item2->type == LYXP_NODE_ELEM));
return 1;
}
}
/* we need meta positions now */
if (item1->type == LYXP_NODE_META) {
meta_pos1 = get_meta_pos((struct lyd_meta *)item1->node);
}
if (item2->type == LYXP_NODE_META) {
meta_pos2 = get_meta_pos((struct lyd_meta *)item2->node);
}
/* 1st ROOT - 2nd ROOT, 1st ELEM - 2nd ELEM, 1st TEXT - 2nd TEXT, 1st META - =pos= - 2nd META */
/* check for duplicates */
if (item1->node == item2->node) {
assert((item1->type == item2->type) && ((item1->type != LYXP_NODE_META) || (meta_pos1 == meta_pos2)));
return 0;
}
/* 1st ELEM - 2nd TEXT, 1st ELEM - any pos - 2nd META */
/* elem is always first, 2nd node is after it */
if (item1->type == LYXP_NODE_ELEM) {
assert(item2->type != LYXP_NODE_ELEM);
return -1;
}
/* 1st TEXT - 2nd ELEM, 1st TEXT - any pos - 2nd META, 1st META - any pos - 2nd ELEM, 1st META - >pos> - 2nd META */
/* 2nd is before 1st */
if (((item1->type == LYXP_NODE_TEXT) &&
((item2->type == LYXP_NODE_ELEM) || (item2->type == LYXP_NODE_META))) ||
((item1->type == LYXP_NODE_META) && (item2->type == LYXP_NODE_ELEM)) ||
(((item1->type == LYXP_NODE_META) && (item2->type == LYXP_NODE_META)) &&
(meta_pos1 > meta_pos2))) {
return 1;
}
/* 1st META - any pos - 2nd TEXT, 1st META <pos< - 2nd META */
/* 2nd is after 1st */
return -1;
}
/**
* @brief Set cast for comparisons.
*
* @param[in,out] trg Target set to cast source into.
* @param[in] src Source set.
* @param[in] type Target set type.
* @param[in] src_idx Source set node index.
* @return LY_SUCCESS on success.
* @return LY_ERR value on error.
*/
static LY_ERR
set_comp_cast(struct lyxp_set *trg, const struct lyxp_set *src, enum lyxp_set_type type, uint32_t src_idx)
{
assert(src->type == LYXP_SET_NODE_SET);
set_init(trg, src);
/* insert node into target set */
set_insert_node(trg, src->val.nodes[src_idx].node, src->val.nodes[src_idx].pos, src->val.nodes[src_idx].type, 0);
/* cast target set appropriately */
return lyxp_set_cast(trg, type);
}
/**
* @brief Set content canonization for comparisons.
*
* @param[in,out] set Set to canonize.
* @param[in] xp_node Source XPath node/meta to use for canonization.
* @return LY_SUCCESS on success.
* @return LY_ERR value on error.
*/
static LY_ERR
set_comp_canonize(struct lyxp_set *set, const struct lyxp_set_node *xp_node)
{
const struct lysc_type *type = NULL;
struct lyd_value val;
struct ly_err_item *err = NULL;
LY_ERR r;
/* is there anything to canonize even? */
if (set->type == LYXP_SET_STRING) {
/* do we have a type to use for canonization? */
if ((xp_node->type == LYXP_NODE_ELEM) && xp_node->node->schema && (xp_node->node->schema->nodetype & LYD_NODE_TERM)) {
type = ((struct lyd_node_term *)xp_node->node)->value.realtype;
} else if (xp_node->type == LYXP_NODE_META) {
type = ((struct lyd_meta *)xp_node->node)->value.realtype;
}
}
if (!type) {
/* no canonization needed/possible */
return LY_SUCCESS;
}
/* check for built-in types without required canonization */
if ((type->basetype == LY_TYPE_STRING) && (type->plugin->store == lyplg_type_store_string)) {
/* string */
return LY_SUCCESS;
}
if ((type->basetype == LY_TYPE_BOOL) && (type->plugin->store == lyplg_type_store_boolean)) {
/* boolean */
return LY_SUCCESS;
}
if ((type->basetype == LY_TYPE_ENUM) && (type->plugin->store == lyplg_type_store_enum)) {
/* enumeration */
return LY_SUCCESS;
}
/* print canonized string, ignore errors, the value may not satisfy schema constraints */
r = type->plugin->store(set->ctx, type, set->val.str, strlen(set->val.str), 0, set->format, set->prefix_data,
LYD_HINT_DATA, xp_node->node->schema, &val, NULL, &err);
ly_err_free(err);
if (r && (r != LY_EINCOMPLETE)) {
/* invalid value, function store automaticaly dealloc value when fail */
return LY_SUCCESS;
}
/* use the canonized string value */
free(set->val.str);
set->val.str = strdup(lyd_value_get_canonical(set->ctx, &val));
type->plugin->free(set->ctx, &val);
LY_CHECK_ERR_RET(!set->val.str, LOGMEM(set->ctx), LY_EMEM);
return LY_SUCCESS;
}
/**
* @brief Bubble sort @p set into XPath document order.
* Context position aware.
*
* @param[in] set Set to sort.
* @return How many times the whole set was traversed - 1 (if set was sorted, returns 0).
*/
static int
set_sort(struct lyxp_set *set)
{
uint32_t i, j;
int ret = 0, cmp;
ly_bool inverted, change;
const struct lyd_node *root;
struct lyxp_set_node item;
struct lyxp_set_hash_node hnode;
uint64_t hash;
if ((set->type != LYXP_SET_NODE_SET) || (set->used < 2)) {
return 0;
}
/* find first top-level node to be used as anchor for positions */
for (root = set->tree; root->parent; root = lyd_parent(root)) {}
for ( ; root->prev->next; root = root->prev) {}
/* fill positions */
if (set_assign_pos(set, root, set->root_type)) {
return -1;
}
#ifndef NDEBUG
LOGDBG(LY_LDGXPATH, "SORT BEGIN");
print_set_debug(set);
#endif
for (i = 0; i < set->used; ++i) {
inverted = 0;
change = 0;
for (j = 1; j < set->used - i; ++j) {
/* compare node positions */
if (inverted) {
cmp = set_sort_compare(&set->val.nodes[j], &set->val.nodes[j - 1]);
} else {
cmp = set_sort_compare(&set->val.nodes[j - 1], &set->val.nodes[j]);
}
/* swap if needed */
if ((inverted && (cmp < 0)) || (!inverted && (cmp > 0))) {
change = 1;
item = set->val.nodes[j - 1];
set->val.nodes[j - 1] = set->val.nodes[j];
set->val.nodes[j] = item;
} else {
/* whether node_pos1 should be smaller than node_pos2 or the other way around */
inverted = !inverted;
}
}
++ret;
if (!change) {
break;
}
}
#ifndef NDEBUG
LOGDBG(LY_LDGXPATH, "SORT END %d", ret);
print_set_debug(set);
#endif
/* check node hashes */
if (set->used >= LYD_HT_MIN_ITEMS) {
assert(set->ht);
for (i = 0; i < set->used; ++i) {
hnode.node = set->val.nodes[i].node;
hnode.type = set->val.nodes[i].type;
hash = lyht_hash_multi(0, (const char *)&hnode.node, sizeof hnode.node);
hash = lyht_hash_multi(hash, (const char *)&hnode.type, sizeof hnode.type);
hash = lyht_hash_multi(hash, NULL, 0);
assert(!lyht_find(set->ht, &hnode, hash, NULL));
}
}
return ret - 1;
}
/**
* @brief Merge 2 sorted sets into one.
*
* @param[in,out] trg Set to merge into. Duplicates are removed.
* @param[in] src Set to be merged into @p trg. It is cast to #LYXP_SET_EMPTY on success.
* @return LY_ERR
*/
static LY_ERR
set_sorted_merge(struct lyxp_set *trg, struct lyxp_set *src)
{
uint32_t i, j, k, count, dup_count;
int cmp;
const struct lyd_node *root;
if ((trg->type != LYXP_SET_NODE_SET) || (src->type != LYXP_SET_NODE_SET)) {
return LY_EINVAL;
}
if (!src->used) {
return LY_SUCCESS;
} else if (!trg->used) {
set_fill_set(trg, src);
lyxp_set_free_content(src);
return LY_SUCCESS;
}
/* find first top-level node to be used as anchor for positions */
for (root = trg->tree; root->parent; root = lyd_parent(root)) {}
for ( ; root->prev->next; root = root->prev) {}
/* fill positions */
if (set_assign_pos(trg, root, trg->root_type) || set_assign_pos(src, root, src->root_type)) {
return LY_EINT;
}
#ifndef NDEBUG
LOGDBG(LY_LDGXPATH, "MERGE target");
print_set_debug(trg);
LOGDBG(LY_LDGXPATH, "MERGE source");
print_set_debug(src);
#endif
/* make memory for the merge (duplicates are not detected yet, so space
* will likely be wasted on them, too bad) */
if (trg->size - trg->used < src->used) {
trg->size = trg->used + src->used;
trg->val.nodes = ly_realloc(trg->val.nodes, trg->size * sizeof *trg->val.nodes);
LY_CHECK_ERR_RET(!trg->val.nodes, LOGMEM(src->ctx), LY_EMEM);
}
i = 0;
j = 0;
count = 0;
dup_count = 0;
do {
cmp = set_sort_compare(&src->val.nodes[i], &trg->val.nodes[j]);
if (!cmp) {
if (!count) {
/* duplicate, just skip it */
++i;
++j;
} else {
/* we are copying something already, so let's copy the duplicate too,
* we are hoping that afterwards there are some more nodes to
* copy and this way we can copy them all together */
++count;
++dup_count;
++i;
++j;
}
} else if (cmp < 0) {
/* inserting src node into trg, just remember it for now */
++count;
++i;
/* insert the hash now */
set_insert_node_hash(trg, src->val.nodes[i - 1].node, src->val.nodes[i - 1].type);
} else if (count) {
copy_nodes:
/* time to actually copy the nodes, we have found the largest block of nodes */
memmove(&trg->val.nodes[j + (count - dup_count)],
&trg->val.nodes[j],
(trg->used - j) * sizeof *trg->val.nodes);
memcpy(&trg->val.nodes[j - dup_count], &src->val.nodes[i - count], count * sizeof *src->val.nodes);
trg->used += count - dup_count;
/* do not change i, except the copying above, we are basically doing exactly what is in the else branch below */
j += count - dup_count;
count = 0;
dup_count = 0;
} else {
++j;
}
} while ((i < src->used) && (j < trg->used));
if ((i < src->used) || count) {
/* insert all the hashes first */
for (k = i; k < src->used; ++k) {
set_insert_node_hash(trg, src->val.nodes[k].node, src->val.nodes[k].type);
}
/* loop ended, but we need to copy something at trg end */
count += src->used - i;
i = src->used;
goto copy_nodes;
}
/* we are inserting hashes before the actual node insert, which causes
* situations when there were initially not enough items for a hash table,
* but even after some were inserted, hash table was not created (during
* insertion the number of items is not updated yet) */
if (!trg->ht && (trg->used >= LYD_HT_MIN_ITEMS)) {
set_insert_node_hash(trg, NULL, 0);
}
#ifndef NDEBUG
LOGDBG(LY_LDGXPATH, "MERGE result");
print_set_debug(trg);
#endif
lyxp_set_free_content(src);
return LY_SUCCESS;
}
LY_ERR
lyxp_check_token(const struct ly_ctx *ctx, const struct lyxp_expr *exp, uint32_t tok_idx, enum lyxp_token want_tok)
{
if (exp->used == tok_idx) {
if (ctx) {
LOGVAL(ctx, LY_VCODE_XP_EOF);
}
return LY_EINCOMPLETE;
}
if (want_tok && (exp->tokens[tok_idx] != want_tok)) {
if (ctx) {
LOGVAL(ctx, LY_VCODE_XP_INTOK2, lyxp_token2str(exp->tokens[tok_idx]),
&exp->expr[exp->tok_pos[tok_idx]], lyxp_token2str(want_tok));
}
return LY_ENOT;
}
return LY_SUCCESS;
}
LY_ERR
lyxp_next_token(const struct ly_ctx *ctx, const struct lyxp_expr *exp, uint32_t *tok_idx, enum lyxp_token want_tok)
{
LY_CHECK_RET(lyxp_check_token(ctx, exp, *tok_idx, want_tok));
/* skip the token */
++(*tok_idx);
return LY_SUCCESS;
}
/* just like lyxp_check_token() but tests for 2 tokens */
static LY_ERR
exp_check_token2(const struct ly_ctx *ctx, const struct lyxp_expr *exp, uint32_t tok_idx, enum lyxp_token want_tok1,
enum lyxp_token want_tok2)
{
if (exp->used == tok_idx) {
if (ctx) {
LOGVAL(ctx, LY_VCODE_XP_EOF);
}
return LY_EINCOMPLETE;
}
if ((exp->tokens[tok_idx] != want_tok1) && (exp->tokens[tok_idx] != want_tok2)) {
if (ctx) {
LOGVAL(ctx, LY_VCODE_XP_INTOK, lyxp_token2str(exp->tokens[tok_idx]),
&exp->expr[exp->tok_pos[tok_idx]]);
}
return LY_ENOT;
}
return LY_SUCCESS;
}
LY_ERR
lyxp_next_token2(const struct ly_ctx *ctx, const struct lyxp_expr *exp, uint32_t *tok_idx, enum lyxp_token want_tok1,
enum lyxp_token want_tok2)
{
LY_CHECK_RET(exp_check_token2(ctx, exp, *tok_idx, want_tok1, want_tok2));
/* skip the token */
++(*tok_idx);
return LY_SUCCESS;
}
/**
* @brief Stack operation push on the repeat array.
*
* @param[in] exp Expression to use.
* @param[in] tok_idx Position in the expresion @p exp.
* @param[in] repeat_expr_type Repeated expression type, this value is pushed.
*/
static void
exp_repeat_push(struct lyxp_expr *exp, uint32_t tok_idx, enum lyxp_expr_type repeat_expr_type)
{
uint32_t i;
if (exp->repeat[tok_idx]) {
for (i = 0; exp->repeat[tok_idx][i]; ++i) {}
exp->repeat[tok_idx] = realloc(exp->repeat[tok_idx], (i + 2) * sizeof *exp->repeat[tok_idx]);
LY_CHECK_ERR_RET(!exp->repeat[tok_idx], LOGMEM(NULL), );
exp->repeat[tok_idx][i] = repeat_expr_type;
exp->repeat[tok_idx][i + 1] = 0;
} else {
exp->repeat[tok_idx] = calloc(2, sizeof *exp->repeat[tok_idx]);
LY_CHECK_ERR_RET(!exp->repeat[tok_idx], LOGMEM(NULL), );
exp->repeat[tok_idx][0] = repeat_expr_type;
}
}
/**
* @brief Reparse Predicate. Logs directly on error.
*
* [7] Predicate ::= '[' Expr ']'
*
* @param[in] ctx Context for logging.
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in] depth Current number of nested expressions.
* @return LY_ERR
*/
static LY_ERR
reparse_predicate(const struct ly_ctx *ctx, struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t depth)
{
LY_ERR rc;
rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_BRACK1);
LY_CHECK_RET(rc);
++(*tok_idx);
rc = reparse_or_expr(ctx, exp, tok_idx, depth);
LY_CHECK_RET(rc);
rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_BRACK2);
LY_CHECK_RET(rc);
++(*tok_idx);
return LY_SUCCESS;
}
/**
* @brief Reparse RelativeLocationPath. Logs directly on error.
*
* [4] RelativeLocationPath ::= Step | RelativeLocationPath '/' Step | RelativeLocationPath '//' Step
* [5] Step ::= '@'? NodeTest Predicate* | '.' | '..'
* [6] NodeTest ::= NameTest | NodeType '(' ')'
*
* @param[in] ctx Context for logging.
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression \p exp.
* @param[in] depth Current number of nested expressions.
* @return LY_ERR (LY_EINCOMPLETE on forward reference)
*/
static LY_ERR
reparse_relative_location_path(const struct ly_ctx *ctx, struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t depth)
{
LY_ERR rc;
rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_NONE);
LY_CHECK_RET(rc);
goto step;
do {
/* '/' or '//' */
++(*tok_idx);
rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_NONE);
LY_CHECK_RET(rc);
step:
/* Step */
switch (exp->tokens[*tok_idx]) {
case LYXP_TOKEN_DOT:
++(*tok_idx);
break;
case LYXP_TOKEN_DDOT:
++(*tok_idx);
break;
case LYXP_TOKEN_AXISNAME:
++(*tok_idx);
rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_DCOLON);
LY_CHECK_RET(rc);
/* fall through */
case LYXP_TOKEN_AT:
++(*tok_idx);
rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_NONE);
LY_CHECK_RET(rc);
if ((exp->tokens[*tok_idx] != LYXP_TOKEN_NAMETEST) && (exp->tokens[*tok_idx] != LYXP_TOKEN_NODETYPE)) {
LOGVAL(ctx, LY_VCODE_XP_INTOK, lyxp_token2str(exp->tokens[*tok_idx]), &exp->expr[exp->tok_pos[*tok_idx]]);
return LY_EVALID;
}
if (exp->tokens[*tok_idx] == LYXP_TOKEN_NODETYPE) {
goto reparse_nodetype;
}
/* fall through */
case LYXP_TOKEN_NAMETEST:
++(*tok_idx);
goto reparse_predicate;
case LYXP_TOKEN_NODETYPE:
reparse_nodetype:
++(*tok_idx);
/* '(' */
rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_PAR1);
LY_CHECK_RET(rc);
++(*tok_idx);
/* ')' */
rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_PAR2);
LY_CHECK_RET(rc);
++(*tok_idx);
reparse_predicate:
/* Predicate* */
while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_BRACK1)) {
rc = reparse_predicate(ctx, exp, tok_idx, depth);
LY_CHECK_RET(rc);
}
break;
default:
LOGVAL(ctx, LY_VCODE_XP_INTOK, lyxp_token2str(exp->tokens[*tok_idx]), &exp->expr[exp->tok_pos[*tok_idx]]);
return LY_EVALID;
}
} while (!exp_check_token2(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_PATH, LYXP_TOKEN_OPER_RPATH));
return LY_SUCCESS;
}
/**
* @brief Reparse AbsoluteLocationPath. Logs directly on error.
*
* [3] AbsoluteLocationPath ::= '/' RelativeLocationPath? | '//' RelativeLocationPath
*
* @param[in] ctx Context for logging.
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression \p exp.
* @param[in] depth Current number of nested expressions.
* @return LY_ERR
*/
static LY_ERR
reparse_absolute_location_path(const struct ly_ctx *ctx, struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t depth)
{
LY_ERR rc;
LY_CHECK_RET(exp_check_token2(ctx, exp, *tok_idx, LYXP_TOKEN_OPER_PATH, LYXP_TOKEN_OPER_RPATH));
/* '/' RelativeLocationPath? */
if (exp->tokens[*tok_idx] == LYXP_TOKEN_OPER_PATH) {
/* '/' */
++(*tok_idx);
if (lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_NONE)) {
return LY_SUCCESS;
}
switch (exp->tokens[*tok_idx]) {
case LYXP_TOKEN_DOT:
case LYXP_TOKEN_DDOT:
case LYXP_TOKEN_AXISNAME:
case LYXP_TOKEN_AT:
case LYXP_TOKEN_NAMETEST:
case LYXP_TOKEN_NODETYPE:
rc = reparse_relative_location_path(ctx, exp, tok_idx, depth);
LY_CHECK_RET(rc);
/* fall through */
default:
break;
}
} else {
/* '//' RelativeLocationPath */
++(*tok_idx);
rc = reparse_relative_location_path(ctx, exp, tok_idx, depth);
LY_CHECK_RET(rc);
}
return LY_SUCCESS;
}
/**
* @brief Reparse FunctionCall. Logs directly on error.
*
* [9] FunctionCall ::= FunctionName '(' ( Expr ( ',' Expr )* )? ')'
*
* @param[in] ctx Context for logging.
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in] depth Current number of nested expressions.
* @return LY_ERR
*/
static LY_ERR
reparse_function_call(const struct ly_ctx *ctx, struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t depth)
{
int8_t min_arg_count = -1;
uint32_t arg_count, max_arg_count = 0, func_tok_idx;
LY_ERR rc;
rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_FUNCNAME);
LY_CHECK_RET(rc);
func_tok_idx = *tok_idx;
switch (exp->tok_len[*tok_idx]) {
case 3:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "not", 3)) {
min_arg_count = 1;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "sum", 3)) {
min_arg_count = 1;
max_arg_count = 1;
}
break;
case 4:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "lang", 4)) {
min_arg_count = 1;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "last", 4)) {
min_arg_count = 0;
max_arg_count = 0;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "name", 4)) {
min_arg_count = 0;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "true", 4)) {
min_arg_count = 0;
max_arg_count = 0;
}
break;
case 5:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "count", 5)) {
min_arg_count = 1;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "false", 5)) {
min_arg_count = 0;
max_arg_count = 0;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "floor", 5)) {
min_arg_count = 1;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "round", 5)) {
min_arg_count = 1;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "deref", 5)) {
min_arg_count = 1;
max_arg_count = 1;
}
break;
case 6:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "concat", 6)) {
min_arg_count = 2;
max_arg_count = UINT32_MAX;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "number", 6)) {
min_arg_count = 0;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "string", 6)) {
min_arg_count = 0;
max_arg_count = 1;
}
break;
case 7:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "boolean", 7)) {
min_arg_count = 1;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "ceiling", 7)) {
min_arg_count = 1;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "current", 7)) {
min_arg_count = 0;
max_arg_count = 0;
}
break;
case 8:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "contains", 8)) {
min_arg_count = 2;
max_arg_count = 2;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "position", 8)) {
min_arg_count = 0;
max_arg_count = 0;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "re-match", 8)) {
min_arg_count = 2;
max_arg_count = 2;
}
break;
case 9:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "substring", 9)) {
min_arg_count = 2;
max_arg_count = 3;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "translate", 9)) {
min_arg_count = 3;
max_arg_count = 3;
}
break;
case 10:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "local-name", 10)) {
min_arg_count = 0;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "enum-value", 10)) {
min_arg_count = 1;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "bit-is-set", 10)) {
min_arg_count = 2;
max_arg_count = 2;
}
break;
case 11:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "starts-with", 11)) {
min_arg_count = 2;
max_arg_count = 2;
}
break;
case 12:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "derived-from", 12)) {
min_arg_count = 2;
max_arg_count = 2;
}
break;
case 13:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "namespace-uri", 13)) {
min_arg_count = 0;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "string-length", 13)) {
min_arg_count = 0;
max_arg_count = 1;
}
break;
case 15:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "normalize-space", 15)) {
min_arg_count = 0;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "substring-after", 15)) {
min_arg_count = 2;
max_arg_count = 2;
}
break;
case 16:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "substring-before", 16)) {
min_arg_count = 2;
max_arg_count = 2;
}
break;
case 20:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "derived-from-or-self", 20)) {
min_arg_count = 2;
max_arg_count = 2;
}
break;
}
if (min_arg_count == -1) {
LOGVAL(ctx, LY_VCODE_XP_INFUNC, (int)exp->tok_len[*tok_idx], &exp->expr[exp->tok_pos[*tok_idx]]);
return LY_EINVAL;
}
++(*tok_idx);
/* '(' */
rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_PAR1);
LY_CHECK_RET(rc);
++(*tok_idx);
/* ( Expr ( ',' Expr )* )? */
arg_count = 0;
rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_NONE);
LY_CHECK_RET(rc);
if (exp->tokens[*tok_idx] != LYXP_TOKEN_PAR2) {
++arg_count;
rc = reparse_or_expr(ctx, exp, tok_idx, depth);
LY_CHECK_RET(rc);
}
while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_COMMA)) {
++(*tok_idx);
++arg_count;
rc = reparse_or_expr(ctx, exp, tok_idx, depth);
LY_CHECK_RET(rc);
}
/* ')' */
rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_PAR2);
LY_CHECK_RET(rc);
++(*tok_idx);
if ((arg_count < (uint32_t)min_arg_count) || (arg_count > max_arg_count)) {
LOGVAL(ctx, LY_VCODE_XP_INARGCOUNT, arg_count, (int)exp->tok_len[func_tok_idx],
&exp->expr[exp->tok_pos[func_tok_idx]]);
return LY_EVALID;
}
return LY_SUCCESS;
}
/**
* @brief Reparse PathExpr. Logs directly on error.
*
* [10] PathExpr ::= LocationPath | PrimaryExpr Predicate*
* | PrimaryExpr Predicate* '/' RelativeLocationPath
* | PrimaryExpr Predicate* '//' RelativeLocationPath
* [2] LocationPath ::= RelativeLocationPath | AbsoluteLocationPath
* [8] PrimaryExpr ::= VariableReference | '(' Expr ')' | Literal | Number | FunctionCall
*
* @param[in] ctx Context for logging.
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in] depth Current number of nested expressions.
* @return LY_ERR
*/
static LY_ERR
reparse_path_expr(const struct ly_ctx *ctx, struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t depth)
{
LY_ERR rc;
if (lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_NONE)) {
return LY_EVALID;
}
switch (exp->tokens[*tok_idx]) {
case LYXP_TOKEN_PAR1:
/* '(' Expr ')' Predicate* */
++(*tok_idx);
rc = reparse_or_expr(ctx, exp, tok_idx, depth);
LY_CHECK_RET(rc);
rc = lyxp_check_token(ctx, exp, *tok_idx, LYXP_TOKEN_PAR2);
LY_CHECK_RET(rc);
++(*tok_idx);
goto predicate;
case LYXP_TOKEN_DOT:
case LYXP_TOKEN_DDOT:
case LYXP_TOKEN_AXISNAME:
case LYXP_TOKEN_AT:
case LYXP_TOKEN_NAMETEST:
case LYXP_TOKEN_NODETYPE:
/* RelativeLocationPath */
rc = reparse_relative_location_path(ctx, exp, tok_idx, depth);
LY_CHECK_RET(rc);
break;
case LYXP_TOKEN_VARREF:
/* VariableReference */
++(*tok_idx);
goto predicate;
case LYXP_TOKEN_FUNCNAME:
/* FunctionCall */
rc = reparse_function_call(ctx, exp, tok_idx, depth);
LY_CHECK_RET(rc);
goto predicate;
case LYXP_TOKEN_OPER_PATH:
case LYXP_TOKEN_OPER_RPATH:
/* AbsoluteLocationPath */
rc = reparse_absolute_location_path(ctx, exp, tok_idx, depth);
LY_CHECK_RET(rc);
break;
case LYXP_TOKEN_LITERAL:
/* Literal */
++(*tok_idx);
goto predicate;
case LYXP_TOKEN_NUMBER:
/* Number */
++(*tok_idx);
goto predicate;
default:
LOGVAL(ctx, LY_VCODE_XP_INTOK, lyxp_token2str(exp->tokens[*tok_idx]), &exp->expr[exp->tok_pos[*tok_idx]]);
return LY_EVALID;
}
return LY_SUCCESS;
predicate:
/* Predicate* */
while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_BRACK1)) {
rc = reparse_predicate(ctx, exp, tok_idx, depth);
LY_CHECK_RET(rc);
}
/* ('/' or '//') RelativeLocationPath */
if (!exp_check_token2(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_PATH, LYXP_TOKEN_OPER_RPATH)) {
/* '/' or '//' */
++(*tok_idx);
rc = reparse_relative_location_path(ctx, exp, tok_idx, depth);
LY_CHECK_RET(rc);
}
return LY_SUCCESS;
}
/**
* @brief Reparse UnaryExpr. Logs directly on error.
*
* [17] UnaryExpr ::= UnionExpr | '-' UnaryExpr
* [18] UnionExpr ::= PathExpr | UnionExpr '|' PathExpr
*
* @param[in] ctx Context for logging.
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in] depth Current number of nested expressions.
* @return LY_ERR
*/
static LY_ERR
reparse_unary_expr(const struct ly_ctx *ctx, struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t depth)
{
uint32_t prev_exp;
LY_ERR rc;
/* ('-')* */
prev_exp = *tok_idx;
while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_MATH) &&
(exp->expr[exp->tok_pos[*tok_idx]] == '-')) {
exp_repeat_push(exp, prev_exp, LYXP_EXPR_UNARY);
++(*tok_idx);
}
/* PathExpr */
prev_exp = *tok_idx;
rc = reparse_path_expr(ctx, exp, tok_idx, depth);
LY_CHECK_RET(rc);
/* ('|' PathExpr)* */
while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_UNI)) {
exp_repeat_push(exp, prev_exp, LYXP_EXPR_UNION);
++(*tok_idx);
rc = reparse_path_expr(ctx, exp, tok_idx, depth);
LY_CHECK_RET(rc);
}
return LY_SUCCESS;
}
/**
* @brief Reparse AdditiveExpr. Logs directly on error.
*
* [15] AdditiveExpr ::= MultiplicativeExpr
* | AdditiveExpr '+' MultiplicativeExpr
* | AdditiveExpr '-' MultiplicativeExpr
* [16] MultiplicativeExpr ::= UnaryExpr
* | MultiplicativeExpr '*' UnaryExpr
* | MultiplicativeExpr 'div' UnaryExpr
* | MultiplicativeExpr 'mod' UnaryExpr
*
* @param[in] ctx Context for logging.
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in] depth Current number of nested expressions.
* @return LY_ERR
*/
static LY_ERR
reparse_additive_expr(const struct ly_ctx *ctx, struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t depth)
{
uint32_t prev_add_exp, prev_mul_exp;
LY_ERR rc;
prev_add_exp = *tok_idx;
goto reparse_multiplicative_expr;
/* ('+' / '-' MultiplicativeExpr)* */
while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_MATH) &&
((exp->expr[exp->tok_pos[*tok_idx]] == '+') || (exp->expr[exp->tok_pos[*tok_idx]] == '-'))) {
exp_repeat_push(exp, prev_add_exp, LYXP_EXPR_ADDITIVE);
++(*tok_idx);
reparse_multiplicative_expr:
/* UnaryExpr */
prev_mul_exp = *tok_idx;
rc = reparse_unary_expr(ctx, exp, tok_idx, depth);
LY_CHECK_RET(rc);
/* ('*' / 'div' / 'mod' UnaryExpr)* */
while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_MATH) &&
((exp->expr[exp->tok_pos[*tok_idx]] == '*') || (exp->tok_len[*tok_idx] == 3))) {
exp_repeat_push(exp, prev_mul_exp, LYXP_EXPR_MULTIPLICATIVE);
++(*tok_idx);
rc = reparse_unary_expr(ctx, exp, tok_idx, depth);
LY_CHECK_RET(rc);
}
}
return LY_SUCCESS;
}
/**
* @brief Reparse EqualityExpr. Logs directly on error.
*
* [13] EqualityExpr ::= RelationalExpr | EqualityExpr '=' RelationalExpr
* | EqualityExpr '!=' RelationalExpr
* [14] RelationalExpr ::= AdditiveExpr
* | RelationalExpr '<' AdditiveExpr
* | RelationalExpr '>' AdditiveExpr
* | RelationalExpr '<=' AdditiveExpr
* | RelationalExpr '>=' AdditiveExpr
*
* @param[in] ctx Context for logging.
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in] depth Current number of nested expressions.
* @return LY_ERR
*/
static LY_ERR
reparse_equality_expr(const struct ly_ctx *ctx, struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t depth)
{
uint32_t prev_eq_exp, prev_rel_exp;
LY_ERR rc;
prev_eq_exp = *tok_idx;
goto reparse_additive_expr;
/* ('=' / '!=' RelationalExpr)* */
while (!exp_check_token2(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_EQUAL, LYXP_TOKEN_OPER_NEQUAL)) {
exp_repeat_push(exp, prev_eq_exp, LYXP_EXPR_EQUALITY);
++(*tok_idx);
reparse_additive_expr:
/* AdditiveExpr */
prev_rel_exp = *tok_idx;
rc = reparse_additive_expr(ctx, exp, tok_idx, depth);
LY_CHECK_RET(rc);
/* ('<' / '>' / '<=' / '>=' AdditiveExpr)* */
while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_COMP)) {
exp_repeat_push(exp, prev_rel_exp, LYXP_EXPR_RELATIONAL);
++(*tok_idx);
rc = reparse_additive_expr(ctx, exp, tok_idx, depth);
LY_CHECK_RET(rc);
}
}
return LY_SUCCESS;
}
/**
* @brief Reparse OrExpr. Logs directly on error.
*
* [11] OrExpr ::= AndExpr | OrExpr 'or' AndExpr
* [12] AndExpr ::= EqualityExpr | AndExpr 'and' EqualityExpr
*
* @param[in] ctx Context for logging.
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in] depth Current number of nested expressions.
* @return LY_ERR
*/
static LY_ERR
reparse_or_expr(const struct ly_ctx *ctx, struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t depth)
{
uint32_t prev_or_exp, prev_and_exp;
LY_ERR rc;
++depth;
LY_CHECK_ERR_RET(depth > LYXP_MAX_BLOCK_DEPTH, LOGVAL(ctx, LY_VCODE_XP_DEPTH), LY_EINVAL);
prev_or_exp = *tok_idx;
goto reparse_equality_expr;
/* ('or' AndExpr)* */
while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_LOG) && (exp->tok_len[*tok_idx] == 2)) {
exp_repeat_push(exp, prev_or_exp, LYXP_EXPR_OR);
++(*tok_idx);
reparse_equality_expr:
/* EqualityExpr */
prev_and_exp = *tok_idx;
rc = reparse_equality_expr(ctx, exp, tok_idx, depth);
LY_CHECK_RET(rc);
/* ('and' EqualityExpr)* */
while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_LOG) && (exp->tok_len[*tok_idx] == 3)) {
exp_repeat_push(exp, prev_and_exp, LYXP_EXPR_AND);
++(*tok_idx);
rc = reparse_equality_expr(ctx, exp, tok_idx, depth);
LY_CHECK_RET(rc);
}
}
return LY_SUCCESS;
}
/**
* @brief Parse NCName.
*
* @param[in] ncname Name to parse.
* @return Length of @p ncname valid bytes.
*/
static ssize_t
parse_ncname(const char *ncname)
{
uint32_t uc;
size_t size;
ssize_t len = 0;
LY_CHECK_RET(ly_getutf8(&ncname, &uc, &size), 0);
if (!is_xmlqnamestartchar(uc) || (uc == ':')) {
return len;
}
do {
len += size;
if (!*ncname) {
break;
}
LY_CHECK_RET(ly_getutf8(&ncname, &uc, &size), -len);
} while (is_xmlqnamechar(uc) && (uc != ':'));
return len;
}
/**
* @brief Add @p token into the expression @p exp.
*
* @param[in] ctx Context for logging.
* @param[in] exp Expression to use.
* @param[in] token Token to add.
* @param[in] tok_pos Token position in the XPath expression.
* @param[in] tok_len Token length in the XPath expression.
* @return LY_ERR
*/
static LY_ERR
exp_add_token(const struct ly_ctx *ctx, struct lyxp_expr *exp, enum lyxp_token token, uint32_t tok_pos, uint32_t tok_len)
{
uint32_t prev;
if (exp->used == exp->size) {
prev = exp->size;
exp->size += LYXP_EXPR_SIZE_STEP;
if (prev > exp->size) {
LOGINT(ctx);
return LY_EINT;
}
exp->tokens = ly_realloc(exp->tokens, exp->size * sizeof *exp->tokens);
LY_CHECK_ERR_RET(!exp->tokens, LOGMEM(ctx), LY_EMEM);
exp->tok_pos = ly_realloc(exp->tok_pos, exp->size * sizeof *exp->tok_pos);
LY_CHECK_ERR_RET(!exp->tok_pos, LOGMEM(ctx), LY_EMEM);
exp->tok_len = ly_realloc(exp->tok_len, exp->size * sizeof *exp->tok_len);
LY_CHECK_ERR_RET(!exp->tok_len, LOGMEM(ctx), LY_EMEM);
}
exp->tokens[exp->used] = token;
exp->tok_pos[exp->used] = tok_pos;
exp->tok_len[exp->used] = tok_len;
++exp->used;
return LY_SUCCESS;
}
void
lyxp_expr_free(const struct ly_ctx *ctx, struct lyxp_expr *expr)
{
uint32_t i;
if (!expr) {
return;
}
lydict_remove(ctx, expr->expr);
free(expr->tokens);
free(expr->tok_pos);
free(expr->tok_len);
if (expr->repeat) {
for (i = 0; i < expr->used; ++i) {
free(expr->repeat[i]);
}
}
free(expr->repeat);
free(expr);
}
/**
* @brief Parse Axis name.
*
* @param[in] str String to parse.
* @param[in] str_len Length of @p str.
* @return LY_SUCCESS if an axis.
* @return LY_ENOT otherwise.
*/
static LY_ERR
expr_parse_axis(const char *str, size_t str_len)
{
switch (str_len) {
case 4:
if (!strncmp("self", str, str_len)) {
return LY_SUCCESS;
}
break;
case 5:
if (!strncmp("child", str, str_len)) {
return LY_SUCCESS;
}
break;
case 6:
if (!strncmp("parent", str, str_len)) {
return LY_SUCCESS;
}
break;
case 8:
if (!strncmp("ancestor", str, str_len)) {
return LY_SUCCESS;
}
break;
case 9:
if (!strncmp("attribute", str, str_len)) {
return LY_SUCCESS;
} else if (!strncmp("following", str, str_len)) {
return LY_SUCCESS;
} else if (!strncmp("namespace", str, str_len)) {
LOGERR(NULL, LY_EINVAL, "Axis \"namespace\" not supported.");
return LY_ENOT;
} else if (!strncmp("preceding", str, str_len)) {
return LY_SUCCESS;
}
break;
case 10:
if (!strncmp("descendant", str, str_len)) {
return LY_SUCCESS;
}
break;
case 16:
if (!strncmp("ancestor-or-self", str, str_len)) {
return LY_SUCCESS;
}
break;
case 17:
if (!strncmp("following-sibling", str, str_len)) {
return LY_SUCCESS;
} else if (!strncmp("preceding-sibling", str, str_len)) {
return LY_SUCCESS;
}
break;
case 18:
if (!strncmp("descendant-or-self", str, str_len)) {
return LY_SUCCESS;
}
break;
}
return LY_ENOT;
}
LY_ERR
lyxp_expr_parse(const struct ly_ctx *ctx, const char *expr_str, size_t expr_len, ly_bool reparse, struct lyxp_expr **expr_p)
{
LY_ERR ret = LY_SUCCESS;
struct lyxp_expr *expr;
size_t parsed = 0, tok_len;
enum lyxp_token tok_type;
ly_bool prev_func_check = 0, prev_ntype_check = 0, has_axis;
uint32_t tok_idx = 0;
ssize_t ncname_len;
assert(expr_p);
if (!expr_str[0]) {
LOGVAL(ctx, LY_VCODE_XP_EOF);
return LY_EVALID;
}
if (!expr_len) {
expr_len = strlen(expr_str);
}
if (expr_len > UINT32_MAX) {
LOGVAL(ctx, LYVE_XPATH, "XPath expression cannot be longer than %" PRIu32 " characters.", UINT32_MAX);
return LY_EVALID;
}
/* init lyxp_expr structure */
expr = calloc(1, sizeof *expr);
LY_CHECK_ERR_GOTO(!expr, LOGMEM(ctx); ret = LY_EMEM, error);
LY_CHECK_GOTO(ret = lydict_insert(ctx, expr_str, expr_len, &expr->expr), error);
expr->used = 0;
expr->size = LYXP_EXPR_SIZE_START;
expr->tokens = malloc(expr->size * sizeof *expr->tokens);
LY_CHECK_ERR_GOTO(!expr->tokens, LOGMEM(ctx); ret = LY_EMEM, error);
expr->tok_pos = malloc(expr->size * sizeof *expr->tok_pos);
LY_CHECK_ERR_GOTO(!expr->tok_pos, LOGMEM(ctx); ret = LY_EMEM, error);
expr->tok_len = malloc(expr->size * sizeof *expr->tok_len);
LY_CHECK_ERR_GOTO(!expr->tok_len, LOGMEM(ctx); ret = LY_EMEM, error);
/* make expr 0-terminated */
expr_str = expr->expr;
while (is_xmlws(expr_str[parsed])) {
++parsed;
}
do {
if (expr_str[parsed] == '(') {
/* '(' */
tok_len = 1;
tok_type = LYXP_TOKEN_PAR1;
if (prev_ntype_check && expr->used && (expr->tokens[expr->used - 1] == LYXP_TOKEN_NAMETEST) &&
(((expr->tok_len[expr->used - 1] == 4) &&
(!strncmp(&expr_str[expr->tok_pos[expr->used - 1]], "node", 4) ||
!strncmp(&expr_str[expr->tok_pos[expr->used - 1]], "text", 4))) ||
((expr->tok_len[expr->used - 1] == 7) &&
!strncmp(&expr_str[expr->tok_pos[expr->used - 1]], "comment", 7)))) {
/* it is NodeType after all */
expr->tokens[expr->used - 1] = LYXP_TOKEN_NODETYPE;
prev_ntype_check = 0;
prev_func_check = 0;
} else if (prev_func_check && expr->used && (expr->tokens[expr->used - 1] == LYXP_TOKEN_NAMETEST)) {
/* it is FunctionName after all */
expr->tokens[expr->used - 1] = LYXP_TOKEN_FUNCNAME;
prev_ntype_check = 0;
prev_func_check = 0;
}
} else if (expr_str[parsed] == ')') {
/* ')' */
tok_len = 1;
tok_type = LYXP_TOKEN_PAR2;
} else if (expr_str[parsed] == '[') {
/* '[' */
tok_len = 1;
tok_type = LYXP_TOKEN_BRACK1;
} else if (expr_str[parsed] == ']') {
/* ']' */
tok_len = 1;
tok_type = LYXP_TOKEN_BRACK2;
} else if (!strncmp(&expr_str[parsed], "..", 2)) {
/* '..' */
tok_len = 2;
tok_type = LYXP_TOKEN_DDOT;
} else if ((expr_str[parsed] == '.') && (!isdigit(expr_str[parsed + 1]))) {
/* '.' */
tok_len = 1;
tok_type = LYXP_TOKEN_DOT;
} else if (expr_str[parsed] == '@') {
/* '@' */
tok_len = 1;
tok_type = LYXP_TOKEN_AT;
} else if (expr_str[parsed] == ',') {
/* ',' */
tok_len = 1;
tok_type = LYXP_TOKEN_COMMA;
} else if (expr_str[parsed] == '\'') {
/* Literal with ' */
for (tok_len = 1; (expr_str[parsed + tok_len] != '\0') && (expr_str[parsed + tok_len] != '\''); ++tok_len) {}
LY_CHECK_ERR_GOTO(expr_str[parsed + tok_len] == '\0',
LOGVAL(ctx, LY_VCODE_XP_EOE, expr_str[parsed], &expr_str[parsed]); ret = LY_EVALID,
error);
++tok_len;
tok_type = LYXP_TOKEN_LITERAL;
} else if (expr_str[parsed] == '\"') {
/* Literal with " */
for (tok_len = 1; (expr_str[parsed + tok_len] != '\0') && (expr_str[parsed + tok_len] != '\"'); ++tok_len) {}
LY_CHECK_ERR_GOTO(expr_str[parsed + tok_len] == '\0',
LOGVAL(ctx, LY_VCODE_XP_EOE, expr_str[parsed], &expr_str[parsed]); ret = LY_EVALID,
error);
++tok_len;
tok_type = LYXP_TOKEN_LITERAL;
} else if ((expr_str[parsed] == '.') || (isdigit(expr_str[parsed]))) {
/* Number */
for (tok_len = 0; isdigit(expr_str[parsed + tok_len]); ++tok_len) {}
if (expr_str[parsed + tok_len] == '.') {
++tok_len;
for ( ; isdigit(expr_str[parsed + tok_len]); ++tok_len) {}
}
tok_type = LYXP_TOKEN_NUMBER;
} else if (expr_str[parsed] == '$') {
/* VariableReference */
parsed++;
ncname_len = parse_ncname(&expr_str[parsed]);
LY_CHECK_ERR_GOTO(ncname_len < 1, LOGVAL(ctx, LY_VCODE_XP_INEXPR, expr_str[parsed - ncname_len],
(uint32_t)(parsed - ncname_len + 1), expr_str); ret = LY_EVALID, error);
tok_len = ncname_len;
LY_CHECK_ERR_GOTO(expr_str[parsed + tok_len] == ':',
LOGVAL(ctx, LYVE_XPATH, "Variable with prefix is not supported."); ret = LY_EVALID,
error);
tok_type = LYXP_TOKEN_VARREF;
} else if (expr_str[parsed] == '/') {
/* Operator '/', '//' */
if (!strncmp(&expr_str[parsed], "//", 2)) {
tok_len = 2;
tok_type = LYXP_TOKEN_OPER_RPATH;
} else {
tok_len = 1;
tok_type = LYXP_TOKEN_OPER_PATH;
}
} else if (!strncmp(&expr_str[parsed], "!=", 2)) {
/* Operator '!=' */
tok_len = 2;
tok_type = LYXP_TOKEN_OPER_NEQUAL;
} else if (!strncmp(&expr_str[parsed], "<=", 2) || !strncmp(&expr_str[parsed], ">=", 2)) {
/* Operator '<=', '>=' */
tok_len = 2;
tok_type = LYXP_TOKEN_OPER_COMP;
} else if (expr_str[parsed] == '|') {
/* Operator '|' */
tok_len = 1;
tok_type = LYXP_TOKEN_OPER_UNI;
} else if ((expr_str[parsed] == '+') || (expr_str[parsed] == '-')) {
/* Operator '+', '-' */
tok_len = 1;
tok_type = LYXP_TOKEN_OPER_MATH;
} else if (expr_str[parsed] == '=') {
/* Operator '=' */
tok_len = 1;
tok_type = LYXP_TOKEN_OPER_EQUAL;
} else if ((expr_str[parsed] == '<') || (expr_str[parsed] == '>')) {
/* Operator '<', '>' */
tok_len = 1;
tok_type = LYXP_TOKEN_OPER_COMP;
} else if (expr->used && (expr->tokens[expr->used - 1] != LYXP_TOKEN_AT) &&
(expr->tokens[expr->used - 1] != LYXP_TOKEN_PAR1) &&
(expr->tokens[expr->used - 1] != LYXP_TOKEN_BRACK1) &&
(expr->tokens[expr->used - 1] != LYXP_TOKEN_COMMA) &&
(expr->tokens[expr->used - 1] != LYXP_TOKEN_OPER_LOG) &&
(expr->tokens[expr->used - 1] != LYXP_TOKEN_OPER_EQUAL) &&
(expr->tokens[expr->used - 1] != LYXP_TOKEN_OPER_NEQUAL) &&
(expr->tokens[expr->used - 1] != LYXP_TOKEN_OPER_COMP) &&
(expr->tokens[expr->used - 1] != LYXP_TOKEN_OPER_MATH) &&
(expr->tokens[expr->used - 1] != LYXP_TOKEN_OPER_UNI) &&
(expr->tokens[expr->used - 1] != LYXP_TOKEN_OPER_PATH) &&
(expr->tokens[expr->used - 1] != LYXP_TOKEN_OPER_RPATH)) {
/* Operator '*', 'or', 'and', 'mod', or 'div' */
if (expr_str[parsed] == '*') {
tok_len = 1;
tok_type = LYXP_TOKEN_OPER_MATH;
} else if (!strncmp(&expr_str[parsed], "or", 2)) {
tok_len = 2;
tok_type = LYXP_TOKEN_OPER_LOG;
} else if (!strncmp(&expr_str[parsed], "and", 3)) {
tok_len = 3;
tok_type = LYXP_TOKEN_OPER_LOG;
} else if (!strncmp(&expr_str[parsed], "mod", 3) || !strncmp(&expr_str[parsed], "div", 3)) {
tok_len = 3;
tok_type = LYXP_TOKEN_OPER_MATH;
} else if (prev_ntype_check || prev_func_check) {
LOGVAL(ctx, LYVE_XPATH,
"Invalid character 0x%x ('%c'), perhaps \"%.*s\" is supposed to be a function call.",
expr_str[parsed], expr_str[parsed], (int)expr->tok_len[expr->used - 1],
&expr->expr[expr->tok_pos[expr->used - 1]]);
ret = LY_EVALID;
goto error;
} else {
LOGVAL(ctx, LY_VCODE_XP_INEXPR, expr_str[parsed], (uint32_t)(parsed + 1), expr_str);
ret = LY_EVALID;
goto error;
}
} else {
/* (AxisName '::')? ((NCName ':')? '*' | QName) or NodeType/FunctionName */
if (expr_str[parsed] == '*') {
ncname_len = 1;
} else {
ncname_len = parse_ncname(&expr_str[parsed]);
LY_CHECK_ERR_GOTO(ncname_len < 1, LOGVAL(ctx, LY_VCODE_XP_INEXPR, expr_str[parsed - ncname_len],
(uint32_t)(parsed - ncname_len + 1), expr_str); ret = LY_EVALID, error);
}
tok_len = ncname_len;
has_axis = 0;
if (!strncmp(&expr_str[parsed + tok_len], "::", 2)) {
/* axis */
LY_CHECK_ERR_GOTO(expr_parse_axis(&expr_str[parsed], ncname_len),
LOGVAL(ctx, LY_VCODE_XP_INEXPR, expr_str[parsed], (uint32_t)(parsed + 1), expr_str); ret = LY_EVALID,
error);
tok_type = LYXP_TOKEN_AXISNAME;
LY_CHECK_GOTO(ret = exp_add_token(ctx, expr, tok_type, parsed, tok_len), error);
parsed += tok_len;
/* '::' */
tok_len = 2;
tok_type = LYXP_TOKEN_DCOLON;
LY_CHECK_GOTO(ret = exp_add_token(ctx, expr, tok_type, parsed, tok_len), error);
parsed += tok_len;
if (expr_str[parsed] == '*') {
ncname_len = 1;
} else {
ncname_len = parse_ncname(&expr_str[parsed]);
LY_CHECK_ERR_GOTO(ncname_len < 1, LOGVAL(ctx, LY_VCODE_XP_INEXPR, expr_str[parsed - ncname_len],
(uint32_t)(parsed - ncname_len + 1), expr_str); ret = LY_EVALID, error);
}
tok_len = ncname_len;
has_axis = 1;
}
if (expr_str[parsed + tok_len] == ':') {
++tok_len;
if (expr_str[parsed + tok_len] == '*') {
++tok_len;
} else {
ncname_len = parse_ncname(&expr_str[parsed + tok_len]);
LY_CHECK_ERR_GOTO(ncname_len < 1, LOGVAL(ctx, LY_VCODE_XP_INEXPR, expr_str[parsed - ncname_len],
(uint32_t)(parsed - ncname_len + 1), expr_str); ret = LY_EVALID, error);
tok_len += ncname_len;
}
/* remove old flags to prevent ambiguities */
prev_ntype_check = 0;
prev_func_check = 0;
tok_type = LYXP_TOKEN_NAMETEST;
} else {
/* if not '*', there is no prefix so it can still be NodeType/FunctionName, we can't finally decide now */
prev_ntype_check = (expr_str[parsed] == '*') ? 0 : 1;
prev_func_check = (prev_ntype_check && !has_axis) ? 1 : 0;
tok_type = LYXP_TOKEN_NAMETEST;
}
}
/* store the token, move on to the next one */
LY_CHECK_GOTO(ret = exp_add_token(ctx, expr, tok_type, parsed, tok_len), error);
parsed += tok_len;
while (is_xmlws(expr_str[parsed])) {
++parsed;
}
} while (expr_str[parsed]);
if (reparse) {
/* prealloc repeat */
expr->repeat = calloc(expr->size, sizeof *expr->repeat);
LY_CHECK_ERR_GOTO(!expr->repeat, LOGMEM(ctx); ret = LY_EMEM, error);
/* fill repeat */
LY_CHECK_ERR_GOTO(reparse_or_expr(ctx, expr, &tok_idx, 0), ret = LY_EVALID, error);
if (expr->used > tok_idx) {
LOGVAL(ctx, LYVE_XPATH, "Unparsed characters \"%s\" left at the end of an XPath expression.",
&expr->expr[expr->tok_pos[tok_idx]]);
ret = LY_EVALID;
goto error;
}
}
print_expr_struct_debug(expr);
*expr_p = expr;
return LY_SUCCESS;
error:
lyxp_expr_free(ctx, expr);
return ret;
}
LY_ERR
lyxp_expr_dup(const struct ly_ctx *ctx, const struct lyxp_expr *exp, uint32_t start_idx, uint32_t end_idx,
struct lyxp_expr **dup_p)
{
LY_ERR ret = LY_SUCCESS;
struct lyxp_expr *dup = NULL;
uint32_t used = 0, i, j, expr_len;
const char *expr_start;
assert((!start_idx && !end_idx) || ((start_idx < exp->used) && (end_idx < exp->used) && (start_idx <= end_idx)));
if (!exp) {
goto cleanup;
}
if (!start_idx && !end_idx) {
end_idx = exp->used - 1;
}
expr_start = exp->expr + exp->tok_pos[start_idx];
expr_len = (exp->tok_pos[end_idx] + exp->tok_len[end_idx]) - exp->tok_pos[start_idx];
dup = calloc(1, sizeof *dup);
LY_CHECK_ERR_GOTO(!dup, LOGMEM(ctx); ret = LY_EMEM, cleanup);
if (exp->used) {
used = (end_idx - start_idx) + 1;
dup->tokens = malloc(used * sizeof *dup->tokens);
LY_CHECK_ERR_GOTO(!dup->tokens, LOGMEM(ctx); ret = LY_EMEM, cleanup);
memcpy(dup->tokens, exp->tokens + start_idx, used * sizeof *dup->tokens);
dup->tok_pos = malloc(used * sizeof *dup->tok_pos);
LY_CHECK_ERR_GOTO(!dup->tok_pos, LOGMEM(ctx); ret = LY_EMEM, cleanup);
memcpy(dup->tok_pos, exp->tok_pos + start_idx, used * sizeof *dup->tok_pos);
if (start_idx) {
/* fix the indices in the expression */
for (i = 0; i < used; ++i) {
dup->tok_pos[i] -= expr_start - exp->expr;
}
}
dup->tok_len = malloc(used * sizeof *dup->tok_len);
LY_CHECK_ERR_GOTO(!dup->tok_len, LOGMEM(ctx); ret = LY_EMEM, cleanup);
memcpy(dup->tok_len, exp->tok_len + start_idx, used * sizeof *dup->tok_len);
if (exp->repeat) {
dup->repeat = malloc(used * sizeof *dup->repeat);
LY_CHECK_ERR_GOTO(!dup->repeat, LOGMEM(ctx); ret = LY_EMEM, cleanup);
for (i = start_idx; i <= end_idx; ++i) {
if (!exp->repeat[i]) {
dup->repeat[i - start_idx] = NULL;
} else {
for (j = 0; exp->repeat[i][j]; ++j) {}
/* the ending 0 as well */
++j;
dup->repeat[i - start_idx] = malloc(j * sizeof **dup->repeat);
LY_CHECK_ERR_GOTO(!dup->repeat[i - start_idx], LOGMEM(ctx); ret = LY_EMEM, cleanup);
memcpy(dup->repeat[i - start_idx], exp->repeat[i], j * sizeof **dup->repeat);
}
}
}
}
dup->used = used;
dup->size = used;
/* copy only subexpression */
LY_CHECK_GOTO(ret = lydict_insert(ctx, expr_start, expr_len, &dup->expr), cleanup);
cleanup:
if (ret) {
lyxp_expr_free(ctx, dup);
} else {
*dup_p = dup;
}
return ret;
}
/**
* @brief Get the last-added schema node that is currently in the context.
*
* @param[in] set Set to search in.
* @return Last-added schema context node, NULL if no node is in context.
*/
static struct lysc_node *
warn_get_scnode_in_ctx(struct lyxp_set *set)
{
uint32_t i;
if (!set || (set->type != LYXP_SET_SCNODE_SET)) {
return NULL;
}
i = set->used;
do {
--i;
if (set->val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_CTX) {
/* if there are more, simply return the first found (last added) */
return set->val.scnodes[i].scnode;
}
} while (i);
return NULL;
}
/**
* @brief Test whether a type is numeric - integer type or decimal64.
*
* @param[in] type Type to test.
* @return Boolean value whether @p type is numeric type or not.
*/
static ly_bool
warn_is_numeric_type(struct lysc_type *type)
{
struct lysc_type_union *uni;
ly_bool ret;
LY_ARRAY_COUNT_TYPE u;
switch (type->basetype) {
case LY_TYPE_DEC64:
case LY_TYPE_INT8:
case LY_TYPE_UINT8:
case LY_TYPE_INT16:
case LY_TYPE_UINT16:
case LY_TYPE_INT32:
case LY_TYPE_UINT32:
case LY_TYPE_INT64:
case LY_TYPE_UINT64:
return 1;
case LY_TYPE_UNION:
uni = (struct lysc_type_union *)type;
LY_ARRAY_FOR(uni->types, u) {
ret = warn_is_numeric_type(uni->types[u]);
if (ret) {
/* found a suitable type */
return ret;
}
}
/* did not find any suitable type */
return 0;
case LY_TYPE_LEAFREF:
return warn_is_numeric_type(((struct lysc_type_leafref *)type)->realtype);
default:
return 0;
}
}
/**
* @brief Test whether a type is string-like - no integers, decimal64 or binary.
*
* @param[in] type Type to test.
* @return Boolean value whether @p type's basetype is string type or not.
*/
static ly_bool
warn_is_string_type(struct lysc_type *type)
{
struct lysc_type_union *uni;
ly_bool ret;
LY_ARRAY_COUNT_TYPE u;
switch (type->basetype) {
case LY_TYPE_BITS:
case LY_TYPE_ENUM:
case LY_TYPE_IDENT:
case LY_TYPE_INST:
case LY_TYPE_STRING:
return 1;
case LY_TYPE_UNION:
uni = (struct lysc_type_union *)type;
LY_ARRAY_FOR(uni->types, u) {
ret = warn_is_string_type(uni->types[u]);
if (ret) {
/* found a suitable type */
return ret;
}
}
/* did not find any suitable type */
return 0;
case LY_TYPE_LEAFREF:
return warn_is_string_type(((struct lysc_type_leafref *)type)->realtype);
default:
return 0;
}
}
/**
* @brief Test whether a type is one specific type.
*
* @param[in] type Type to test.
* @param[in] base Expected type.
* @return Boolean value whether the given @p type is of the specific basetype @p base.
*/
static ly_bool
warn_is_specific_type(struct lysc_type *type, LY_DATA_TYPE base)
{
struct lysc_type_union *uni;
ly_bool ret;
LY_ARRAY_COUNT_TYPE u;
if (type->basetype == base) {
return 1;
} else if (type->basetype == LY_TYPE_UNION) {
uni = (struct lysc_type_union *)type;
LY_ARRAY_FOR(uni->types, u) {
ret = warn_is_specific_type(uni->types[u], base);
if (ret) {
/* found a suitable type */
return ret;
}
}
/* did not find any suitable type */
return 0;
} else if (type->basetype == LY_TYPE_LEAFREF) {
return warn_is_specific_type(((struct lysc_type_leafref *)type)->realtype, base);
}
return 0;
}
/**
* @brief Get next type of a (union) type.
*
* @param[in] type Base type.
* @param[in] prev_type Previously returned type.
* @param[in,out] found Whether @p prev_type has already been found or not.
* @return Next type or NULL.
*/
static struct lysc_type *
warn_is_equal_type_next_type(struct lysc_type *type, struct lysc_type *prev_type, ly_bool *found)
{
struct lysc_type *next_type;
struct lysc_type_union *uni;
LY_ARRAY_COUNT_TYPE u;
if (type->basetype == LY_TYPE_LEAFREF) {
type = ((struct lysc_type_leafref *)type)->realtype;
}
if (type->basetype == LY_TYPE_UNION) {
uni = (struct lysc_type_union *)type;
LY_ARRAY_FOR(uni->types, u) {
next_type = warn_is_equal_type_next_type(uni->types[u], prev_type, found);
if (next_type) {
return next_type;
}
}
} else {
if (*found) {
return type;
} else if (prev_type == type) {
*found = 1;
}
}
return NULL;
}
/**
* @brief Test whether 2 types have a common type.
*
* @param[in] type1 First type.
* @param[in] type2 Second type.
* @return 1 if they do, 0 otherwise.
*/
static int
warn_is_equal_type(struct lysc_type *type1, struct lysc_type *type2)
{
struct lysc_type *t1, *t2;
ly_bool found1 = 1, found2 = 1;
t1 = NULL;
while ((t1 = warn_is_equal_type_next_type(type1, t1, &found1))) {
found1 = 0;
t2 = NULL;
while ((t2 = warn_is_equal_type_next_type(type2, t2, &found2))) {
found2 = 0;
if (t2->basetype == t1->basetype) {
/* match found */
return 1;
}
}
}
return 0;
}
/**
* @brief Print warning with information about the XPath subexpression that caused previous warning.
*
* @param[in] ctx Context for logging.
* @param[in] tok_pos Index of the subexpression in the whole expression.
* @param[in] subexpr Subexpression start.
* @param[in] subexpr_len Length of @p subexpr to print.
* @param[in] cur_scnode Expression context node.
*/
static void
warn_subexpr_log(const struct ly_ctx *ctx, uint32_t tok_pos, const char *subexpr, int subexpr_len,
const struct lysc_node *cur_scnode)
{
char *path;
path = lysc_path(cur_scnode, LYSC_PATH_LOG, NULL, 0);
LOGWRN(ctx, "Previous warning generated by XPath subexpression[%" PRIu32 "] \"%.*s\" with context node \"%s\".",
tok_pos, subexpr_len, subexpr, path);
free(path);
}
/**
* @brief Check both operands of comparison operators.
*
* @param[in] ctx Context for errors.
* @param[in] set1 First operand set.
* @param[in] set2 Second operand set.
* @param[in] numbers_only Whether accept only numbers or other types are fine too (for '=' and '!=').
* @param[in] expr Start of the expression to print with the warning.
* @param[in] tok_pos Token position.
*/
static void
warn_operands(struct ly_ctx *ctx, struct lyxp_set *set1, struct lyxp_set *set2, ly_bool numbers_only, const char *expr,
uint32_t tok_pos)
{
struct lysc_node_leaf *node1, *node2;
ly_bool leaves = 1, warning = 0;
node1 = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(set1);
node2 = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(set2);
if (!node1 && !node2) {
/* no node-sets involved, nothing to do */
return;
}
if (node1) {
if (!(node1->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(ctx, "Node type %s \"%s\" used as operand.", lys_nodetype2str(node1->nodetype), node1->name);
warning = 1;
leaves = 0;
} else if (numbers_only && !warn_is_numeric_type(node1->type)) {
LOGWRN(ctx, "Node \"%s\" is not of a numeric type, but used where it was expected.", node1->name);
warning = 1;
}
}
if (node2) {
if (!(node2->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(ctx, "Node type %s \"%s\" used as operand.", lys_nodetype2str(node2->nodetype), node2->name);
warning = 1;
leaves = 0;
} else if (numbers_only && !warn_is_numeric_type(node2->type)) {
LOGWRN(ctx, "Node \"%s\" is not of a numeric type, but used where it was expected.", node2->name);
warning = 1;
}
}
if (node1 && node2 && leaves && !numbers_only) {
if ((warn_is_numeric_type(node1->type) && !warn_is_numeric_type(node2->type)) ||
(!warn_is_numeric_type(node1->type) && warn_is_numeric_type(node2->type)) ||
(!warn_is_numeric_type(node1->type) && !warn_is_numeric_type(node2->type) &&
!warn_is_equal_type(node1->type, node2->type))) {
LOGWRN(ctx, "Incompatible types of operands \"%s\" and \"%s\" for comparison.", node1->name, node2->name);
warning = 1;
}
}
if (warning) {
warn_subexpr_log(ctx, tok_pos, expr + tok_pos, 20, set1->cur_scnode);
}
}
/**
* @brief Check that a value is valid for a leaf. If not applicable, does nothing.
*
* @param[in] exp Parsed XPath expression.
* @param[in] set Set with the leaf/leaf-list.
* @param[in] val_exp Index of the value (literal/number) in @p exp.
* @param[in] equal_exp Index of the start of the equality expression in @p exp.
* @param[in] last_equal_exp Index of the end of the equality expression in @p exp.
*/
static void
warn_equality_value(const struct lyxp_expr *exp, struct lyxp_set *set, uint32_t val_exp, uint32_t equal_exp,
uint32_t last_equal_exp)
{
struct lysc_node *scnode;
struct lysc_type *type;
char *value;
struct lyd_value storage;
LY_ERR rc;
struct ly_err_item *err = NULL;
if ((scnode = warn_get_scnode_in_ctx(set)) && (scnode->nodetype & (LYS_LEAF | LYS_LEAFLIST)) &&
((exp->tokens[val_exp] == LYXP_TOKEN_LITERAL) || (exp->tokens[val_exp] == LYXP_TOKEN_NUMBER))) {
/* check that the node can have the specified value */
if (exp->tokens[val_exp] == LYXP_TOKEN_LITERAL) {
value = strndup(exp->expr + exp->tok_pos[val_exp] + 1, exp->tok_len[val_exp] - 2);
} else {
value = strndup(exp->expr + exp->tok_pos[val_exp], exp->tok_len[val_exp]);
}
if (!value) {
LOGMEM(set->ctx);
return;
}
if ((((struct lysc_node_leaf *)scnode)->type->basetype == LY_TYPE_IDENT) && !strchr(value, ':')) {
LOGWRN(set->ctx, "Identityref \"%s\" comparison with identity \"%s\" without prefix, consider adding"
" a prefix or best using \"derived-from(-or-self)()\" functions.", scnode->name, value);
warn_subexpr_log(set->ctx, exp->tok_pos[equal_exp], exp->expr + exp->tok_pos[equal_exp],
(exp->tok_pos[last_equal_exp] - exp->tok_pos[equal_exp]) + exp->tok_len[last_equal_exp],
set->cur_scnode);
}
type = ((struct lysc_node_leaf *)scnode)->type;
if (type->basetype != LY_TYPE_IDENT) {
rc = type->plugin->store(set->ctx, type, value, strlen(value), 0, set->format, set->prefix_data,
LYD_HINT_DATA, scnode, &storage, NULL, &err);
if (rc == LY_EINCOMPLETE) {
rc = LY_SUCCESS;
}
if (err) {
LOGWRN(set->ctx, "Invalid value \"%s\" which does not fit the type (%s).", value, err->msg);
ly_err_free(err);
} else if (rc != LY_SUCCESS) {
LOGWRN(set->ctx, "Invalid value \"%s\" which does not fit the type.", value);
}
if (rc != LY_SUCCESS) {
warn_subexpr_log(set->ctx, exp->tok_pos[equal_exp], exp->expr + exp->tok_pos[equal_exp],
(exp->tok_pos[last_equal_exp] - exp->tok_pos[equal_exp]) + exp->tok_len[last_equal_exp],
set->cur_scnode);
} else {
type->plugin->free(set->ctx, &storage);
}
}
free(value);
}
}
/*
* XPath functions
*/
/**
* @brief Execute the YANG 1.1 bit-is-set(node-set, string) function. Returns LYXP_SET_BOOLEAN
* depending on whether the first node bit value from the second argument is set.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_bit_is_set(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options)
{
struct lyd_node_term *leaf;
struct lysc_node_leaf *sleaf;
struct lyd_value_bits *bits;
LY_ERR rc = LY_SUCCESS;
LY_ARRAY_COUNT_TYPE u;
if (options & LYXP_SCNODE_ALL) {
if (args[0]->type != LYXP_SET_SCNODE_SET) {
LOGWRN(set->ctx, "Argument #1 of %s not a node-set as expected.", __func__);
} else if ((sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype),
sleaf->name);
} else if (!warn_is_specific_type(sleaf->type, LY_TYPE_BITS)) {
LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of type \"bits\".", __func__, sleaf->name);
}
}
if ((args[1]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[1]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #2 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype),
sleaf->name);
} else if (!warn_is_string_type(sleaf->type)) {
LOGWRN(set->ctx, "Argument #2 of %s is node \"%s\", not of string-type.", __func__, sleaf->name);
}
}
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
return rc;
}
if (args[0]->type != LYXP_SET_NODE_SET) {
LOGVAL(set->ctx, LY_VCODE_XP_INARGTYPE, 1, print_set_type(args[0]), "bit-is-set(node-set, string)");
return LY_EVALID;
}
rc = lyxp_set_cast(args[1], LYXP_SET_STRING);
LY_CHECK_RET(rc);
set_fill_boolean(set, 0);
if (args[0]->used) {
leaf = (struct lyd_node_term *)args[0]->val.nodes[0].node;
if ((leaf->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST)) && (leaf->value.realtype->basetype == LY_TYPE_BITS)) {
LYD_VALUE_GET(&leaf->value, bits);
LY_ARRAY_FOR(bits->items, u) {
if (!strcmp(bits->items[u]->name, args[1]->val.str)) {
set_fill_boolean(set, 1);
break;
}
}
}
}
return LY_SUCCESS;
}
/**
* @brief Execute the XPath boolean(object) function. Returns LYXP_SET_BOOLEAN
* with the argument converted to boolean.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_boolean(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options)
{
LY_ERR rc;
if (options & LYXP_SCNODE_ALL) {
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE);
return LY_SUCCESS;
}
rc = lyxp_set_cast(args[0], LYXP_SET_BOOLEAN);
LY_CHECK_RET(rc);
set_fill_set(set, args[0]);
return LY_SUCCESS;
}
/**
* @brief Execute the XPath ceiling(number) function. Returns LYXP_SET_NUMBER
* with the first argument rounded up to the nearest integer.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_ceiling(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options)
{
struct lysc_node_leaf *sleaf;
LY_ERR rc = LY_SUCCESS;
if (options & LYXP_SCNODE_ALL) {
if (args[0]->type != LYXP_SET_SCNODE_SET) {
LOGWRN(set->ctx, "Argument #1 of %s not a node-set as expected.", __func__);
} else if ((sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype),
sleaf->name);
} else if (!warn_is_specific_type(sleaf->type, LY_TYPE_DEC64)) {
LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of type \"decimal64\".", __func__, sleaf->name);
}
}
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
return rc;
}
rc = lyxp_set_cast(args[0], LYXP_SET_NUMBER);
LY_CHECK_RET(rc);
if ((long long)args[0]->val.num != args[0]->val.num) {
set_fill_number(set, ((long long)args[0]->val.num) + 1);
} else {
set_fill_number(set, args[0]->val.num);
}
return LY_SUCCESS;
}
/**
* @brief Execute the XPath concat(string, string, string*) function.
* Returns LYXP_SET_STRING with the concatenation of all the arguments.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_concat(struct lyxp_set **args, uint32_t arg_count, struct lyxp_set *set, uint32_t options)
{
uint32_t i;
char *str = NULL;
size_t used = 1;
LY_ERR rc = LY_SUCCESS;
struct lysc_node_leaf *sleaf;
if (options & LYXP_SCNODE_ALL) {
for (i = 0; i < arg_count; ++i) {
if ((args[i]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[i]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #%" PRIu32 " of %s is a %s node \"%s\".",
i + 1, __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name);
} else if (!warn_is_string_type(sleaf->type)) {
LOGWRN(set->ctx, "Argument #%" PRIu32 " of %s is node \"%s\", not of string-type.", i + 1, __func__,
sleaf->name);
}
}
}
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
return rc;
}
for (i = 0; i < arg_count; ++i) {
rc = lyxp_set_cast(args[i], LYXP_SET_STRING);
if (rc != LY_SUCCESS) {
free(str);
return rc;
}
str = ly_realloc(str, (used + strlen(args[i]->val.str)) * sizeof(char));
LY_CHECK_ERR_RET(!str, LOGMEM(set->ctx), LY_EMEM);
strcpy(str + used - 1, args[i]->val.str);
used += strlen(args[i]->val.str);
}
/* free, kind of */
lyxp_set_free_content(set);
set->type = LYXP_SET_STRING;
set->val.str = str;
return LY_SUCCESS;
}
/**
* @brief Execute the XPath contains(string, string) function.
* Returns LYXP_SET_BOOLEAN whether the second argument can
* be found in the first or not.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_contains(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options)
{
struct lysc_node_leaf *sleaf;
LY_ERR rc = LY_SUCCESS;
if (options & LYXP_SCNODE_ALL) {
if ((args[0]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype),
sleaf->name);
} else if (!warn_is_string_type(sleaf->type)) {
LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of string-type.", __func__, sleaf->name);
}
}
if ((args[1]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[1]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #2 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype),
sleaf->name);
} else if (!warn_is_string_type(sleaf->type)) {
LOGWRN(set->ctx, "Argument #2 of %s is node \"%s\", not of string-type.", __func__, sleaf->name);
}
}
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
return rc;
}
rc = lyxp_set_cast(args[0], LYXP_SET_STRING);
LY_CHECK_RET(rc);
rc = lyxp_set_cast(args[1], LYXP_SET_STRING);
LY_CHECK_RET(rc);
if (strstr(args[0]->val.str, args[1]->val.str)) {
set_fill_boolean(set, 1);
} else {
set_fill_boolean(set, 0);
}
return LY_SUCCESS;
}
/**
* @brief Execute the XPath count(node-set) function. Returns LYXP_SET_NUMBER
* with the size of the node-set from the argument.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_count(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options)
{
LY_ERR rc = LY_SUCCESS;
if (options & LYXP_SCNODE_ALL) {
if (args[0]->type != LYXP_SET_SCNODE_SET) {
LOGWRN(set->ctx, "Argument #1 of %s not a node-set as expected.", __func__);
}
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE);
return rc;
}
if (args[0]->type != LYXP_SET_NODE_SET) {
LOGVAL(set->ctx, LY_VCODE_XP_INARGTYPE, 1, print_set_type(args[0]), "count(node-set)");
return LY_EVALID;
}
set_fill_number(set, args[0]->used);
return LY_SUCCESS;
}
/**
* @brief Execute the XPath current() function. Returns LYXP_SET_NODE_SET
* with the context with the intial node.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_current(struct lyxp_set **args, uint32_t arg_count, struct lyxp_set *set, uint32_t options)
{
if (arg_count || args) {
LOGVAL(set->ctx, LY_VCODE_XP_INARGCOUNT, arg_count, LY_PRI_LENSTR("current()"));
return LY_EVALID;
}
if (options & LYXP_SCNODE_ALL) {
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE);
if (set->cur_scnode) {
LY_CHECK_RET(lyxp_set_scnode_insert_node(set, set->cur_scnode, LYXP_NODE_ELEM, LYXP_AXIS_SELF, NULL));
} else {
/* root node */
LY_CHECK_RET(lyxp_set_scnode_insert_node(set, NULL, set->root_type, LYXP_AXIS_SELF, NULL));
}
} else {
lyxp_set_free_content(set);
if (set->cur_node) {
/* position is filled later */
set_insert_node(set, set->cur_node, 0, LYXP_NODE_ELEM, 0);
} else {
/* root node */
set_insert_node(set, NULL, 0, set->root_type, 0);
}
}
return LY_SUCCESS;
}
/**
* @brief Execute the YANG 1.1 deref(node-set) function. Returns LYXP_SET_NODE_SET with either
* leafref or instance-identifier target node(s).
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_deref(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options)
{
struct lyd_node_term *leaf;
struct lysc_node_leaf *sleaf = NULL;
struct lysc_type_leafref *lref;
const struct lysc_node *target;
struct ly_path *p;
struct lyd_node *node;
char *errmsg = NULL;
uint8_t oper;
LY_ERR r;
LY_ERR ret = LY_SUCCESS;
struct ly_set *targets = NULL;
uint32_t i;
if (options & LYXP_SCNODE_ALL) {
if (args[0]->type != LYXP_SET_SCNODE_SET) {
LOGWRN(set->ctx, "Argument #1 of %s not a node-set as expected.", __func__);
} else if ((sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) {
if (!(sleaf->nodetype & LYD_NODE_TERM)) {
LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype),
sleaf->name);
} else if (!warn_is_specific_type(sleaf->type, LY_TYPE_LEAFREF) &&
!warn_is_specific_type(sleaf->type, LY_TYPE_INST)) {
LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of type \"leafref\" nor \"instance-identifier\".",
__func__, sleaf->name);
}
}
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
if (sleaf && (sleaf->nodetype & LYD_NODE_TERM) && (sleaf->type->basetype == LY_TYPE_LEAFREF)) {
lref = (struct lysc_type_leafref *)sleaf->type;
oper = (sleaf->flags & LYS_IS_OUTPUT) ? LY_PATH_OPER_OUTPUT : LY_PATH_OPER_INPUT;
/* it was already evaluated on schema, it must succeed */
r = ly_path_compile_leafref(set->ctx, &sleaf->node, NULL, lref->path, oper, LY_PATH_TARGET_MANY,
LY_VALUE_SCHEMA_RESOLVED, lref->prefixes, &p);
if (!r) {
/* get the target node */
target = p[LY_ARRAY_COUNT(p) - 1].node;
ly_path_free(set->ctx, p);
LY_CHECK_RET(lyxp_set_scnode_insert_node(set, target, LYXP_NODE_ELEM, LYXP_AXIS_SELF, NULL));
} /* else the target was found before but is disabled so it was removed */
}
ret = LY_SUCCESS;
goto cleanup;
}
if (args[0]->type != LYXP_SET_NODE_SET) {
LOGVAL(set->ctx, LY_VCODE_XP_INARGTYPE, 1, print_set_type(args[0]), "deref(node-set)");
ret = LY_EVALID;
goto cleanup;
}
lyxp_set_free_content(set);
if (args[0]->used) {
leaf = (struct lyd_node_term *)args[0]->val.nodes[0].node;
sleaf = (struct lysc_node_leaf *)leaf->schema;
if (sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST)) {
if (sleaf->type->basetype == LY_TYPE_LEAFREF) {
/* find leafref target */
r = lyplg_type_resolve_leafref((struct lysc_type_leafref *)sleaf->type, &leaf->node, &leaf->value, set->tree,
&targets, &errmsg);
if (r) {
LOGERR(set->ctx, LY_EINVAL, "%s", errmsg);
free(errmsg);
ret = LY_EINVAL;
goto cleanup;
}
/* insert nodes into set */
for (i = 0; i < targets->count; ++i) {
set_insert_node(set, targets->dnodes[i], 0, LYXP_NODE_ELEM, 0);
}
} else {
assert(sleaf->type->basetype == LY_TYPE_INST);
if (ly_path_eval(leaf->value.target, set->tree, NULL, &node)) {
LOGERR(set->ctx, LY_EINVAL, "Invalid instance-identifier \"%s\" value - required instance not found.",
lyd_get_value(&leaf->node));
ret = LY_EINVAL;
goto cleanup;
}
/* insert it */
set_insert_node(set, node, 0, LYXP_NODE_ELEM, 0);
}
}
}
cleanup:
ly_set_free(targets, NULL);
return ret;
}
static LY_ERR
xpath_derived_(struct lyxp_set **args, struct lyxp_set *set, uint32_t options, ly_bool self_match, const char *func)
{
uint32_t i, id_len;
LY_ARRAY_COUNT_TYPE u;
struct lyd_node_term *leaf;
struct lysc_node_leaf *sleaf;
struct lyd_meta *meta;
struct lyd_value *val;
const struct lys_module *mod;
const char *id_name;
struct lysc_ident *id;
LY_ERR rc = LY_SUCCESS;
ly_bool found;
if (options & LYXP_SCNODE_ALL) {
if (args[0]->type != LYXP_SET_SCNODE_SET) {
LOGWRN(set->ctx, "Argument #1 of %s not a node-set as expected.", func);
} else if ((sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", func, lys_nodetype2str(sleaf->nodetype),
sleaf->name);
} else if (!warn_is_specific_type(sleaf->type, LY_TYPE_IDENT)) {
LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of type \"identityref\".", func, sleaf->name);
}
}
if ((args[1]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[1]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #2 of %s is a %s node \"%s\".", func, lys_nodetype2str(sleaf->nodetype),
sleaf->name);
} else if (!warn_is_string_type(sleaf->type)) {
LOGWRN(set->ctx, "Argument #2 of %s is node \"%s\", not of string-type.", func, sleaf->name);
}
}
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
return rc;
}
if (args[0]->type != LYXP_SET_NODE_SET) {
LOGVAL(set->ctx, LY_VCODE_XP_INARGTYPE, 1, print_set_type(args[0]), "derived-from(-or-self)(node-set, string)");
return LY_EVALID;
}
rc = lyxp_set_cast(args[1], LYXP_SET_STRING);
LY_CHECK_RET(rc);
/* parse the identity */
id_name = args[1]->val.str;
id_len = strlen(id_name);
rc = moveto_resolve_model(&id_name, &id_len, set, set->cur_node ? set->cur_node->schema : NULL, &mod);
LY_CHECK_RET(rc);
if (!mod) {
LOGVAL(set->ctx, LYVE_XPATH, "Identity \"%.*s\" without a prefix.", (int)id_len, id_name);
return LY_EVALID;
}
/* find the identity */
found = 0;
LY_ARRAY_FOR(mod->identities, u) {
if (!ly_strncmp(mod->identities[u].name, id_name, id_len)) {
/* we have match */
found = 1;
break;
}
}
if (!found) {
LOGVAL(set->ctx, LYVE_XPATH, "Identity \"%.*s\" not found in module \"%s\".", (int)id_len, id_name, mod->name);
return LY_EVALID;
}
id = &mod->identities[u];
set_fill_boolean(set, 0);
found = 0;
for (i = 0; i < args[0]->used; ++i) {
if ((args[0]->val.nodes[i].type != LYXP_NODE_ELEM) && (args[0]->val.nodes[i].type != LYXP_NODE_META)) {
continue;
}
if (args[0]->val.nodes[i].type == LYXP_NODE_ELEM) {
leaf = (struct lyd_node_term *)args[0]->val.nodes[i].node;
sleaf = (struct lysc_node_leaf *)leaf->schema;
val = &leaf->value;
if (!sleaf || !(sleaf->nodetype & LYD_NODE_TERM) || (leaf->value.realtype->basetype != LY_TYPE_IDENT)) {
/* uninteresting */
continue;
}
} else {
meta = args[0]->val.meta[i].meta;
val = &meta->value;
if (val->realtype->basetype != LY_TYPE_IDENT) {
/* uninteresting */
continue;
}
}
/* check the identity itself */
if (self_match && (id == val->ident)) {
set_fill_boolean(set, 1);
found = 1;
}
if (!found && !lyplg_type_identity_isderived(id, val->ident)) {
set_fill_boolean(set, 1);
found = 1;
}
if (found) {
break;
}
}
return LY_SUCCESS;
}
/**
* @brief Execute the YANG 1.1 derived-from(node-set, string) function. Returns LYXP_SET_BOOLEAN depending
* on whether the first argument nodes contain a node of an identity derived from the second
* argument identity.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_derived_from(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options)
{
return xpath_derived_(args, set, options, 0, __func__);
}
/**
* @brief Execute the YANG 1.1 derived-from-or-self(node-set, string) function. Returns LYXP_SET_BOOLEAN depending
* on whether the first argument nodes contain a node of an identity that either is or is derived from
* the second argument identity.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_derived_from_or_self(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options)
{
return xpath_derived_(args, set, options, 1, __func__);
}
/**
* @brief Execute the YANG 1.1 enum-value(node-set) function. Returns LYXP_SET_NUMBER
* with the integer value of the first node's enum value, otherwise NaN.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_enum_value(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options)
{
struct lyd_node_term *leaf;
struct lysc_node_leaf *sleaf;
LY_ERR rc = LY_SUCCESS;
if (options & LYXP_SCNODE_ALL) {
if (args[0]->type != LYXP_SET_SCNODE_SET) {
LOGWRN(set->ctx, "Argument #1 of %s not a node-set as expected.", __func__);
} else if ((sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype),
sleaf->name);
} else if (!warn_is_specific_type(sleaf->type, LY_TYPE_ENUM)) {
LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of type \"enumeration\".", __func__, sleaf->name);
}
}
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
return rc;
}
if (args[0]->type != LYXP_SET_NODE_SET) {
LOGVAL(set->ctx, LY_VCODE_XP_INARGTYPE, 1, print_set_type(args[0]), "enum-value(node-set)");
return LY_EVALID;
}
set_fill_number(set, NAN);
if (args[0]->used) {
leaf = (struct lyd_node_term *)args[0]->val.nodes[0].node;
sleaf = (struct lysc_node_leaf *)leaf->schema;
if ((sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST)) && (sleaf->type->basetype == LY_TYPE_ENUM)) {
set_fill_number(set, leaf->value.enum_item->value);
}
}
return LY_SUCCESS;
}
/**
* @brief Execute the XPath false() function. Returns LYXP_SET_BOOLEAN
* with false value.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_false(struct lyxp_set **UNUSED(args), uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options)
{
if (options & LYXP_SCNODE_ALL) {
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE);
return LY_SUCCESS;
}
set_fill_boolean(set, 0);
return LY_SUCCESS;
}
/**
* @brief Execute the XPath floor(number) function. Returns LYXP_SET_NUMBER
* with the first argument floored (truncated).
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_floor(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options)
{
struct lysc_node_leaf *sleaf;
LY_ERR rc = LY_SUCCESS;
if (options & LYXP_SCNODE_ALL) {
if (args[0]->type != LYXP_SET_SCNODE_SET) {
LOGWRN(set->ctx, "Argument #1 of %s not a node-set as expected.", __func__);
} else if ((sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype),
sleaf->name);
} else if (!warn_is_specific_type(sleaf->type, LY_TYPE_DEC64)) {
LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of type \"decimal64\".", __func__, sleaf->name);
}
}
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
return rc;
}
rc = lyxp_set_cast(args[0], LYXP_SET_NUMBER);
LY_CHECK_RET(rc);
if (isfinite(args[0]->val.num)) {
set_fill_number(set, (long long)args[0]->val.num);
}
return LY_SUCCESS;
}
/**
* @brief Execute the XPath lang(string) function. Returns LYXP_SET_BOOLEAN
* whether the language of the text matches the one from the argument.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_lang(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options)
{
const struct lyd_node *node;
struct lysc_node_leaf *sleaf;
struct lyd_meta *meta = NULL;
const char *val;
LY_ERR rc = LY_SUCCESS;
if (options & LYXP_SCNODE_ALL) {
if ((args[0]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype),
sleaf->name);
} else if (!warn_is_string_type(sleaf->type)) {
LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of string-type.", __func__, sleaf->name);
}
}
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
return rc;
}
rc = lyxp_set_cast(args[0], LYXP_SET_STRING);
LY_CHECK_RET(rc);
if (set->type != LYXP_SET_NODE_SET) {
LOGVAL(set->ctx, LY_VCODE_XP_INCTX, print_set_type(set), "lang(string)");
return LY_EVALID;
} else if (!set->used) {
set_fill_boolean(set, 0);
return LY_SUCCESS;
}
switch (set->val.nodes[0].type) {
case LYXP_NODE_ELEM:
case LYXP_NODE_TEXT:
node = set->val.nodes[0].node;
break;
case LYXP_NODE_META:
node = set->val.meta[0].meta->parent;
break;
default:
/* nothing to do with roots */
set_fill_boolean(set, 0);
return LY_SUCCESS;
}
/* find lang metadata */
for ( ; node; node = lyd_parent(node)) {
for (meta = node->meta; meta; meta = meta->next) {
/* annotations */
if (meta->name && !strcmp(meta->name, "lang") && !strcmp(meta->annotation->module->name, "xml")) {
break;
}
}
if (meta) {
break;
}
}
/* compare languages */
if (!meta) {
set_fill_boolean(set, 0);
} else {
uint64_t i;
val = lyd_get_meta_value(meta);
for (i = 0; args[0]->val.str[i]; ++i) {
if (tolower(args[0]->val.str[i]) != tolower(val[i])) {
set_fill_boolean(set, 0);
break;
}
}
if (!args[0]->val.str[i]) {
if (!val[i] || (val[i] == '-')) {
set_fill_boolean(set, 1);
} else {
set_fill_boolean(set, 0);
}
}
}
return LY_SUCCESS;
}
/**
* @brief Execute the XPath last() function. Returns LYXP_SET_NUMBER
* with the context size.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_last(struct lyxp_set **UNUSED(args), uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options)
{
if (options & LYXP_SCNODE_ALL) {
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE);
return LY_SUCCESS;
}
if (set->type != LYXP_SET_NODE_SET) {
LOGVAL(set->ctx, LY_VCODE_XP_INCTX, print_set_type(set), "last()");
return LY_EVALID;
} else if (!set->used) {
set_fill_number(set, 0);
return LY_SUCCESS;
}
set_fill_number(set, set->ctx_size);
return LY_SUCCESS;
}
/**
* @brief Execute the XPath local-name(node-set?) function. Returns LYXP_SET_STRING
* with the node name without namespace from the argument or the context.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_local_name(struct lyxp_set **args, uint32_t arg_count, struct lyxp_set *set, uint32_t options)
{
struct lyxp_set_node *item;
/* suppress unused variable warning */
(void)options;
if (options & LYXP_SCNODE_ALL) {
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE);
return LY_SUCCESS;
}
if (arg_count) {
if (args[0]->type != LYXP_SET_NODE_SET) {
LOGVAL(set->ctx, LY_VCODE_XP_INARGTYPE, 1, print_set_type(args[0]),
"local-name(node-set?)");
return LY_EVALID;
} else if (!args[0]->used) {
set_fill_string(set, "", 0);
return LY_SUCCESS;
}
/* we need the set sorted, it affects the result */
assert(!set_sort(args[0]));
item = &args[0]->val.nodes[0];
} else {
if (set->type != LYXP_SET_NODE_SET) {
LOGVAL(set->ctx, LY_VCODE_XP_INCTX, print_set_type(set), "local-name(node-set?)");
return LY_EVALID;
} else if (!set->used) {
set_fill_string(set, "", 0);
return LY_SUCCESS;
}
/* we need the set sorted, it affects the result */
assert(!set_sort(set));
item = &set->val.nodes[0];
}
switch (item->type) {
case LYXP_NODE_NONE:
LOGINT_RET(set->ctx);
case LYXP_NODE_ROOT:
case LYXP_NODE_ROOT_CONFIG:
case LYXP_NODE_TEXT:
set_fill_string(set, "", 0);
break;
case LYXP_NODE_ELEM:
set_fill_string(set, LYD_NAME(item->node), strlen(LYD_NAME(item->node)));
break;
case LYXP_NODE_META:
set_fill_string(set, ((struct lyd_meta *)item->node)->name, strlen(((struct lyd_meta *)item->node)->name));
break;
}
return LY_SUCCESS;
}
/**
* @brief Execute the XPath name(node-set?) function. Returns LYXP_SET_STRING
* with the node name fully qualified (with namespace) from the argument or the context.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_name(struct lyxp_set **args, uint32_t arg_count, struct lyxp_set *set, uint32_t options)
{
struct lyxp_set_node *item;
const struct lys_module *mod = NULL;
char *str;
const char *name = NULL;
if (options & LYXP_SCNODE_ALL) {
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE);
return LY_SUCCESS;
}
if (arg_count) {
if (args[0]->type != LYXP_SET_NODE_SET) {
LOGVAL(set->ctx, LY_VCODE_XP_INARGTYPE, 1, print_set_type(args[0]), "name(node-set?)");
return LY_EVALID;
} else if (!args[0]->used) {
set_fill_string(set, "", 0);
return LY_SUCCESS;
}
/* we need the set sorted, it affects the result */
assert(!set_sort(args[0]));
item = &args[0]->val.nodes[0];
} else {
if (set->type != LYXP_SET_NODE_SET) {
LOGVAL(set->ctx, LY_VCODE_XP_INCTX, print_set_type(set), "name(node-set?)");
return LY_EVALID;
} else if (!set->used) {
set_fill_string(set, "", 0);
return LY_SUCCESS;
}
/* we need the set sorted, it affects the result */
assert(!set_sort(set));
item = &set->val.nodes[0];
}
switch (item->type) {
case LYXP_NODE_NONE:
LOGINT_RET(set->ctx);
case LYXP_NODE_ROOT:
case LYXP_NODE_ROOT_CONFIG:
case LYXP_NODE_TEXT:
/* keep NULL */
break;
case LYXP_NODE_ELEM:
mod = lyd_node_module(item->node);
name = LYD_NAME(item->node);
break;
case LYXP_NODE_META:
mod = ((struct lyd_meta *)item->node)->annotation->module;
name = ((struct lyd_meta *)item->node)->name;
break;
}
if (mod && name) {
int rc = asprintf(&str, "%s:%s", ly_get_prefix(mod, set->format, set->prefix_data), name);
LY_CHECK_ERR_RET(rc == -1, LOGMEM(set->ctx), LY_EMEM);
set_fill_string(set, str, strlen(str));
free(str);
} else {
set_fill_string(set, "", 0);
}
return LY_SUCCESS;
}
/**
* @brief Execute the XPath namespace-uri(node-set?) function. Returns LYXP_SET_STRING
* with the namespace of the node from the argument or the context.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR (LY_EINVAL for wrong arguments on schema)
*/
static LY_ERR
xpath_namespace_uri(struct lyxp_set **args, uint32_t arg_count, struct lyxp_set *set, uint32_t options)
{
struct lyxp_set_node *item;
const struct lys_module *mod;
/* suppress unused variable warning */
(void)options;
if (options & LYXP_SCNODE_ALL) {
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
return LY_SUCCESS;
}
if (arg_count) {
if (args[0]->type != LYXP_SET_NODE_SET) {
LOGVAL(set->ctx, LY_VCODE_XP_INARGTYPE, 1, print_set_type(args[0]),
"namespace-uri(node-set?)");
return LY_EVALID;
} else if (!args[0]->used) {
set_fill_string(set, "", 0);
return LY_SUCCESS;
}
/* we need the set sorted, it affects the result */
assert(!set_sort(args[0]));
item = &args[0]->val.nodes[0];
} else {
if (set->type != LYXP_SET_NODE_SET) {
LOGVAL(set->ctx, LY_VCODE_XP_INCTX, print_set_type(set), "namespace-uri(node-set?)");
return LY_EVALID;
} else if (!set->used) {
set_fill_string(set, "", 0);
return LY_SUCCESS;
}
/* we need the set sorted, it affects the result */
assert(!set_sort(set));
item = &set->val.nodes[0];
}
switch (item->type) {
case LYXP_NODE_NONE:
LOGINT_RET(set->ctx);
case LYXP_NODE_ROOT:
case LYXP_NODE_ROOT_CONFIG:
case LYXP_NODE_TEXT:
set_fill_string(set, "", 0);
break;
case LYXP_NODE_ELEM:
case LYXP_NODE_META:
if (item->type == LYXP_NODE_ELEM) {
mod = lyd_node_module(item->node);
} else { /* LYXP_NODE_META */
/* annotations */
mod = ((struct lyd_meta *)item->node)->annotation->module;
}
set_fill_string(set, mod->ns, strlen(mod->ns));
break;
}
return LY_SUCCESS;
}
/**
* @brief Execute the XPath normalize-space(string?) function. Returns LYXP_SET_STRING
* with normalized value (no leading, trailing, double white spaces) of the node
* from the argument or the context.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_normalize_space(struct lyxp_set **args, uint32_t arg_count, struct lyxp_set *set, uint32_t options)
{
uint32_t i, new_used;
char *new;
ly_bool have_spaces = 0, space_before = 0;
struct lysc_node_leaf *sleaf;
LY_ERR rc = LY_SUCCESS;
if (options & LYXP_SCNODE_ALL) {
if (arg_count && (args[0]->type == LYXP_SET_SCNODE_SET) &&
(sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype),
sleaf->name);
} else if (!warn_is_string_type(sleaf->type)) {
LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of string-type.", __func__, sleaf->name);
}
}
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
return rc;
}
if (arg_count) {
set_fill_set(set, args[0]);
}
rc = lyxp_set_cast(set, LYXP_SET_STRING);
LY_CHECK_RET(rc);
/* is there any normalization necessary? */
for (i = 0; set->val.str[i]; ++i) {
if (is_xmlws(set->val.str[i])) {
if ((i == 0) || space_before || (!set->val.str[i + 1])) {
have_spaces = 1;
break;
}
space_before = 1;
} else {
space_before = 0;
}
}
/* yep, there is */
if (have_spaces) {
/* it's enough, at least one character will go, makes space for ending '\0' */
new = malloc(strlen(set->val.str) * sizeof(char));
LY_CHECK_ERR_RET(!new, LOGMEM(set->ctx), LY_EMEM);
new_used = 0;
space_before = 0;
for (i = 0; set->val.str[i]; ++i) {
if (is_xmlws(set->val.str[i])) {
if ((i == 0) || space_before) {
space_before = 1;
continue;
} else {
space_before = 1;
}
} else {
space_before = 0;
}
new[new_used] = (space_before ? ' ' : set->val.str[i]);
++new_used;
}
/* at worst there is one trailing space now */
if (new_used && is_xmlws(new[new_used - 1])) {
--new_used;
}
new = ly_realloc(new, (new_used + 1) * sizeof(char));
LY_CHECK_ERR_RET(!new, LOGMEM(set->ctx), LY_EMEM);
new[new_used] = '\0';
free(set->val.str);
set->val.str = new;
}
return LY_SUCCESS;
}
/**
* @brief Execute the XPath not(boolean) function. Returns LYXP_SET_BOOLEAN
* with the argument converted to boolean and logically inverted.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_not(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options)
{
if (options & LYXP_SCNODE_ALL) {
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE);
return LY_SUCCESS;
}
lyxp_set_cast(args[0], LYXP_SET_BOOLEAN);
if (args[0]->val.bln) {
set_fill_boolean(set, 0);
} else {
set_fill_boolean(set, 1);
}
return LY_SUCCESS;
}
/**
* @brief Execute the XPath number(object?) function. Returns LYXP_SET_NUMBER
* with the number representation of either the argument or the context.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_number(struct lyxp_set **args, uint32_t arg_count, struct lyxp_set *set, uint32_t options)
{
LY_ERR rc;
if (options & LYXP_SCNODE_ALL) {
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
return LY_SUCCESS;
}
if (arg_count) {
rc = lyxp_set_cast(args[0], LYXP_SET_NUMBER);
LY_CHECK_RET(rc);
set_fill_set(set, args[0]);
} else {
rc = lyxp_set_cast(set, LYXP_SET_NUMBER);
LY_CHECK_RET(rc);
}
return LY_SUCCESS;
}
/**
* @brief Execute the XPath position() function. Returns LYXP_SET_NUMBER
* with the context position.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_position(struct lyxp_set **UNUSED(args), uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options)
{
if (options & LYXP_SCNODE_ALL) {
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE);
return LY_SUCCESS;
}
if (set->type != LYXP_SET_NODE_SET) {
LOGVAL(set->ctx, LY_VCODE_XP_INCTX, print_set_type(set), "position()");
return LY_EVALID;
} else if (!set->used) {
set_fill_number(set, 0);
return LY_SUCCESS;
}
set_fill_number(set, set->ctx_pos);
/* UNUSED in 'Release' build type */
(void)options;
return LY_SUCCESS;
}
/**
* @brief Execute the YANG 1.1 re-match(string, string) function. Returns LYXP_SET_BOOLEAN
* depending on whether the second argument regex matches the first argument string. For details refer to
* YANG 1.1 RFC section 10.2.1.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_re_match(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options)
{
struct lysc_pattern **patterns = NULL, **pattern;
struct lysc_node_leaf *sleaf;
LY_ERR rc = LY_SUCCESS;
struct ly_err_item *err;
if (options & LYXP_SCNODE_ALL) {
if ((args[0]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name);
} else if (!warn_is_string_type(sleaf->type)) {
LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of string-type.", __func__, sleaf->name);
}
}
if ((args[1]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[1]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #2 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name);
} else if (!warn_is_string_type(sleaf->type)) {
LOGWRN(set->ctx, "Argument #2 of %s is node \"%s\", not of string-type.", __func__, sleaf->name);
}
}
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
return rc;
}
rc = lyxp_set_cast(args[0], LYXP_SET_STRING);
LY_CHECK_RET(rc);
rc = lyxp_set_cast(args[1], LYXP_SET_STRING);
LY_CHECK_RET(rc);
LY_ARRAY_NEW_RET(set->ctx, patterns, pattern, LY_EMEM);
*pattern = calloc(1, sizeof **pattern);
if (set->cur_node) {
LOG_LOCSET(NULL, set->cur_node);
}
rc = lys_compile_type_pattern_check(set->ctx, args[1]->val.str, &(*pattern)->code);
if (set->cur_node) {
LOG_LOCBACK(0, 1);
}
if (rc != LY_SUCCESS) {
LY_ARRAY_FREE(patterns);
return rc;
}
rc = lyplg_type_validate_patterns(patterns, args[0]->val.str, strlen(args[0]->val.str), &err);
pcre2_code_free((*pattern)->code);
free(*pattern);
LY_ARRAY_FREE(patterns);
if (rc && (rc != LY_EVALID)) {
ly_err_print(set->ctx, err);
ly_err_free(err);
return rc;
}
if (rc == LY_EVALID) {
ly_err_free(err);
set_fill_boolean(set, 0);
} else {
set_fill_boolean(set, 1);
}
return LY_SUCCESS;
}
/**
* @brief Execute the XPath round(number) function. Returns LYXP_SET_NUMBER
* with the rounded first argument. For details refer to
* http://www.w3.org/TR/1999/REC-xpath-19991116/#function-round.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_round(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options)
{
struct lysc_node_leaf *sleaf;
LY_ERR rc = LY_SUCCESS;
if (options & LYXP_SCNODE_ALL) {
if (args[0]->type != LYXP_SET_SCNODE_SET) {
LOGWRN(set->ctx, "Argument #1 of %s not a node-set as expected.", __func__);
} else if ((sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype),
sleaf->name);
} else if (!warn_is_specific_type(sleaf->type, LY_TYPE_DEC64)) {
LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of type \"decimal64\".", __func__, sleaf->name);
}
}
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
return rc;
}
rc = lyxp_set_cast(args[0], LYXP_SET_NUMBER);
LY_CHECK_RET(rc);
/* cover only the cases where floor can't be used */
if ((args[0]->val.num == -0.0f) || ((args[0]->val.num < 0) && (args[0]->val.num >= -0.5))) {
set_fill_number(set, -0.0f);
} else {
args[0]->val.num += 0.5;
rc = xpath_floor(args, 1, args[0], options);
LY_CHECK_RET(rc);
set_fill_number(set, args[0]->val.num);
}
return LY_SUCCESS;
}
/**
* @brief Execute the XPath starts-with(string, string) function.
* Returns LYXP_SET_BOOLEAN whether the second argument is
* the prefix of the first or not.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_starts_with(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options)
{
struct lysc_node_leaf *sleaf;
LY_ERR rc = LY_SUCCESS;
if (options & LYXP_SCNODE_ALL) {
if ((args[0]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name);
} else if (!warn_is_string_type(sleaf->type)) {
LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of string-type.", __func__, sleaf->name);
}
}
if ((args[1]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[1]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #2 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name);
} else if (!warn_is_string_type(sleaf->type)) {
LOGWRN(set->ctx, "Argument #2 of %s is node \"%s\", not of string-type.", __func__, sleaf->name);
}
}
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
return rc;
}
rc = lyxp_set_cast(args[0], LYXP_SET_STRING);
LY_CHECK_RET(rc);
rc = lyxp_set_cast(args[1], LYXP_SET_STRING);
LY_CHECK_RET(rc);
if (strncmp(args[0]->val.str, args[1]->val.str, strlen(args[1]->val.str))) {
set_fill_boolean(set, 0);
} else {
set_fill_boolean(set, 1);
}
return LY_SUCCESS;
}
/**
* @brief Execute the XPath string(object?) function. Returns LYXP_SET_STRING
* with the string representation of either the argument or the context.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_string(struct lyxp_set **args, uint32_t arg_count, struct lyxp_set *set, uint32_t options)
{
LY_ERR rc;
if (options & LYXP_SCNODE_ALL) {
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
return LY_SUCCESS;
}
if (arg_count) {
rc = lyxp_set_cast(args[0], LYXP_SET_STRING);
LY_CHECK_RET(rc);
set_fill_set(set, args[0]);
} else {
rc = lyxp_set_cast(set, LYXP_SET_STRING);
LY_CHECK_RET(rc);
}
return LY_SUCCESS;
}
/**
* @brief Execute the XPath string-length(string?) function. Returns LYXP_SET_NUMBER
* with the length of the string in either the argument or the context.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_string_length(struct lyxp_set **args, uint32_t arg_count, struct lyxp_set *set, uint32_t options)
{
struct lysc_node_leaf *sleaf;
LY_ERR rc = LY_SUCCESS;
if (options & LYXP_SCNODE_ALL) {
if (arg_count && (args[0]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name);
} else if (!warn_is_string_type(sleaf->type)) {
LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of string-type.", __func__, sleaf->name);
}
}
if (!arg_count && (set->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(set))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #0 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name);
} else if (!warn_is_string_type(sleaf->type)) {
LOGWRN(set->ctx, "Argument #0 of %s is node \"%s\", not of string-type.", __func__, sleaf->name);
}
}
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
return rc;
}
if (arg_count) {
rc = lyxp_set_cast(args[0], LYXP_SET_STRING);
LY_CHECK_RET(rc);
set_fill_number(set, strlen(args[0]->val.str));
} else {
rc = lyxp_set_cast(set, LYXP_SET_STRING);
LY_CHECK_RET(rc);
set_fill_number(set, strlen(set->val.str));
}
return LY_SUCCESS;
}
/**
* @brief Execute the XPath substring(string, number, number?) function.
* Returns LYXP_SET_STRING substring of the first argument starting
* on the second argument index ending on the third argument index,
* indexed from 1. For exact definition refer to
* http://www.w3.org/TR/1999/REC-xpath-19991116/#function-substring.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_substring(struct lyxp_set **args, uint32_t arg_count, struct lyxp_set *set, uint32_t options)
{
int64_t start;
int32_t len;
uint32_t str_start, str_len, pos;
struct lysc_node_leaf *sleaf;
LY_ERR rc = LY_SUCCESS;
if (options & LYXP_SCNODE_ALL) {
if ((args[0]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name);
} else if (!warn_is_string_type(sleaf->type)) {
LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of string-type.", __func__, sleaf->name);
}
}
if ((args[1]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[1]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #2 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name);
} else if (!warn_is_numeric_type(sleaf->type)) {
LOGWRN(set->ctx, "Argument #2 of %s is node \"%s\", not of numeric type.", __func__, sleaf->name);
}
}
if ((arg_count == 3) && (args[2]->type == LYXP_SET_SCNODE_SET) &&
(sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[2]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #3 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name);
} else if (!warn_is_numeric_type(sleaf->type)) {
LOGWRN(set->ctx, "Argument #3 of %s is node \"%s\", not of numeric type.", __func__, sleaf->name);
}
}
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
return rc;
}
rc = lyxp_set_cast(args[0], LYXP_SET_STRING);
LY_CHECK_RET(rc);
/* start */
if (xpath_round(&args[1], 1, args[1], options)) {
return -1;
}
if (isfinite(args[1]->val.num)) {
start = args[1]->val.num - 1;
} else if (isinf(args[1]->val.num) && signbit(args[1]->val.num)) {
start = INT32_MIN;
} else {
start = INT32_MAX;
}
/* len */
if (arg_count == 3) {
rc = xpath_round(&args[2], 1, args[2], options);
LY_CHECK_RET(rc);
if (isnan(args[2]->val.num) || signbit(args[2]->val.num)) {
len = 0;
} else if (isfinite(args[2]->val.num)) {
len = args[2]->val.num;
} else {
len = INT32_MAX;
}
} else {
len = INT32_MAX;
}
/* find matching character positions */
str_start = 0;
str_len = 0;
for (pos = 0; args[0]->val.str[pos]; ++pos) {
if (pos < start) {
++str_start;
} else if (pos < start + len) {
++str_len;
} else {
break;
}
}
set_fill_string(set, args[0]->val.str + str_start, str_len);
return LY_SUCCESS;
}
/**
* @brief Execute the XPath substring-after(string, string) function.
* Returns LYXP_SET_STRING with the string succeeding the occurance
* of the second argument in the first or an empty string.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_substring_after(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options)
{
char *ptr;
struct lysc_node_leaf *sleaf;
LY_ERR rc = LY_SUCCESS;
if (options & LYXP_SCNODE_ALL) {
if ((args[0]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name);
} else if (!warn_is_string_type(sleaf->type)) {
LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of string-type.", __func__, sleaf->name);
}
}
if ((args[1]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[1]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #2 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name);
} else if (!warn_is_string_type(sleaf->type)) {
LOGWRN(set->ctx, "Argument #2 of %s is node \"%s\", not of string-type.", __func__, sleaf->name);
}
}
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
return rc;
}
rc = lyxp_set_cast(args[0], LYXP_SET_STRING);
LY_CHECK_RET(rc);
rc = lyxp_set_cast(args[1], LYXP_SET_STRING);
LY_CHECK_RET(rc);
ptr = strstr(args[0]->val.str, args[1]->val.str);
if (ptr) {
set_fill_string(set, ptr + strlen(args[1]->val.str), strlen(ptr + strlen(args[1]->val.str)));
} else {
set_fill_string(set, "", 0);
}
return LY_SUCCESS;
}
/**
* @brief Execute the XPath substring-before(string, string) function.
* Returns LYXP_SET_STRING with the string preceding the occurance
* of the second argument in the first or an empty string.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_substring_before(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options)
{
char *ptr;
struct lysc_node_leaf *sleaf;
LY_ERR rc = LY_SUCCESS;
if (options & LYXP_SCNODE_ALL) {
if ((args[0]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name);
} else if (!warn_is_string_type(sleaf->type)) {
LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of string-type.", __func__, sleaf->name);
}
}
if ((args[1]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[1]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #2 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name);
} else if (!warn_is_string_type(sleaf->type)) {
LOGWRN(set->ctx, "Argument #2 of %s is node \"%s\", not of string-type.", __func__, sleaf->name);
}
}
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
return rc;
}
rc = lyxp_set_cast(args[0], LYXP_SET_STRING);
LY_CHECK_RET(rc);
rc = lyxp_set_cast(args[1], LYXP_SET_STRING);
LY_CHECK_RET(rc);
ptr = strstr(args[0]->val.str, args[1]->val.str);
if (ptr) {
set_fill_string(set, args[0]->val.str, ptr - args[0]->val.str);
} else {
set_fill_string(set, "", 0);
}
return LY_SUCCESS;
}
/**
* @brief Execute the XPath sum(node-set) function. Returns LYXP_SET_NUMBER
* with the sum of all the nodes in the context.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_sum(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options)
{
long double num;
char *str;
uint32_t i;
struct lyxp_set set_item;
struct lysc_node_leaf *sleaf;
LY_ERR rc = LY_SUCCESS;
if (options & LYXP_SCNODE_ALL) {
if (args[0]->type == LYXP_SET_SCNODE_SET) {
for (i = 0; i < args[0]->used; ++i) {
if (args[0]->val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_CTX) {
sleaf = (struct lysc_node_leaf *)args[0]->val.scnodes[i].scnode;
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__,
lys_nodetype2str(sleaf->nodetype), sleaf->name);
} else if (!warn_is_numeric_type(sleaf->type)) {
LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of numeric type.", __func__, sleaf->name);
}
}
}
}
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
return rc;
}
set_fill_number(set, 0);
if (args[0]->type != LYXP_SET_NODE_SET) {
LOGVAL(set->ctx, LY_VCODE_XP_INARGTYPE, 1, print_set_type(args[0]), "sum(node-set)");
return LY_EVALID;
} else if (!args[0]->used) {
return LY_SUCCESS;
}
set_init(&set_item, set);
set_item.type = LYXP_SET_NODE_SET;
set_item.val.nodes = calloc(1, sizeof *set_item.val.nodes);
LY_CHECK_ERR_RET(!set_item.val.nodes, LOGMEM(set->ctx), LY_EMEM);
set_item.used = 1;
set_item.size = 1;
for (i = 0; i < args[0]->used; ++i) {
set_item.val.nodes[0] = args[0]->val.nodes[i];
rc = cast_node_set_to_string(&set_item, &str);
LY_CHECK_RET(rc);
num = cast_string_to_number(str);
free(str);
set->val.num += num;
}
free(set_item.val.nodes);
return LY_SUCCESS;
}
/**
* @brief Execute the XPath translate(string, string, string) function.
* Returns LYXP_SET_STRING with the first argument with the characters
* from the second argument replaced by those on the corresponding
* positions in the third argument.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_translate(struct lyxp_set **args, uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options)
{
uint32_t i, j, new_used;
char *new;
ly_bool have_removed;
struct lysc_node_leaf *sleaf;
LY_ERR rc = LY_SUCCESS;
if (options & LYXP_SCNODE_ALL) {
if ((args[0]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[0]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #1 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name);
} else if (!warn_is_string_type(sleaf->type)) {
LOGWRN(set->ctx, "Argument #1 of %s is node \"%s\", not of string-type.", __func__, sleaf->name);
}
}
if ((args[1]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[1]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #2 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name);
} else if (!warn_is_string_type(sleaf->type)) {
LOGWRN(set->ctx, "Argument #2 of %s is node \"%s\", not of string-type.", __func__, sleaf->name);
}
}
if ((args[2]->type == LYXP_SET_SCNODE_SET) && (sleaf = (struct lysc_node_leaf *)warn_get_scnode_in_ctx(args[2]))) {
if (!(sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGWRN(set->ctx, "Argument #3 of %s is a %s node \"%s\".", __func__, lys_nodetype2str(sleaf->nodetype), sleaf->name);
} else if (!warn_is_string_type(sleaf->type)) {
LOGWRN(set->ctx, "Argument #3 of %s is node \"%s\", not of string-type.", __func__, sleaf->name);
}
}
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
return rc;
}
rc = lyxp_set_cast(args[0], LYXP_SET_STRING);
LY_CHECK_RET(rc);
rc = lyxp_set_cast(args[1], LYXP_SET_STRING);
LY_CHECK_RET(rc);
rc = lyxp_set_cast(args[2], LYXP_SET_STRING);
LY_CHECK_RET(rc);
new = malloc((strlen(args[0]->val.str) + 1) * sizeof(char));
LY_CHECK_ERR_RET(!new, LOGMEM(set->ctx), LY_EMEM);
new_used = 0;
have_removed = 0;
for (i = 0; args[0]->val.str[i]; ++i) {
ly_bool found = 0;
for (j = 0; args[1]->val.str[j]; ++j) {
if (args[0]->val.str[i] == args[1]->val.str[j]) {
/* removing this char */
if (j >= strlen(args[2]->val.str)) {
have_removed = 1;
found = 1;
break;
}
/* replacing this char */
new[new_used] = args[2]->val.str[j];
++new_used;
found = 1;
break;
}
}
/* copying this char */
if (!found) {
new[new_used] = args[0]->val.str[i];
++new_used;
}
}
if (have_removed) {
new = ly_realloc(new, (new_used + 1) * sizeof(char));
LY_CHECK_ERR_RET(!new, LOGMEM(set->ctx), LY_EMEM);
}
new[new_used] = '\0';
lyxp_set_free_content(set);
set->type = LYXP_SET_STRING;
set->val.str = new;
return LY_SUCCESS;
}
/**
* @brief Execute the XPath true() function. Returns LYXP_SET_BOOLEAN
* with true value.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in @p args.
* @param[in,out] set Context and result set at the same time.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_true(struct lyxp_set **UNUSED(args), uint32_t UNUSED(arg_count), struct lyxp_set *set, uint32_t options)
{
if (options & LYXP_SCNODE_ALL) {
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE);
return LY_SUCCESS;
}
set_fill_boolean(set, 1);
return LY_SUCCESS;
}
/**
* @brief Execute the XPath node() processing instruction (node type). Returns LYXP_SET_NODE_SET
* with only nodes from the context.
*
* @param[in,out] set Context and result set at the same time.
* @param[in] axis Axis to search on.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_pi_node(struct lyxp_set *set, enum lyxp_axis axis, uint32_t options)
{
if (options & LYXP_SCNODE_ALL) {
return moveto_scnode(set, NULL, NULL, axis, options);
}
if (set->type != LYXP_SET_NODE_SET) {
lyxp_set_free_content(set);
return LY_SUCCESS;
}
/* just like moving to a node with no restrictions */
return moveto_node(set, NULL, NULL, axis, options);
}
/**
* @brief Execute the XPath text() processing instruction (node type). Returns LYXP_SET_NODE_SET
* with the text content of the nodes in the context.
*
* @param[in,out] set Context and result set at the same time.
* @param[in] axis Axis to search on.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
xpath_pi_text(struct lyxp_set *set, enum lyxp_axis axis, uint32_t options)
{
uint32_t i;
if (options & LYXP_SCNODE_ALL) {
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
return LY_SUCCESS;
}
if (set->type != LYXP_SET_NODE_SET) {
LOGVAL(set->ctx, LY_VCODE_XP_INCTX, print_set_type(set), "text()");
return LY_EVALID;
}
if (axis != LYXP_AXIS_CHILD) {
/* even following and preceding axescan return text nodes, but whatever */
lyxp_set_free_content(set);
return LY_SUCCESS;
}
for (i = 0; i < set->used; ++i) {
switch (set->val.nodes[i].type) {
case LYXP_NODE_NONE:
LOGINT_RET(set->ctx);
case LYXP_NODE_ELEM:
if (!set->val.nodes[i].node->schema || (set->val.nodes[i].node->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
set->val.nodes[i].type = LYXP_NODE_TEXT;
break;
}
/* fall through */
case LYXP_NODE_ROOT:
case LYXP_NODE_ROOT_CONFIG:
case LYXP_NODE_TEXT:
case LYXP_NODE_META:
set_remove_node_none(set, i);
break;
}
}
set_remove_nodes_none(set);
return LY_SUCCESS;
}
/**
* @brief Skip prefix and return corresponding model if there is a prefix. Logs directly.
*
* XPath @p set is expected to be a (sc)node set!
*
* @param[in,out] qname Qualified node name. If includes prefix, it is skipped.
* @param[in,out] qname_len Length of @p qname, is updated accordingly.
* @param[in] set Set with general XPath context.
* @param[in] ctx_scnode Context node to inherit module for unprefixed node for ::LY_PREF_JSON.
* @param[out] moveto_mod Expected module of a matching node.
* @return LY_ERR
*/
static LY_ERR
moveto_resolve_model(const char **qname, uint32_t *qname_len, const struct lyxp_set *set,
const struct lysc_node *ctx_scnode, const struct lys_module **moveto_mod)
{
const struct lys_module *mod = NULL;
const char *ptr;
size_t pref_len;
assert((set->type == LYXP_SET_NODE_SET) || (set->type == LYXP_SET_SCNODE_SET));
if ((ptr = ly_strnchr(*qname, ':', *qname_len))) {
/* specific module */
pref_len = ptr - *qname;
mod = ly_resolve_prefix(set->ctx, *qname, pref_len, set->format, set->prefix_data);
/* check for errors and non-implemented modules, as they are not valid */
if (!mod || !mod->implemented) {
LOGVAL(set->ctx, LY_VCODE_XP_INMOD, (int)pref_len, *qname);
return LY_EVALID;
}
*qname += pref_len + 1;
*qname_len -= pref_len + 1;
} else if (((*qname)[0] == '*') && (*qname_len == 1)) {
/* all modules - special case */
mod = NULL;
} else {
switch (set->format) {
case LY_VALUE_SCHEMA:
case LY_VALUE_SCHEMA_RESOLVED:
/* current module */
mod = set->cur_mod;
break;
case LY_VALUE_CANON:
case LY_VALUE_JSON:
case LY_VALUE_LYB:
case LY_VALUE_STR_NS:
/* inherit parent (context node) module */
if (ctx_scnode) {
mod = ctx_scnode->module;
} else {
mod = NULL;
}
break;
case LY_VALUE_XML:
/* all nodes need to be prefixed */
LOGVAL(set->ctx, LYVE_DATA, "Non-prefixed node \"%.*s\" in XML xpath found.", (int)*qname_len, *qname);
return LY_EVALID;
}
}
*moveto_mod = mod;
return LY_SUCCESS;
}
/**
* @brief Move context @p set to the root. Handles absolute path.
* Result is LYXP_SET_NODE_SET.
*
* @param[in,out] set Set to use.
* @param[in] options Xpath options.
* @return LY_ERR value.
*/
static LY_ERR
moveto_root(struct lyxp_set *set, uint32_t options)
{
assert(!(options & LYXP_SKIP_EXPR));
if (options & LYXP_SCNODE_ALL) {
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE);
LY_CHECK_RET(lyxp_set_scnode_insert_node(set, NULL, set->root_type, LYXP_AXIS_SELF, NULL));
} else {
lyxp_set_free_content(set);
set_insert_node(set, NULL, 0, set->root_type, 0);
set->non_child_axis = 0;
}
return LY_SUCCESS;
}
/**
* @brief Check @p node as a part of NameTest processing.
*
* @param[in] node Node to check.
* @param[in] node_type Node type of @p node.
* @param[in] set Set to read general context from.
* @param[in] node_name Node name in the dictionary to move to, NULL for any node.
* @param[in] moveto_mod Expected module of the node, NULL for no prefix.
* @param[in] options XPath options.
* @return LY_ERR (LY_ENOT if node does not match, LY_EINCOMPLETE on unresolved when,
* LY_EINVAL if neither node nor any children match)
*/
static LY_ERR
moveto_node_check(const struct lyd_node *node, enum lyxp_node_type node_type, const struct lyxp_set *set,
const char *node_name, const struct lys_module *moveto_mod, uint32_t options)
{
const struct lysc_node *schema;
if ((node_type == LYXP_NODE_ROOT_CONFIG) || (node_type == LYXP_NODE_ROOT)) {
assert(node_type == set->root_type);
if (node_name || moveto_mod) {
/* root will not match a specific node */
return LY_ENOT;
}
return LY_SUCCESS;
} else if (node_type != LYXP_NODE_ELEM) {
/* other types will not match */
return LY_ENOT;
}
/* get schema node even of an opaque node */
schema = lyd_node_schema(node);
if (!schema) {
/* unknown opaque node never matches */
return LY_ENOT;
}
/* module check */
if (moveto_mod) {
if ((set->ctx == LYD_CTX(node)) && (schema->module != moveto_mod)) {
return LY_ENOT;
} else if ((set->ctx != LYD_CTX(node)) && strcmp(schema->module->name, moveto_mod->name)) {
return LY_ENOT;
}
}
/* context check */
if ((set->root_type == LYXP_NODE_ROOT_CONFIG) && (schema->flags & LYS_CONFIG_R)) {
return LY_EINVAL;
} else if (set->context_op && (schema->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)) && (schema != set->context_op)) {
return LY_EINVAL;
}
/* name check */
if (node_name) {
if ((set->ctx == LYD_CTX(node)) && (schema->name != node_name)) {
return LY_ENOT;
} else if ((set->ctx != LYD_CTX(node)) && strcmp(schema->name, node_name)) {
return LY_ENOT;
}
}
/* when check, accept the context node because it should only be the path ".", we have checked the when is valid before */
if (!(options & LYXP_IGNORE_WHEN) && lysc_has_when(schema) && !(node->flags & LYD_WHEN_TRUE) &&
(node != set->cur_node)) {
return LY_EINCOMPLETE;
}
/* match */
return LY_SUCCESS;
}
/**
* @brief Get the next node in a forward DFS.
*
* @param[in] iter Last returned node.
* @param[in] stop Node to stop the search on and not return.
* @return Next node, NULL if there are no more.
*/
static const struct lyd_node *
moveto_axis_node_next_dfs_forward(const struct lyd_node *iter, const struct lyd_node *stop)
{
const struct lyd_node *next = NULL;
/* 1) child */
next = lyd_child(iter);
if (!next) {
if (iter == stop) {
/* reached stop, no more descendants */
return NULL;
}
/* 2) child next sibling */
next = iter->next;
}
while (!next) {
iter = lyd_parent(iter);
if ((!stop && !iter) || (stop && (lyd_parent(iter) == lyd_parent(stop)))) {
return NULL;
}
next = iter->next;
}
return next;
}
/**
* @brief Get the next node in a backward DFS.
*
* @param[in] iter Last returned node.
* @param[in] stop Node to stop the search on and not return.
* @return Next node, NULL if there are no more.
*/
static const struct lyd_node *
moveto_axis_node_next_dfs_backward(const struct lyd_node *iter, const struct lyd_node *stop)
{
const struct lyd_node *next = NULL;
/* 1) previous sibling innermost last child */
next = iter->prev->next ? iter->prev : NULL;
while (next && lyd_child(next)) {
next = lyd_child(next);
next = next->prev;
}
if (!next) {
/* 2) parent */
iter = lyd_parent(iter);
if ((!stop && !iter) || (stop && (lyd_parent(iter) == lyd_parent(stop)))) {
return NULL;
}
next = iter;
}
return next;
}
/**
* @brief Get the first node on an axis for a context node.
*
* @param[in,out] iter NULL, updated to the next node.
* @param[in,out] iter_type Node type 0 of @p iter, updated to the node type of the next node.
* @param[in] node Context node.
* @param[in] node_type Type of @p node.
* @param[in] axis Axis to use.
* @param[in] set XPath set with the general context.
* @return LY_SUCCESS on success.
* @return LY_ENOTFOUND if no next node found.
*/
static LY_ERR
moveto_axis_node_next_first(const struct lyd_node **iter, enum lyxp_node_type *iter_type, const struct lyd_node *node,
enum lyxp_node_type node_type, enum lyxp_axis axis, struct lyxp_set *set)
{
const struct lyd_node *next = NULL;
enum lyxp_node_type next_type = 0;
assert(!*iter);
assert(!*iter_type);
switch (axis) {
case LYXP_AXIS_ANCESTOR_OR_SELF:
case LYXP_AXIS_DESCENDANT_OR_SELF:
case LYXP_AXIS_SELF:
/* return the context node */
next = node;
next_type = node_type;
break;
case LYXP_AXIS_ANCESTOR:
case LYXP_AXIS_PARENT:
if (node_type == LYXP_NODE_ELEM) {
next = lyd_parent(node);
next_type = next ? LYXP_NODE_ELEM : set->root_type;
} else if (node_type == LYXP_NODE_TEXT) {
next = node;
next_type = LYXP_NODE_ELEM;
} else if (node_type == LYXP_NODE_META) {
next = ((struct lyd_meta *)node)->parent;
next_type = LYXP_NODE_ELEM;
} /* else root does not have a parent */
break;
case LYXP_AXIS_CHILD:
if ((node_type == LYXP_NODE_ROOT_CONFIG) || (node_type == LYXP_NODE_ROOT)) {
assert(!node);
/* search in all the trees */
next = set->tree;
next_type = next ? LYXP_NODE_ELEM : 0;
} else {
/* search in children */
next = lyd_child(node);
next_type = next ? LYXP_NODE_ELEM : 0;
}
break;
case LYXP_AXIS_DESCENDANT:
if ((node_type == LYXP_NODE_ROOT_CONFIG) || (node_type == LYXP_NODE_ROOT)) {
/* top-level nodes */
next = set->tree;
next_type = LYXP_NODE_ELEM;
} else if (node_type == LYXP_NODE_ELEM) {
/* start from the context node */
next = moveto_axis_node_next_dfs_forward(node, node);
next_type = next ? LYXP_NODE_ELEM : 0;
} /* else no children */
break;
case LYXP_AXIS_FOLLOWING:
case LYXP_AXIS_FOLLOWING_SIBLING:
if (node_type == LYXP_NODE_ELEM) {
/* first next sibling */
next = node->next;
next_type = next ? LYXP_NODE_ELEM : 0;
} /* else no sibling */
break;
case LYXP_AXIS_PRECEDING:
if ((node_type == LYXP_NODE_ELEM) && node->prev->next) {
/* skip ancestors */
next = moveto_axis_node_next_dfs_backward(node, NULL);
assert(next);
next_type = LYXP_NODE_ELEM;
} /* else no sibling */
break;
case LYXP_AXIS_PRECEDING_SIBLING:
if (node_type == LYXP_NODE_ELEM) {
/* first previous sibling */
next = node->prev->next ? node->prev : NULL;
next_type = next ? LYXP_NODE_ELEM : 0;
} /* else no sibling */
break;
case LYXP_AXIS_ATTRIBUTE:
/* handled specially */
assert(0);
LOGINT(set->ctx);
break;
}
*iter = next;
*iter_type = next_type;
return next_type ? LY_SUCCESS : LY_ENOTFOUND;
}
/**
* @brief Iterate over all nodes on an axis for a context node.
*
* @param[in,out] iter Last returned node, start with NULL, updated to the next node.
* @param[in,out] iter_type Node type of @p iter, start with 0, updated to the node type of the next node.
* @param[in] node Context node.
* @param[in] node_type Type of @p node.
* @param[in] axis Axis to use.
* @param[in] set XPath set with the general context.
* @return LY_SUCCESS on success.
* @return LY_ENOTFOUND if no next node found.
*/
static LY_ERR
moveto_axis_node_next(const struct lyd_node **iter, enum lyxp_node_type *iter_type, const struct lyd_node *node,
enum lyxp_node_type node_type, enum lyxp_axis axis, struct lyxp_set *set)
{
const struct lyd_node *next = NULL;
enum lyxp_node_type next_type = 0;
if (!*iter_type) {
/* first returned node */
return moveto_axis_node_next_first(iter, iter_type, node, node_type, axis, set);
}
switch (axis) {
case LYXP_AXIS_ANCESTOR_OR_SELF:
if ((*iter == node) && (*iter_type == node_type)) {
/* fake first ancestor, we returned self before */
*iter = NULL;
*iter_type = 0;
return moveto_axis_node_next_first(iter, iter_type, node, node_type, LYXP_AXIS_ANCESTOR, set);
} /* else continue ancestor */
/* fallthrough */
case LYXP_AXIS_ANCESTOR:
if (*iter_type == LYXP_NODE_ELEM) {
/* iter parent */
next = lyd_parent(*iter);
next_type = next ? LYXP_NODE_ELEM : set->root_type;
} /* else root, no ancestors */
break;
case LYXP_AXIS_CHILD:
assert(*iter_type == LYXP_NODE_ELEM);
/* next sibling (child) */
next = (*iter)->next;
next_type = next ? LYXP_NODE_ELEM : 0;
break;
case LYXP_AXIS_DESCENDANT_OR_SELF:
if ((*iter == node) && (*iter_type == node_type)) {
/* fake first descendant, we returned self before */
*iter = NULL;
*iter_type = 0;
return moveto_axis_node_next_first(iter, iter_type, node, node_type, LYXP_AXIS_DESCENDANT, set);
} /* else continue descendant */
/* fallthrough */
case LYXP_AXIS_DESCENDANT:
assert(*iter_type == LYXP_NODE_ELEM);
next = moveto_axis_node_next_dfs_forward(*iter, node);
next_type = next ? LYXP_NODE_ELEM : 0;
break;
case LYXP_AXIS_FOLLOWING:
assert(*iter_type == LYXP_NODE_ELEM);
next = moveto_axis_node_next_dfs_forward(*iter, NULL);
next_type = next ? LYXP_NODE_ELEM : 0;
break;
case LYXP_AXIS_FOLLOWING_SIBLING:
assert(*iter_type == LYXP_NODE_ELEM);
/* next sibling */
next = (*iter)->next;
next_type = next ? LYXP_NODE_ELEM : 0;
break;
case LYXP_AXIS_PARENT:
case LYXP_AXIS_SELF:
/* parent/self was returned before */
break;
case LYXP_AXIS_PRECEDING:
assert(*iter_type == LYXP_NODE_ELEM);
next = moveto_axis_node_next_dfs_backward(*iter, NULL);
next_type = next ? LYXP_NODE_ELEM : 0;
break;
case LYXP_AXIS_PRECEDING_SIBLING:
assert(*iter_type == LYXP_NODE_ELEM);
/* previous sibling */
next = (*iter)->prev->next ? (*iter)->prev : NULL;
next_type = next ? LYXP_NODE_ELEM : 0;
break;
case LYXP_AXIS_ATTRIBUTE:
/* handled specially */
assert(0);
LOGINT(set->ctx);
break;
}
*iter = next;
*iter_type = next_type;
return next_type ? LY_SUCCESS : LY_ENOTFOUND;
}
/**
* @brief Move context @p set to a node. Result is LYXP_SET_NODE_SET. Context position aware.
*
* @param[in,out] set Set to use.
* @param[in] moveto_mod Matching node module, NULL for no prefix.
* @param[in] ncname Matching node name in the dictionary, NULL for any.
* @param[in] axis Axis to search on.
* @param[in] options XPath options.
* @return LY_ERR (LY_EINCOMPLETE on unresolved when)
*/
static LY_ERR
moveto_node(struct lyxp_set *set, const struct lys_module *moveto_mod, const char *ncname, enum lyxp_axis axis,
uint32_t options)
{
LY_ERR r, rc = LY_SUCCESS;
const struct lyd_node *iter;
enum lyxp_node_type iter_type;
struct lyxp_set result;
uint32_t i;
if (options & LYXP_SKIP_EXPR) {
return LY_SUCCESS;
}
if (set->type != LYXP_SET_NODE_SET) {
LOGVAL(set->ctx, LY_VCODE_XP_INOP_1, "path operator", print_set_type(set));
return LY_EVALID;
}
/* init result set */
set_init(&result, set);
for (i = 0; i < set->used; ++i) {
/* iterate over all the nodes on the axis of the node */
iter = NULL;
iter_type = 0;
while (!moveto_axis_node_next(&iter, &iter_type, set->val.nodes[i].node, set->val.nodes[i].type, axis, set)) {
r = moveto_node_check(iter, iter_type, set, ncname, moveto_mod, options);
if (r == LY_EINCOMPLETE) {
rc = r;
goto cleanup;
} else if (r) {
continue;
}
/* check for duplicates if they are possible */
switch (axis) {
case LYXP_AXIS_ANCESTOR:
case LYXP_AXIS_ANCESTOR_OR_SELF:
case LYXP_AXIS_DESCENDANT:
case LYXP_AXIS_DESCENDANT_OR_SELF:
case LYXP_AXIS_FOLLOWING:
case LYXP_AXIS_FOLLOWING_SIBLING:
case LYXP_AXIS_PARENT:
case LYXP_AXIS_PRECEDING:
case LYXP_AXIS_PRECEDING_SIBLING:
result.non_child_axis = 1;
if (set_dup_node_check(&result, iter, iter_type, -1)) {
continue;
}
break;
case LYXP_AXIS_CHILD:
case LYXP_AXIS_SELF:
break;
case LYXP_AXIS_ATTRIBUTE:
/* handled specially */
assert(0);
LOGINT(set->ctx);
break;
}
/* matching node */
set_insert_node(&result, iter, 0, iter_type, result.used);
}
}
/* move result to the set */
lyxp_set_free_content(set);
*set = result;
result.type = LYXP_SET_NUMBER;
/* sort the final set if the document order could have been broken */
if (set->non_child_axis) {
set_sort(set);
} else {
assert(!set_sort(set));
}
cleanup:
lyxp_set_free_content(&result);
return rc;
}
/**
* @brief Move context @p set to child nodes using hashes. Result is LYXP_SET_NODE_SET. Context position aware.
*
* @param[in,out] set Set to use.
* @param[in] scnode Matching node schema.
* @param[in] predicates If @p scnode is ::LYS_LIST or ::LYS_LEAFLIST, the predicates specifying a single instance.
* @param[in] options XPath options.
* @return LY_ERR (LY_EINCOMPLETE on unresolved when)
*/
static LY_ERR
moveto_node_hash_child(struct lyxp_set *set, const struct lysc_node *scnode, const struct ly_path_predicate *predicates,
uint32_t options)
{
LY_ERR ret = LY_SUCCESS, r;
uint32_t i;
const struct lyd_node *siblings;
struct lyxp_set result;
struct lyd_node *sub, *inst = NULL;
assert(scnode && (!(scnode->nodetype & (LYS_LIST | LYS_LEAFLIST)) || predicates));
/* init result set */
set_init(&result, set);
if (options & LYXP_SKIP_EXPR) {
goto cleanup;
}
if (set->type != LYXP_SET_NODE_SET) {
LOGVAL(set->ctx, LY_VCODE_XP_INOP_1, "path operator", print_set_type(set));
ret = LY_EVALID;
goto cleanup;
}
/* context check for all the nodes since we have the schema node */
if ((set->root_type == LYXP_NODE_ROOT_CONFIG) && (scnode->flags & LYS_CONFIG_R)) {
lyxp_set_free_content(set);
goto cleanup;
} else if (set->context_op && (scnode->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)) &&
(scnode != set->context_op)) {
lyxp_set_free_content(set);
goto cleanup;
}
/* create specific data instance if needed */
if (scnode->nodetype == LYS_LIST) {
LY_CHECK_GOTO(ret = lyd_create_list(scnode, predicates, NULL, 1, &inst), cleanup);
} else if (scnode->nodetype == LYS_LEAFLIST) {
LY_CHECK_GOTO(ret = lyd_create_term2(scnode, &predicates[0].value, &inst), cleanup);
}
for (i = 0; i < set->used; ++i) {
siblings = NULL;
if ((set->val.nodes[i].type == LYXP_NODE_ROOT_CONFIG) || (set->val.nodes[i].type == LYXP_NODE_ROOT)) {
assert(!set->val.nodes[i].node);
/* search in all the trees */
siblings = set->tree;
} else if (set->val.nodes[i].type == LYXP_NODE_ELEM) {
/* search in children */
siblings = lyd_child(set->val.nodes[i].node);
}
/* find the node using hashes */
if (inst) {
r = lyd_find_sibling_first(siblings, inst, &sub);
} else {
r = lyd_find_sibling_val(siblings, scnode, NULL, 0, &sub);
}
if (r == LY_ENOTFOUND) {
/* may still be an opaque node */
r = lyd_find_sibling_opaq_next(siblings, scnode->name, &sub);
}
LY_CHECK_ERR_GOTO(r && (r != LY_ENOTFOUND), ret = r, cleanup);
/* when check */
if (!(options & LYXP_IGNORE_WHEN) && sub && lysc_has_when(sub->schema) && !(sub->flags & LYD_WHEN_TRUE)) {
ret = LY_EINCOMPLETE;
goto cleanup;
}
if (sub) {
/* pos filled later */
set_insert_node(&result, sub, 0, LYXP_NODE_ELEM, result.used);
}
}
/* move result to the set */
lyxp_set_free_content(set);
*set = result;
result.type = LYXP_SET_NUMBER;
assert(!set_sort(set));
cleanup:
lyxp_set_free_content(&result);
lyd_free_tree(inst);
return ret;
}
/**
* @brief Check @p node as a part of schema NameTest processing.
*
* @param[in] node Schema node to check.
* @param[in] ctx_scnode Context node.
* @param[in] set Set to read general context from.
* @param[in] node_name Node name in the dictionary to move to, NULL for any nodes.
* @param[in] moveto_mod Expected module of the node, NULL for no prefix.
* @return LY_ERR (LY_ENOT if node does not match, LY_EINVAL if neither node nor any children match)
*/
static LY_ERR
moveto_scnode_check(const struct lysc_node *node, const struct lysc_node *ctx_scnode, const struct lyxp_set *set,
const char *node_name, const struct lys_module *moveto_mod)
{
if (!moveto_mod && node_name) {
switch (set->format) {
case LY_VALUE_SCHEMA:
case LY_VALUE_SCHEMA_RESOLVED:
/* use current module */
moveto_mod = set->cur_mod;
break;
case LY_VALUE_JSON:
case LY_VALUE_LYB:
case LY_VALUE_STR_NS:
/* inherit module of the context node, if any */
if (ctx_scnode) {
moveto_mod = ctx_scnode->module;
}
break;
case LY_VALUE_CANON:
case LY_VALUE_XML:
/* not defined */
LOGINT(set->ctx);
return LY_EINVAL;
}
}
if (!node) {
/* root will not match a specific node */
if (node_name || moveto_mod) {
return LY_ENOT;
}
return LY_SUCCESS;
}
/* module check */
if (moveto_mod && (node->module != moveto_mod)) {
return LY_ENOT;
}
/* context check */
if ((set->root_type == LYXP_NODE_ROOT_CONFIG) && (node->flags & LYS_CONFIG_R)) {
return LY_EINVAL;
} else if (set->context_op && (node->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)) && (node != set->context_op)) {
return LY_EINVAL;
}
/* name check */
if (node_name && (node->name != node_name)) {
return LY_ENOT;
}
/* match */
return LY_SUCCESS;
}
/**
* @brief Get the next node in a forward schema node DFS.
*
* @param[in] iter Last returned node.
* @param[in] stop Node to stop the search on and not return.
* @param[in] getnext_opts Options for ::lys_getnext().
* @return Next node, NULL if there are no more.
*/
static const struct lysc_node *
moveto_axis_scnode_next_dfs_forward(const struct lysc_node *iter, const struct lysc_node *stop, uint32_t getnext_opts)
{
const struct lysc_node *next = NULL;
next = lysc_node_child(iter);
if (!next) {
/* no children, try siblings */
if ((iter == stop) || !lysc_data_parent(iter)) {
/* we are done, no next element to process */
return NULL;
}
next = lys_getnext(iter, lysc_data_parent(iter), NULL, getnext_opts);
}
while (!next && iter) {
/* parent is already processed, go to its sibling */
iter = iter->parent;
if ((iter == stop) || !lysc_data_parent(iter)) {
/* we are done, no next element to process */
return NULL;
}
next = lys_getnext(iter, lysc_data_parent(iter), NULL, getnext_opts);
}
return next;
}
/**
* @brief Consider schema node based on its in_ctx enum value.
*
* @param[in,out] in_ctx In_ctx enum of the schema node, may be updated.
* @param[in] axis Axis to use.
* @return LY_SUCCESS on success.
* @return LY_ENOT if the node should not be returned.
*/
static LY_ERR
moveto_axis_scnode_next_in_ctx(int32_t *in_ctx, enum lyxp_axis axis)
{
switch (axis) {
case LYXP_AXIS_SELF:
if ((*in_ctx == LYXP_SET_SCNODE_START) || (*in_ctx == LYXP_SET_SCNODE_ATOM_CTX)) {
/* additionally put the start node into context */
*in_ctx = LYXP_SET_SCNODE_ATOM_CTX;
return LY_SUCCESS;
}
break;
case LYXP_AXIS_PARENT:
case LYXP_AXIS_ANCESTOR_OR_SELF:
case LYXP_AXIS_ANCESTOR:
case LYXP_AXIS_DESCENDANT_OR_SELF:
case LYXP_AXIS_DESCENDANT:
case LYXP_AXIS_FOLLOWING:
case LYXP_AXIS_FOLLOWING_SIBLING:
case LYXP_AXIS_PRECEDING:
case LYXP_AXIS_PRECEDING_SIBLING:
case LYXP_AXIS_CHILD:
if (*in_ctx == LYXP_SET_SCNODE_START) {
/* remember that context node was used */
*in_ctx = LYXP_SET_SCNODE_START_USED;
return LY_SUCCESS;
} else if (*in_ctx == LYXP_SET_SCNODE_ATOM_CTX) {
/* traversed */
*in_ctx = LYXP_SET_SCNODE_ATOM_NODE;
return LY_SUCCESS;
}
break;
case LYXP_AXIS_ATTRIBUTE:
/* unreachable */
assert(0);
LOGINT(NULL);
break;
}
return LY_ENOT;
}
/**
* @brief Get previous sibling for a schema node.
*
* @param[in] scnode Schema node.
* @param[in] getnext_opts Options for ::lys_getnext().
* @return Previous sibling, NULL if none.
*/
static const struct lysc_node *
moveto_axis_scnode_preceding_sibling(const struct lysc_node *scnode, uint32_t getnext_opts)
{
const struct lysc_node *next = NULL, *prev = NULL;
while ((next = lys_getnext(next, lysc_data_parent(scnode), scnode->module->compiled, getnext_opts))) {
if (next == scnode) {
break;
}
prev = next;
}
return prev;
}
/**
* @brief Get the first schema node on an axis for a context node.
*
* @param[in,out] iter Last returned node, start with NULL, updated to the next node.
* @param[in,out] iter_type Node type of @p iter, start with 0, updated to the node type of the next node.
* @param[in,out] iter_mod Internal module iterator, do not change.
* @param[in,out] iter_mod_idx Internal module index iterator, do not change.
* @param[in] scnode Context node.
* @param[in] node_type Type of @p scnode.
* @param[in] in_ctx In_ctx enum of @p scnode.
* @param[in] axis Axis to use.
* @param[in] set XPath set with the general context.
* @param[in] getnext_opts Options for ::lys_getnext().
* @return LY_SUCCESS on success.
* @return LY_ENOTFOUND if no next node found.
*/
static LY_ERR
moveto_axis_scnode_next_first(const struct lysc_node **iter, enum lyxp_node_type *iter_type, const struct lys_module **iter_mod,
uint32_t *iter_mod_idx, const struct lysc_node *scnode, enum lyxp_node_type node_type, enum lyxp_axis axis,
struct lyxp_set *set, uint32_t getnext_opts)
{
const struct lysc_node *next = NULL;
enum lyxp_node_type next_type = 0;
assert(!*iter);
assert(!*iter_type);
*iter_mod = NULL;
*iter_mod_idx = 0;
switch (axis) {
case LYXP_AXIS_ANCESTOR_OR_SELF:
case LYXP_AXIS_DESCENDANT_OR_SELF:
case LYXP_AXIS_SELF:
if ((node_type == LYXP_NODE_ROOT_CONFIG) || (node_type == LYXP_NODE_ROOT) || (node_type == LYXP_NODE_ELEM)) {
/* just return the node */
next = scnode;
next_type = node_type;
}
break;
case LYXP_AXIS_ANCESTOR:
case LYXP_AXIS_PARENT:
if (node_type == LYXP_NODE_ELEM) {
next = lysc_data_parent(scnode);
next_type = next ? LYXP_NODE_ELEM : set->root_type;
} /* else no parent */
break;
case LYXP_AXIS_DESCENDANT:
case LYXP_AXIS_CHILD:
if ((node_type == LYXP_NODE_ROOT_CONFIG) || (node_type == LYXP_NODE_ROOT)) {
/* it can actually be in any module, it's all <running>, and even if it's moveto_mod (if set),
* it can be in a top-level augment */
while ((*iter_mod = ly_ctx_get_module_iter(set->ctx, iter_mod_idx))) {
/* module may not be implemented or not compiled yet */
if (!(*iter_mod)->compiled) {
continue;
}
/* get next node */
if ((next = lys_getnext(NULL, NULL, (*iter_mod)->compiled, getnext_opts))) {
next_type = LYXP_NODE_ELEM;
break;
}
}
} else if (node_type == LYXP_NODE_ELEM) {
/* get next node */
next = lys_getnext(NULL, scnode, NULL, getnext_opts);
next_type = next ? LYXP_NODE_ELEM : 0;
}
break;
case LYXP_AXIS_FOLLOWING:
case LYXP_AXIS_FOLLOWING_SIBLING:
if (node_type == LYXP_NODE_ELEM) {
/* first next sibling */
next = lys_getnext(scnode, lysc_data_parent(scnode), scnode->module->compiled, getnext_opts);
next_type = next ? LYXP_NODE_ELEM : 0;
} /* else no sibling */
break;
case LYXP_AXIS_PRECEDING:
case LYXP_AXIS_PRECEDING_SIBLING:
if (node_type == LYXP_NODE_ELEM) {
/* first parent sibling */
next = lys_getnext(NULL, lysc_data_parent(scnode), scnode->module->compiled, getnext_opts);
if (next == scnode) {
/* no preceding sibling */
next = NULL;
}
next_type = next ? LYXP_NODE_ELEM : 0;
} /* else no sibling */
break;
case LYXP_AXIS_ATTRIBUTE:
/* unreachable */
assert(0);
LOGINT(set->ctx);
break;
}
*iter = next;
*iter_type = next_type;
return next_type ? LY_SUCCESS : LY_ENOTFOUND;
}
/**
* @brief Iterate over all schema nodes on an axis for a context node.
*
* @param[in,out] iter Last returned node, start with NULL, updated to the next node.
* @param[in,out] iter_type Node type of @p iter, start with 0, updated to the node type of the next node.
* @param[in,out] iter_mod Internal module iterator, do not change.
* @param[in,out] iter_mod_idx Internal module index iterator, do not change.
* @param[in] scnode Context node.
* @param[in] node_type Type of @p scnode.
* @param[in] axis Axis to use.
* @param[in] set XPath set with the general context.
* @param[in] getnext_opts Options for ::lys_getnext().
* @return LY_SUCCESS on success.
* @return LY_ENOTFOUND if no next node found.
*/
static LY_ERR
moveto_axis_scnode_next(const struct lysc_node **iter, enum lyxp_node_type *iter_type, const struct lys_module **iter_mod,
uint32_t *iter_mod_idx, const struct lysc_node *scnode, enum lyxp_node_type node_type, enum lyxp_axis axis,
struct lyxp_set *set, uint32_t getnext_opts)
{
const struct lysc_node *next = NULL, *dfs_stop;
enum lyxp_node_type next_type = 0;
if (!*iter_type) {
/* first returned node */
return moveto_axis_scnode_next_first(iter, iter_type, iter_mod, iter_mod_idx, scnode, node_type, axis, set,
getnext_opts);
}
switch (axis) {
case LYXP_AXIS_PARENT:
case LYXP_AXIS_SELF:
/* parent/self was returned before */
break;
case LYXP_AXIS_ANCESTOR_OR_SELF:
if ((*iter == scnode) && (*iter_type == node_type)) {
/* fake first ancestor, we returned self before */
*iter = NULL;
*iter_type = 0;
return moveto_axis_scnode_next_first(iter, iter_type, iter_mod, iter_mod_idx, scnode, node_type,
LYXP_AXIS_ANCESTOR, set, getnext_opts);
} /* else continue ancestor */
/* fallthrough */
case LYXP_AXIS_ANCESTOR:
if (*iter_type == LYXP_NODE_ELEM) {
next = lysc_data_parent(*iter);
next_type = next ? LYXP_NODE_ELEM : set->root_type;
} /* else no ancestor */
break;
case LYXP_AXIS_DESCENDANT_OR_SELF:
if ((*iter == scnode) && (*iter_type == node_type)) {
/* fake first descendant, we returned self before */
*iter = NULL;
*iter_type = 0;
return moveto_axis_scnode_next_first(iter, iter_type, iter_mod, iter_mod_idx, scnode, node_type,
LYXP_AXIS_DESCENDANT, set, getnext_opts);
} /* else DFS until context node */
dfs_stop = scnode;
/* fallthrough */
case LYXP_AXIS_DESCENDANT:
if (axis == LYXP_AXIS_DESCENDANT) {
/* DFS until the context node */
dfs_stop = scnode;
}
/* fallthrough */
case LYXP_AXIS_PRECEDING:
if (axis == LYXP_AXIS_PRECEDING) {
/* DFS until the previous sibling */
dfs_stop = moveto_axis_scnode_preceding_sibling(scnode, getnext_opts);
assert(dfs_stop);
if (*iter == dfs_stop) {
/* we are done */
break;
}
}
/* fallthrough */
case LYXP_AXIS_FOLLOWING:
if (axis == LYXP_AXIS_FOLLOWING) {
/* DFS through the whole module */
dfs_stop = NULL;
}
/* nested nodes */
assert(*iter);
next = moveto_axis_scnode_next_dfs_forward(*iter, dfs_stop, getnext_opts);
if (next) {
next_type = LYXP_NODE_ELEM;
break;
} /* else get next top-level node just like a child */
/* fallthrough */
case LYXP_AXIS_CHILD:
case LYXP_AXIS_FOLLOWING_SIBLING:
if (!*iter_mod) {
/* nodes from a single module */
if ((next = lys_getnext(*iter, lysc_data_parent(*iter), (*iter)->module->compiled, getnext_opts))) {
next_type = LYXP_NODE_ELEM;
break;
}
assert(scnode);
if ((axis != LYXP_AXIS_CHILD) && !lysc_data_parent(scnode)) {
/* iterating over top-level nodes, find next */
while (lysc_data_parent(*iter)) {
*iter = lysc_data_parent(*iter);
}
if ((next = lys_getnext(*iter, NULL, (*iter)->module->compiled, getnext_opts))) {
next_type = LYXP_NODE_ELEM;
break;
}
}
}
while (*iter_mod) {
/* module top-level nodes */
if ((next = lys_getnext(*iter, NULL, (*iter_mod)->compiled, getnext_opts))) {
next_type = LYXP_NODE_ELEM;
break;
}
/* get next module */
while ((*iter_mod = ly_ctx_get_module_iter(set->ctx, iter_mod_idx))) {
/* module may not be implemented or not compiled yet */
if ((*iter_mod)->compiled) {
break;
}
}
/* new module, start over */
*iter = NULL;
}
break;
case LYXP_AXIS_PRECEDING_SIBLING:
assert(*iter);
/* next parent sibling until scnode */
next = lys_getnext(*iter, lysc_data_parent(*iter), (*iter)->module->compiled, getnext_opts);
if (next == scnode) {
/* no previous sibling */
next = NULL;
}
next_type = next ? LYXP_NODE_ELEM : 0;
break;
case LYXP_AXIS_ATTRIBUTE:
/* unreachable */
assert(0);
LOGINT(set->ctx);
break;
}
*iter = next;
*iter_type = next_type;
return next_type ? LY_SUCCESS : LY_ENOTFOUND;
}
/**
* @brief Move context @p set to a schema node. Result is LYXP_SET_SCNODE_SET (or LYXP_SET_EMPTY).
*
* @param[in,out] set Set to use.
* @param[in] moveto_mod Matching node module, NULL for no prefix.
* @param[in] ncname Matching node name in the dictionary, NULL for any.
* @param[in] axis Axis to search on.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
moveto_scnode(struct lyxp_set *set, const struct lys_module *moveto_mod, const char *ncname, enum lyxp_axis axis,
uint32_t options)
{
ly_bool temp_ctx = 0;
uint32_t getnext_opts, orig_used, i, mod_idx, idx;
const struct lys_module *mod = NULL;
const struct lysc_node *iter;
enum lyxp_node_type iter_type;
if (options & LYXP_SKIP_EXPR) {
return LY_SUCCESS;
}
if (set->type != LYXP_SET_SCNODE_SET) {
LOGVAL(set->ctx, LY_VCODE_XP_INOP_1, "path operator", print_set_type(set));
return LY_EVALID;
}
/* getnext opts */
getnext_opts = 0;
if (options & LYXP_SCNODE_OUTPUT) {
getnext_opts |= LYS_GETNEXT_OUTPUT;
}
if (options & LYXP_SCNODE_SCHEMAMOUNT) {
getnext_opts |= LYS_GETNEXT_WITHSCHEMAMOUNT;
}
orig_used = set->used;
for (i = 0; i < orig_used; ++i) {
/* update in_ctx first */
if (moveto_axis_scnode_next_in_ctx(&set->val.scnodes[i].in_ctx, axis)) {
/* not usable, skip */
continue;
}
iter = NULL;
iter_type = 0;
while (!moveto_axis_scnode_next(&iter, &iter_type, &mod, &mod_idx, set->val.scnodes[i].scnode,
set->val.scnodes[i].type, axis, set, getnext_opts)) {
if (moveto_scnode_check(iter, NULL, set, ncname, moveto_mod)) {
continue;
}
/* insert */
LY_CHECK_RET(lyxp_set_scnode_insert_node(set, iter, iter_type, axis, &idx));
/* we need to prevent these nodes from being considered in this moveto */
if ((idx < orig_used) && (idx > i)) {
set->val.scnodes[idx].in_ctx = LYXP_SET_SCNODE_ATOM_NEW_CTX;
temp_ctx = 1;
}
}
if (moveto_mod && ncname && ((axis == LYXP_AXIS_DESCENDANT) || (axis == LYXP_AXIS_CHILD)) &&
(set->val.scnodes[i].type == LYXP_NODE_ELEM) && !ly_nested_ext_schema(NULL, set->val.scnodes[i].scnode,
moveto_mod->name, strlen(moveto_mod->name), LY_VALUE_JSON, NULL, ncname, strlen(ncname), &iter, NULL)) {
/* there is a matching node from an extension, use it */
LY_CHECK_RET(lyxp_set_scnode_insert_node(set, iter, LYXP_NODE_ELEM, axis, &idx));
if ((idx < orig_used) && (idx > i)) {
set->val.scnodes[idx].in_ctx = LYXP_SET_SCNODE_ATOM_NEW_CTX;
temp_ctx = 1;
}
}
}
/* correct temporary in_ctx values */
if (temp_ctx) {
for (i = 0; i < orig_used; ++i) {
if (set->val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_NEW_CTX) {
set->val.scnodes[i].in_ctx = LYXP_SET_SCNODE_ATOM_CTX;
}
}
}
return LY_SUCCESS;
}
/**
* @brief Move context @p set to a child node and all its descendants. Result is LYXP_SET_NODE_SET.
* Context position aware.
*
* @param[in] set Set to use.
* @param[in] moveto_mod Matching node module, NULL for no prefix.
* @param[in] ncname Matching node name in the dictionary, NULL for any.
* @param[in] options XPath options.
* @return LY_ERR (LY_EINCOMPLETE on unresolved when)
*/
static LY_ERR
moveto_node_alldesc_child(struct lyxp_set *set, const struct lys_module *moveto_mod, const char *ncname, uint32_t options)
{
uint32_t i;
const struct lyd_node *next, *elem, *start;
struct lyxp_set ret_set;
LY_ERR rc;
if (options & LYXP_SKIP_EXPR) {
return LY_SUCCESS;
}
if (set->type != LYXP_SET_NODE_SET) {
LOGVAL(set->ctx, LY_VCODE_XP_INOP_1, "path operator", print_set_type(set));
return LY_EVALID;
}
/* replace the original nodes (and throws away all text and meta nodes, root is replaced by a child) */
rc = xpath_pi_node(set, LYXP_AXIS_CHILD, options);
LY_CHECK_RET(rc);
/* this loop traverses all the nodes in the set and adds/keeps only those that match qname */
set_init(&ret_set, set);
for (i = 0; i < set->used; ++i) {
/* TREE DFS */
start = set->val.nodes[i].node;
for (elem = next = start; elem; elem = next) {
rc = moveto_node_check(elem, LYXP_NODE_ELEM, set, ncname, moveto_mod, options);
if (!rc) {
/* add matching node into result set */
set_insert_node(&ret_set, elem, 0, LYXP_NODE_ELEM, ret_set.used);
if (set_dup_node_check(set, elem, LYXP_NODE_ELEM, i)) {
/* the node is a duplicate, we'll process it later in the set */
goto skip_children;
}
} else if (rc == LY_EINCOMPLETE) {
return rc;
} else if (rc == LY_EINVAL) {
goto skip_children;
}
/* TREE DFS NEXT ELEM */
/* select element for the next run - children first */
next = lyd_child(elem);
if (!next) {
skip_children:
/* no children, so try siblings, but only if it's not the start,
* that is considered to be the root and it's siblings are not traversed */
if (elem != start) {
next = elem->next;
} else {
break;
}
}
while (!next) {
/* no siblings, go back through the parents */
if (lyd_parent(elem) == start) {
/* we are done, no next element to process */
break;
}
/* parent is already processed, go to its sibling */
elem = lyd_parent(elem);
next = elem->next;
}
}
}
/* make the temporary set the current one */
ret_set.ctx_pos = set->ctx_pos;
ret_set.ctx_size = set->ctx_size;
lyxp_set_free_content(set);
memcpy(set, &ret_set, sizeof *set);
assert(!set_sort(set));
return LY_SUCCESS;
}
/**
* @brief Move context @p set to a child schema node and all its descendants starting from a node.
* Result is LYXP_SET_NODE_SET.
*
* @param[in] set Set to use.
* @param[in] start Start node whose subtree to add.
* @param[in] start_idx Index of @p start in @p set.
* @param[in] moveto_mod Matching node module, NULL for no prefix.
* @param[in] ncname Matching node name in the dictionary, NULL for any.
* @param[in] options XPath options.
* @return LY_ERR value.
*/
static LY_ERR
moveto_scnode_dfs(struct lyxp_set *set, const struct lysc_node *start, uint32_t start_idx,
const struct lys_module *moveto_mod, const char *ncname, uint32_t options)
{
const struct lysc_node *next, *elem;
uint32_t idx;
LY_ERR rc;
/* TREE DFS */
for (elem = next = start; elem; elem = next) {
if ((elem == start) || (elem->nodetype & (LYS_CHOICE | LYS_CASE))) {
/* schema-only nodes, skip root */
goto next_iter;
}
rc = moveto_scnode_check(elem, start, set, ncname, moveto_mod);
if (!rc) {
if (lyxp_set_scnode_contains(set, elem, LYXP_NODE_ELEM, start_idx, &idx)) {
set->val.scnodes[idx].in_ctx = LYXP_SET_SCNODE_ATOM_CTX;
if (idx > start_idx) {
/* we will process it later in the set */
goto skip_children;
}
} else {
LY_CHECK_RET(lyxp_set_scnode_insert_node(set, elem, LYXP_NODE_ELEM, LYXP_AXIS_DESCENDANT, NULL));
}
} else if (rc == LY_EINVAL) {
goto skip_children;
}
next_iter:
/* TREE DFS NEXT ELEM */
/* select element for the next run - children first */
next = lysc_node_child(elem);
if (next && (next->nodetype == LYS_INPUT) && (options & LYXP_SCNODE_OUTPUT)) {
next = next->next;
} else if (next && (next->nodetype == LYS_OUTPUT) && !(options & LYXP_SCNODE_OUTPUT)) {
next = next->next;
}
if (!next) {
skip_children:
/* no children, so try siblings, but only if it's not the start,
* that is considered to be the root and it's siblings are not traversed */
if (elem != start) {
next = elem->next;
} else {
break;
}
}
while (!next) {
/* no siblings, go back through the parents */
if (elem->parent == start) {
/* we are done, no next element to process */
break;
}
/* parent is already processed, go to its sibling */
elem = elem->parent;
next = elem->next;
}
}
return LY_SUCCESS;
}
/**
* @brief Move context @p set to a child schema node and all its descendants. Result is LYXP_SET_NODE_SET.
*
* @param[in] set Set to use.
* @param[in] moveto_mod Matching node module, NULL for no prefix.
* @param[in] ncname Matching node name in the dictionary, NULL for any.
* @param[in] options XPath options.
* @return LY_ERR value.
*/
static LY_ERR
moveto_scnode_alldesc_child(struct lyxp_set *set, const struct lys_module *moveto_mod, const char *ncname, uint32_t options)
{
uint32_t i, orig_used, mod_idx;
const struct lys_module *mod;
const struct lysc_node *root;
if (options & LYXP_SKIP_EXPR) {
return LY_SUCCESS;
}
if (set->type != LYXP_SET_SCNODE_SET) {
LOGVAL(set->ctx, LY_VCODE_XP_INOP_1, "path operator", print_set_type(set));
return LY_EVALID;
}
orig_used = set->used;
for (i = 0; i < orig_used; ++i) {
if (set->val.scnodes[i].in_ctx != LYXP_SET_SCNODE_ATOM_CTX) {
if (set->val.scnodes[i].in_ctx != LYXP_SET_SCNODE_START) {
continue;
}
/* remember context node */
set->val.scnodes[i].in_ctx = LYXP_SET_SCNODE_START_USED;
} else {
set->val.scnodes[i].in_ctx = LYXP_SET_SCNODE_ATOM_NODE;
}
if ((set->val.scnodes[i].type == LYXP_NODE_ROOT_CONFIG) || (set->val.scnodes[i].type == LYXP_NODE_ROOT)) {
/* traverse all top-level nodes in all the modules */
mod_idx = 0;
while ((mod = ly_ctx_get_module_iter(set->ctx, &mod_idx))) {
/* module may not be implemented or not compiled yet */
if (!mod->compiled) {
continue;
}
root = NULL;
/* no getnext opts needed */
while ((root = lys_getnext(root, NULL, mod->compiled, 0))) {
LY_CHECK_RET(moveto_scnode_dfs(set, root, i, moveto_mod, ncname, options));
}
}
} else if (set->val.scnodes[i].type == LYXP_NODE_ELEM) {
/* add all the descendants recursively */
LY_CHECK_RET(moveto_scnode_dfs(set, set->val.scnodes[i].scnode, i, moveto_mod, ncname, options));
}
}
return LY_SUCCESS;
}
/**
* @brief Move context @p set to an attribute. Result is LYXP_SET_NODE_SET.
* Indirectly context position aware.
*
* @param[in,out] set Set to use.
* @param[in] mod Matching metadata module, NULL for any.
* @param[in] ncname Matching metadata name in the dictionary, NULL for any.
* @param[in] options XPath options.
* @return LY_ERR
*/
static LY_ERR
moveto_attr(struct lyxp_set *set, const struct lys_module *mod, const char *ncname, uint32_t options)
{
struct lyd_meta *sub;
if (options & LYXP_SKIP_EXPR) {
return LY_SUCCESS;
}
if (set->type != LYXP_SET_NODE_SET) {
LOGVAL(set->ctx, LY_VCODE_XP_INOP_1, "path operator", print_set_type(set));
return LY_EVALID;
}
for (uint32_t i = 0; i < set->used; ) {
ly_bool replaced = 0;
/* only attributes of an elem (not dummy) can be in the result, skip all the rest;
* our attributes are always qualified */
if (set->val.nodes[i].type == LYXP_NODE_ELEM) {
for (sub = set->val.nodes[i].node->meta; sub; sub = sub->next) {
/* check "namespace" */
if (mod && (sub->annotation->module != mod)) {
continue;
}
if (!ncname || (sub->name == ncname)) {
/* match */
if (!replaced) {
set->val.meta[i].meta = sub;
set->val.meta[i].type = LYXP_NODE_META;
/* pos does not change */
replaced = 1;
} else {
set_insert_node(set, (struct lyd_node *)sub, set->val.nodes[i].pos, LYXP_NODE_META, i + 1);
}
++i;
}
}
}
if (!replaced) {
/* no match */
set_remove_node(set, i);
}
}
return LY_SUCCESS;
}
/**
* @brief Move context @p set1 to union with @p set2. @p set2 is emptied afterwards.
* Result is LYXP_SET_NODE_SET. Context position aware.
*
* @param[in,out] set1 Set to use for the result.
* @param[in] set2 Set that is copied to @p set1.
* @return LY_ERR
*/
static LY_ERR
moveto_union(struct lyxp_set *set1, struct lyxp_set *set2)
{
LY_ERR rc;
if ((set1->type != LYXP_SET_NODE_SET) || (set2->type != LYXP_SET_NODE_SET)) {
LOGVAL(set1->ctx, LY_VCODE_XP_INOP_2, "union", print_set_type(set1), print_set_type(set2));
return LY_EVALID;
}
/* set2 is empty or both set1 and set2 */
if (!set2->used) {
return LY_SUCCESS;
}
if (!set1->used) {
/* release hidden allocated data (lyxp_set.size) */
lyxp_set_free_content(set1);
/* direct copying of the entire structure */
memcpy(set1, set2, sizeof *set1);
/* dynamic memory belongs to set1 now, do not free */
memset(set2, 0, sizeof *set2);
return LY_SUCCESS;
}
/* we assume sets are sorted */
assert(!set_sort(set1) && !set_sort(set2));
/* sort, remove duplicates */
rc = set_sorted_merge(set1, set2);
LY_CHECK_RET(rc);
/* final set must be sorted */
assert(!set_sort(set1));
return LY_SUCCESS;
}
/**
* @brief Move context @p set to an attribute in any of the descendants. Result is LYXP_SET_NODE_SET.
* Context position aware.
*
* @param[in,out] set Set to use.
* @param[in] mod Matching metadata module, NULL for any.
* @param[in] ncname Matching metadata name in the dictionary, NULL for any.
* @param[in] options XPath options.
* @return LY_ERR (LY_EINCOMPLETE on unresolved when)
*/
static int
moveto_attr_alldesc(struct lyxp_set *set, const struct lys_module *mod, const char *ncname, uint32_t options)
{
struct lyd_meta *sub;
struct lyxp_set *set_all_desc = NULL;
LY_ERR rc;
if (options & LYXP_SKIP_EXPR) {
return LY_SUCCESS;
}
if (set->type != LYXP_SET_NODE_SET) {
LOGVAL(set->ctx, LY_VCODE_XP_INOP_1, "path operator", print_set_type(set));
return LY_EVALID;
}
/* can be optimized similarly to moveto_node_alldesc() and save considerable amount of memory,
* but it likely won't be used much, so it's a waste of time */
/* copy the context */
set_all_desc = set_copy(set);
/* get all descendant nodes (the original context nodes are removed) */
rc = moveto_node_alldesc_child(set_all_desc, NULL, NULL, options);
if (rc != LY_SUCCESS) {
lyxp_set_free(set_all_desc);
return rc;
}
/* prepend the original context nodes */
rc = moveto_union(set, set_all_desc);
if (rc != LY_SUCCESS) {
lyxp_set_free(set_all_desc);
return rc;
}
lyxp_set_free(set_all_desc);
for (uint32_t i = 0; i < set->used; ) {
ly_bool replaced = 0;
/* only attributes of an elem can be in the result, skip all the rest,
* we have all attributes qualified in lyd tree */
if (set->val.nodes[i].type == LYXP_NODE_ELEM) {
for (sub = set->val.nodes[i].node->meta; sub; sub = sub->next) {
/* check "namespace" */
if (mod && (sub->annotation->module != mod)) {
continue;
}
if (!ncname || (sub->name == ncname)) {
/* match */
if (!replaced) {
set->val.meta[i].meta = sub;
set->val.meta[i].type = LYXP_NODE_META;
/* pos does not change */
replaced = 1;
} else {
set_insert_node(set, (struct lyd_node *)sub, set->val.meta[i].pos, LYXP_NODE_META, i + 1);
}
++i;
}
}
}
if (!replaced) {
/* no match */
set_remove_node(set, i);
}
}
return LY_SUCCESS;
}
/**
* @brief Move context @p set1 single item to the result of a comparison.
*
* @param[in] set1 First set with the item to compare.
* @param[in] idx1 Index of the item in @p set1.
* @param[in] set2 Second set.
* @param[in] op Comparison operator to process.
* @param[in] switch_operands Whether to switch sets as operands; whether it is `set1 op set2` or `set2 op set1`.
* @param[out] result Result of the comparison.
* @return LY_ERR value.
*/
static LY_ERR
moveto_op_comp_item(const struct lyxp_set *set1, uint32_t idx1, struct lyxp_set *set2, const char *op,
ly_bool switch_operands, ly_bool *result)
{
struct lyxp_set tmp1 = {0};
LY_ERR rc = LY_SUCCESS;
assert(set1->type == LYXP_SET_NODE_SET);
/* cast set1 */
switch (set2->type) {
case LYXP_SET_NUMBER:
rc = set_comp_cast(&tmp1, set1, LYXP_SET_NUMBER, idx1);
break;
case LYXP_SET_BOOLEAN:
rc = set_comp_cast(&tmp1, set1, LYXP_SET_BOOLEAN, idx1);
break;
default:
rc = set_comp_cast(&tmp1, set1, LYXP_SET_STRING, idx1);
break;
}
LY_CHECK_GOTO(rc, cleanup);
/* canonize set2 */
LY_CHECK_GOTO(rc = set_comp_canonize(set2, &set1->val.nodes[idx1]), cleanup);
/* compare recursively and store the result */
if (switch_operands) {
LY_CHECK_GOTO(rc = moveto_op_comp(set2, &tmp1, op, result), cleanup);
} else {
LY_CHECK_GOTO(rc = moveto_op_comp(&tmp1, set2, op, result), cleanup);
}
cleanup:
lyxp_set_free_content(&tmp1);
return rc;
}
/**
* @brief Move context @p set1 to the result of a comparison. Handles '=', '!=', '<=', '<', '>=', or '>'.
* Result is LYXP_SET_BOOLEAN. Indirectly context position aware.
*
* @param[in] set1 Set acting as the first operand for @p op.
* @param[in] set2 Set acting as the second operand for @p op.
* @param[in] op Comparison operator to process.
* @param[out] result Result of the comparison.
* @return LY_ERR
*/
static LY_ERR
moveto_op_comp(struct lyxp_set *set1, struct lyxp_set *set2, const char *op, ly_bool *result)
{
/*
* NODE SET + NODE SET = NODE SET + STRING /(1 NODE SET) 2 STRING
* NODE SET + STRING = STRING + STRING /1 STRING (2 STRING)
* NODE SET + NUMBER = NUMBER + NUMBER /1 NUMBER (2 NUMBER)
* NODE SET + BOOLEAN = BOOLEAN + BOOLEAN /1 BOOLEAN (2 BOOLEAN)
* STRING + NODE SET = STRING + STRING /(1 STRING) 2 STRING
* NUMBER + NODE SET = NUMBER + NUMBER /(1 NUMBER) 2 NUMBER
* BOOLEAN + NODE SET = BOOLEAN + BOOLEAN /(1 BOOLEAN) 2 BOOLEAN
*
* '=' or '!='
* BOOLEAN + BOOLEAN
* BOOLEAN + STRING = BOOLEAN + BOOLEAN /(1 BOOLEAN) 2 BOOLEAN
* BOOLEAN + NUMBER = BOOLEAN + BOOLEAN /(1 BOOLEAN) 2 BOOLEAN
* STRING + BOOLEAN = BOOLEAN + BOOLEAN /1 BOOLEAN (2 BOOLEAN)
* NUMBER + BOOLEAN = BOOLEAN + BOOLEAN /1 BOOLEAN (2 BOOLEAN)
* NUMBER + NUMBER
* NUMBER + STRING = NUMBER + NUMBER /(1 NUMBER) 2 NUMBER
* STRING + NUMBER = NUMBER + NUMBER /1 NUMBER (2 NUMBER)
* STRING + STRING
*
* '<=', '<', '>=', '>'
* NUMBER + NUMBER
* BOOLEAN + BOOLEAN = NUMBER + NUMBER /1 NUMBER, 2 NUMBER
* BOOLEAN + NUMBER = NUMBER + NUMBER /1 NUMBER (2 NUMBER)
* BOOLEAN + STRING = NUMBER + NUMBER /1 NUMBER, 2 NUMBER
* NUMBER + STRING = NUMBER + NUMBER /(1 NUMBER) 2 NUMBER
* STRING + STRING = NUMBER + NUMBER /1 NUMBER, 2 NUMBER
* STRING + NUMBER = NUMBER + NUMBER /1 NUMBER (2 NUMBER)
* NUMBER + BOOLEAN = NUMBER + NUMBER /(1 NUMBER) 2 NUMBER
* STRING + BOOLEAN = NUMBER + NUMBER /(1 NUMBER) 2 NUMBER
*/
uint32_t i;
LY_ERR rc;
/* iterative evaluation with node-sets */
if ((set1->type == LYXP_SET_NODE_SET) || (set2->type == LYXP_SET_NODE_SET)) {
if (set1->type == LYXP_SET_NODE_SET) {
for (i = 0; i < set1->used; ++i) {
/* evaluate for the single item */
LY_CHECK_RET(moveto_op_comp_item(set1, i, set2, op, 0, result));
/* lazy evaluation until true */
if (*result) {
return LY_SUCCESS;
}
}
} else {
for (i = 0; i < set2->used; ++i) {
/* evaluate for the single item */
LY_CHECK_RET(moveto_op_comp_item(set2, i, set1, op, 1, result));
/* lazy evaluation until true */
if (*result) {
return LY_SUCCESS;
}
}
}
/* false for all the nodes */
*result = 0;
return LY_SUCCESS;
}
/* first convert properly */
if ((op[0] == '=') || (op[0] == '!')) {
if ((set1->type == LYXP_SET_BOOLEAN) || (set2->type == LYXP_SET_BOOLEAN)) {
lyxp_set_cast(set1, LYXP_SET_BOOLEAN);
lyxp_set_cast(set2, LYXP_SET_BOOLEAN);
} else if ((set1->type == LYXP_SET_NUMBER) || (set2->type == LYXP_SET_NUMBER)) {
rc = lyxp_set_cast(set1, LYXP_SET_NUMBER);
LY_CHECK_RET(rc);
rc = lyxp_set_cast(set2, LYXP_SET_NUMBER);
LY_CHECK_RET(rc);
} /* else we have 2 strings */
} else {
rc = lyxp_set_cast(set1, LYXP_SET_NUMBER);
LY_CHECK_RET(rc);
rc = lyxp_set_cast(set2, LYXP_SET_NUMBER);
LY_CHECK_RET(rc);
}
assert(set1->type == set2->type);
/* compute result */
if (op[0] == '=') {
if (set1->type == LYXP_SET_BOOLEAN) {
*result = (set1->val.bln == set2->val.bln);
} else if (set1->type == LYXP_SET_NUMBER) {
*result = (set1->val.num == set2->val.num);
} else {
assert(set1->type == LYXP_SET_STRING);
*result = strcmp(set1->val.str, set2->val.str) ? 0 : 1;
}
} else if (op[0] == '!') {
if (set1->type == LYXP_SET_BOOLEAN) {
*result = (set1->val.bln != set2->val.bln);
} else if (set1->type == LYXP_SET_NUMBER) {
*result = (set1->val.num != set2->val.num);
} else {
assert(set1->type == LYXP_SET_STRING);
*result = strcmp(set1->val.str, set2->val.str) ? 1 : 0;
}
} else {
assert(set1->type == LYXP_SET_NUMBER);
if (op[0] == '<') {
if (op[1] == '=') {
*result = (set1->val.num <= set2->val.num);
} else {
*result = (set1->val.num < set2->val.num);
}
} else {
if (op[1] == '=') {
*result = (set1->val.num >= set2->val.num);
} else {
*result = (set1->val.num > set2->val.num);
}
}
}
return LY_SUCCESS;
}
/**
* @brief Move context @p set to the result of a basic operation. Handles '+', '-', unary '-', '*', 'div',
* or 'mod'. Result is LYXP_SET_NUMBER. Indirectly context position aware.
*
* @param[in,out] set1 Set to use for the result.
* @param[in] set2 Set acting as the second operand for @p op.
* @param[in] op Operator to process.
* @return LY_ERR
*/
static LY_ERR
moveto_op_math(struct lyxp_set *set1, struct lyxp_set *set2, const char *op)
{
LY_ERR rc;
/* unary '-' */
if (!set2 && (op[0] == '-')) {
rc = lyxp_set_cast(set1, LYXP_SET_NUMBER);
LY_CHECK_RET(rc);
set1->val.num *= -1;
lyxp_set_free(set2);
return LY_SUCCESS;
}
assert(set1 && set2);
rc = lyxp_set_cast(set1, LYXP_SET_NUMBER);
LY_CHECK_RET(rc);
rc = lyxp_set_cast(set2, LYXP_SET_NUMBER);
LY_CHECK_RET(rc);
switch (op[0]) {
/* '+' */
case '+':
set1->val.num += set2->val.num;
break;
/* '-' */
case '-':
set1->val.num -= set2->val.num;
break;
/* '*' */
case '*':
set1->val.num *= set2->val.num;
break;
/* 'div' */
case 'd':
set1->val.num /= set2->val.num;
break;
/* 'mod' */
case 'm':
set1->val.num = ((long long)set1->val.num) % ((long long)set2->val.num);
break;
default:
LOGINT_RET(set1->ctx);
}
return LY_SUCCESS;
}
/**
* @brief Evaluate Predicate. Logs directly on error.
*
* [9] Predicate ::= '[' Expr ']'
*
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in,out] set Context and result set.
* @param[in] options XPath options.
* @param[in] axis Axis to search on.
* @return LY_ERR (LY_EINCOMPLETE on unresolved when)
*/
static LY_ERR
eval_predicate(const struct lyxp_expr *exp, uint32_t *tok_idx, struct lyxp_set *set, uint32_t options, enum lyxp_axis axis)
{
LY_ERR rc;
uint32_t i, orig_exp, orig_pos, orig_size;
int32_t pred_in_ctx;
ly_bool reverse_axis = 0;
struct lyxp_set set2 = {0};
/* '[' */
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
if (options & LYXP_SKIP_EXPR) {
only_parse:
rc = eval_expr_select(exp, tok_idx, 0, set, options | LYXP_SKIP_EXPR);
LY_CHECK_RET(rc);
} else if (set->type == LYXP_SET_NODE_SET) {
/* we (possibly) need the set sorted, it can affect the result (if the predicate result is a number) */
assert(!set_sort(set));
/* empty set, nothing to evaluate */
if (!set->used) {
goto only_parse;
}
/* decide forward or reverse axis */
switch (axis) {
case LYXP_AXIS_ANCESTOR:
case LYXP_AXIS_ANCESTOR_OR_SELF:
case LYXP_AXIS_PRECEDING:
case LYXP_AXIS_PRECEDING_SIBLING:
reverse_axis = 1;
break;
case LYXP_AXIS_DESCENDANT:
case LYXP_AXIS_DESCENDANT_OR_SELF:
case LYXP_AXIS_FOLLOWING:
case LYXP_AXIS_FOLLOWING_SIBLING:
case LYXP_AXIS_PARENT:
case LYXP_AXIS_CHILD:
case LYXP_AXIS_SELF:
case LYXP_AXIS_ATTRIBUTE:
reverse_axis = 0;
break;
}
orig_exp = *tok_idx;
orig_pos = reverse_axis ? set->used + 1 : 0;
orig_size = set->used;
for (i = 0; i < set->used; ++i) {
set_init(&set2, set);
set_insert_node(&set2, set->val.nodes[i].node, set->val.nodes[i].pos, set->val.nodes[i].type, 0);
/* remember the node context position for position() and context size for last() */
orig_pos += reverse_axis ? -1 : 1;
set2.ctx_pos = orig_pos;
set2.ctx_size = orig_size;
*tok_idx = orig_exp;
rc = eval_expr_select(exp, tok_idx, 0, &set2, options);
if (!rc && set2.not_found) {
set->not_found = 1;
break;
}
if (rc) {
lyxp_set_free_content(&set2);
return rc;
}
/* number is a proximity position */
if (set2.type == LYXP_SET_NUMBER) {
if ((long long)set2.val.num == orig_pos) {
set2.val.num = 1;
} else {
set2.val.num = 0;
}
}
lyxp_set_cast(&set2, LYXP_SET_BOOLEAN);
/* predicate satisfied or not? */
if (!set2.val.bln) {
set_remove_node_none(set, i);
}
}
set_remove_nodes_none(set);
} else if (set->type == LYXP_SET_SCNODE_SET) {
for (i = 0; i < set->used; ++i) {
if (set->val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_CTX) {
/* there is a currently-valid node */
break;
}
}
/* empty set, nothing to evaluate */
if (i == set->used) {
goto only_parse;
}
orig_exp = *tok_idx;
/* set special in_ctx to all the valid snodes */
pred_in_ctx = set_scnode_new_in_ctx(set);
/* use the valid snodes one-by-one */
for (i = 0; i < set->used; ++i) {
if (set->val.scnodes[i].in_ctx != pred_in_ctx) {
continue;
}
set->val.scnodes[i].in_ctx = LYXP_SET_SCNODE_ATOM_CTX;
*tok_idx = orig_exp;
rc = eval_expr_select(exp, tok_idx, 0, set, options);
if (!rc && set->not_found) {
break;
}
LY_CHECK_RET(rc);
set->val.scnodes[i].in_ctx = pred_in_ctx;
}
/* restore the state as it was before the predicate */
for (i = 0; i < set->used; ++i) {
if (set->val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_CTX) {
set->val.scnodes[i].in_ctx = LYXP_SET_SCNODE_ATOM_NODE;
} else if (set->val.scnodes[i].in_ctx == pred_in_ctx) {
set->val.scnodes[i].in_ctx = LYXP_SET_SCNODE_ATOM_CTX;
}
}
} else {
set2.type = LYXP_SET_NODE_SET;
set_fill_set(&set2, set);
rc = eval_expr_select(exp, tok_idx, 0, &set2, options);
if (rc) {
lyxp_set_free_content(&set2);
return rc;
}
lyxp_set_cast(&set2, LYXP_SET_BOOLEAN);
if (!set2.val.bln) {
lyxp_set_free_content(set);
}
lyxp_set_free_content(&set2);
}
/* ']' */
assert(exp->tokens[*tok_idx] == LYXP_TOKEN_BRACK2);
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
return LY_SUCCESS;
}
/**
* @brief Evaluate Literal. Logs directly on error.
*
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in,out] set Context and result set. On NULL the rule is only parsed.
*/
static void
eval_literal(const struct lyxp_expr *exp, uint32_t *tok_idx, struct lyxp_set *set)
{
if (set) {
if (exp->tok_len[*tok_idx] == 2) {
set_fill_string(set, "", 0);
} else {
set_fill_string(set, &exp->expr[exp->tok_pos[*tok_idx] + 1], exp->tok_len[*tok_idx] - 2);
}
}
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
}
/**
* @brief Check that a nametest in a predicate matches a key node.
*
* @param[in] nametest Nametest to check.
* @param[in] len Length of @p nametest.
* @param[in] ctx_scnode Found schema node as the context for the predicate.
* @param[in] set Context set.
* @param[in] key Expected key node.
* @return LY_SUCCESS on success,
* @return LY_ENOT if a predicate could not be compiled.
* @return LY_ERR on any error.
*/
static LY_ERR
eval_name_test_try_compile_predicate_key(const char *nametest, uint32_t len, const struct lysc_node *ctx_scnode,
const struct lyxp_set *set, const struct lysc_node *key)
{
const struct lys_module *mod;
/* prefix (module) */
LY_CHECK_RET(moveto_resolve_model(&nametest, &len, set, ctx_scnode, &mod));
if (mod != key->module) {
return LY_ENOT;
}
/* node name */
if (ly_strncmp(key->name, nametest, len)) {
return LY_ENOT;
}
return LY_SUCCESS;
}
/**
* @brief Append a simple predicate for the node.
*
* @param[in] exp Full parsed XPath expression.
* @param[in] tok_idx Predicate start index in @p exp.
* @param[in] end_tok_idx Predicate end index in @p exp.
* @param[in] ctx_scnode Found schema node as the context for the predicate.
* @param[in] set Context set.
* @param[in] pred_node Node with the value referenced in the predicate.
* @param[in,out] pred Predicate to append to.
* @param[in,out] pred_len Length of @p pred, is updated.
* @return LY_SUCCESS on success,
* @return LY_ENOT if a predicate could not be compiled.
* @return LY_ERR on any error.
*/
static LY_ERR
eval_name_test_try_compile_predicate_append(const struct lyxp_expr *exp, uint32_t tok_idx, uint32_t end_tok_idx,
const struct lysc_node *ctx_scnode, const struct lyxp_set *set, const struct lysc_node *pred_node, char **pred,
uint32_t *pred_len)
{
LY_ERR rc = LY_SUCCESS;
uint32_t i;
const struct lyd_node *siblings;
struct lyd_node *ctx_node;
const struct lysc_node *sparent, *cur_scnode;
struct lyxp_expr *val_exp = NULL;
struct lyxp_set set2 = {0};
char quot;
/* duplicate the value expression */
LY_CHECK_GOTO(rc = lyxp_expr_dup(set->ctx, exp, tok_idx, end_tok_idx, &val_exp), cleanup);
/* get its atoms */
cur_scnode = set->cur_node ? set->cur_node->schema : NULL;
LY_CHECK_GOTO(rc = lyxp_atomize(set->ctx, val_exp, set->cur_mod, set->format, set->prefix_data, cur_scnode,
ctx_scnode, &set2, LYXP_SCNODE), cleanup);
/* check whether we can compile a single predicate (evaluation result value is always the same) */
for (i = 0; i < set2.used; ++i) {
if ((set2.val.scnodes[i].type != LYXP_NODE_ELEM) || (set2.val.scnodes[i].in_ctx < LYXP_SET_SCNODE_ATOM_NODE)) {
/* skip root and context node */
continue;
}
/* 1) context node descendants are traversed - do best-effort detection of the value dependency on the
* context node instance */
if ((set2.val.scnodes[i].axis == LYXP_AXIS_CHILD) && (set2.val.scnodes[i].scnode->parent == ctx_scnode)) {
/* 1.1) context node child was accessed on the child axis, certain dependency */
rc = LY_ENOT;
goto cleanup;
}
if ((set2.val.scnodes[i].axis == LYXP_AXIS_DESCENDANT) || (set2.val.scnodes[i].axis == LYXP_AXIS_DESCENDANT_OR_SELF)) {
for (sparent = set2.val.scnodes[i].scnode->parent; sparent && (sparent != ctx_scnode); sparent = sparent->parent) {}
if (sparent) {
/* 1.2) context node descendant was accessed on the descendant axis, probable dependency */
rc = LY_ENOT;
goto cleanup;
}
}
/* 2) multi-instance nodes (list or leaf-list) are traversed - all the instances need to be considered,
* but the current node can be safely ignored, it is always the same data instance */
if ((set2.val.scnodes[i].scnode->nodetype & (LYS_LIST | LYS_LEAFLIST)) && (cur_scnode != set2.val.scnodes[i].scnode)) {
rc = LY_ENOT;
goto cleanup;
}
}
/* get any data instance of the context node, we checked it makes no difference */
siblings = set->val.nodes[0].node ? lyd_child(set->val.nodes[0].node) : set->tree;
LY_CHECK_GOTO(rc = lyd_find_sibling_schema(siblings, ctx_scnode, &ctx_node), cleanup);
/* evaluate the value subexpression with the root context node */
lyxp_set_free_content(&set2);
LY_CHECK_GOTO(rc = lyxp_eval(set->ctx, val_exp, set->cur_mod, set->format, set->prefix_data, set->cur_node,
ctx_node, set->tree, NULL, &set2, 0), cleanup);
/* cast it into a string */
LY_CHECK_GOTO(rc = lyxp_set_cast(&set2, LYXP_SET_STRING), cleanup);
/* append the JSON predicate */
*pred = ly_realloc(*pred, *pred_len + 1 + strlen(pred_node->name) + 2 + strlen(set2.val.str) + 3);
LY_CHECK_ERR_GOTO(!*pred, LOGMEM(set->ctx); rc = LY_EMEM, cleanup);
quot = strchr(set2.val.str, '\'') ? '\"' : '\'';
*pred_len += sprintf(*pred + *pred_len, "[%s=%c%s%c]", pred_node->name, quot, set2.val.str, quot);
cleanup:
lyxp_expr_free(set->ctx, val_exp);
lyxp_set_free_content(&set2);
return rc;
}
/**
* @brief Try to compile list or leaf-list predicate in the known format to be used for hash-based instance search.
*
* @param[in] exp Full parsed XPath expression.
* @param[in,out] tok_idx Index in @p exp at the beginning of the predicate, is updated on success.
* @param[in] ctx_scnode Found schema node as the context for the predicate.
* @param[in] set Context set.
* @param[out] predicates Parsed predicates.
* @return LY_SUCCESS on success,
* @return LY_ENOT if a predicate could not be compiled.
* @return LY_ERR on any error.
*/
static LY_ERR
eval_name_test_try_compile_predicates(const struct lyxp_expr *exp, uint32_t *tok_idx, const struct lysc_node *ctx_scnode,
const struct lyxp_set *set, struct ly_path_predicate **predicates)
{
LY_ERR rc = LY_SUCCESS;
uint32_t e_idx, val_start_idx, pred_idx = 0, *prev_lo, temp_lo = 0, pred_len = 0, nested_pred;
const struct lysc_node *key;
char *pred = NULL;
struct lyxp_expr *exp2 = NULL;
assert(ctx_scnode->nodetype & (LYS_LIST | LYS_LEAFLIST));
/* turn logging off */
prev_lo = ly_temp_log_options(&temp_lo);
if (ctx_scnode->nodetype == LYS_LIST) {
/* check for predicates "[key1=...][key2=...]..." */
/* get key count */
if (ctx_scnode->flags & LYS_KEYLESS) {
rc = LY_ENOT;
goto cleanup;
}
/* learn where the predicates end */
e_idx = *tok_idx;
for (key = lysc_node_child(ctx_scnode); key && (key->flags & LYS_KEY); key = key->next) {
/* '[' */
if (lyxp_check_token(NULL, exp, e_idx, LYXP_TOKEN_BRACK1)) {
rc = LY_ENOT;
goto cleanup;
}
++e_idx;
if (lyxp_check_token(NULL, exp, e_idx, LYXP_TOKEN_NAMETEST)) {
/* not a key */
rc = LY_ENOT;
goto cleanup;
}
/* check key */
LY_CHECK_GOTO(rc = eval_name_test_try_compile_predicate_key(exp->expr + exp->tok_pos[e_idx],
exp->tok_len[e_idx], ctx_scnode, set, key), cleanup);
++e_idx;
if (lyxp_check_token(NULL, exp, e_idx, LYXP_TOKEN_OPER_EQUAL)) {
/* not '=' */
rc = LY_ENOT;
goto cleanup;
}
++e_idx;
/* value start */
val_start_idx = e_idx;
/* ']' */
nested_pred = 1;
do {
++e_idx;
if ((nested_pred == 1) && !lyxp_check_token(NULL, exp, e_idx, LYXP_TOKEN_OPER_LOG)) {
/* higher priority than '=' */
rc = LY_ENOT;
goto cleanup;
} else if (!lyxp_check_token(NULL, exp, e_idx, LYXP_TOKEN_BRACK1)) {
/* nested predicate */
++nested_pred;
} else if (!lyxp_check_token(NULL, exp, e_idx, LYXP_TOKEN_BRACK2)) {
/* predicate end */
--nested_pred;
}
} while (nested_pred);
/* try to evaluate the value */
LY_CHECK_GOTO(rc = eval_name_test_try_compile_predicate_append(exp, val_start_idx, e_idx - 1, ctx_scnode,
set, key, &pred, &pred_len), cleanup);
++e_idx;
}
} else {
/* check for predicate "[.=...]" */
/* learn just where this single predicate ends */
e_idx = *tok_idx;
/* '[' */
if (lyxp_check_token(NULL, exp, e_idx, LYXP_TOKEN_BRACK1)) {
rc = LY_ENOT;
goto cleanup;
}
++e_idx;
if (lyxp_check_token(NULL, exp, e_idx, LYXP_TOKEN_DOT)) {
/* not the node value */
rc = LY_ENOT;
goto cleanup;
}
++e_idx;
if (lyxp_check_token(NULL, exp, e_idx, LYXP_TOKEN_OPER_EQUAL)) {
/* not '=' */
rc = LY_ENOT;
goto cleanup;
}
++e_idx;
/* value start */
val_start_idx = e_idx;
/* ']' */
nested_pred = 1;
do {
++e_idx;
if ((nested_pred == 1) && !lyxp_check_token(NULL, exp, e_idx, LYXP_TOKEN_OPER_LOG)) {
/* higher priority than '=' */
rc = LY_ENOT;
goto cleanup;
} else if (!lyxp_check_token(NULL, exp, e_idx, LYXP_TOKEN_BRACK1)) {
/* nested predicate */
++nested_pred;
} else if (!lyxp_check_token(NULL, exp, e_idx, LYXP_TOKEN_BRACK2)) {
/* predicate end */
--nested_pred;
}
} while (nested_pred);
/* try to evaluate the value */
LY_CHECK_GOTO(rc = eval_name_test_try_compile_predicate_append(exp, val_start_idx, e_idx - 1, ctx_scnode, set,
ctx_scnode, &pred, &pred_len), cleanup);
++e_idx;
}
/* parse the predicate(s) */
LY_CHECK_GOTO(rc = ly_path_parse_predicate(set->ctx, ctx_scnode, pred, pred_len, LY_PATH_PREFIX_OPTIONAL,
LY_PATH_PRED_SIMPLE, &exp2), cleanup);
/* compile */
rc = ly_path_compile_predicate(set->ctx, set->cur_node ? set->cur_node->schema : NULL, set->cur_mod, ctx_scnode, exp2,
&pred_idx, LY_VALUE_JSON, NULL, predicates);
LY_CHECK_GOTO(rc, cleanup);
/* success, the predicate must include all the needed information for hash-based search */
*tok_idx = e_idx;
cleanup:
ly_temp_log_options(prev_lo);
lyxp_expr_free(set->ctx, exp2);
free(pred);
return rc;
}
/**
* @brief Search for/check the next schema node that could be the only matching schema node meaning the
* data node(s) could be found using a single hash-based search.
*
* @param[in] ctx libyang context.
* @param[in] node Next context node to check.
* @param[in] name Expected node name.
* @param[in] name_len Length of @p name.
* @param[in] moveto_mod Expected node module, can be NULL for JSON format with no prefix.
* @param[in] root_type XPath root type.
* @param[in] format Prefix format.
* @param[in,out] found Previously found node, is updated.
* @return LY_SUCCESS on success,
* @return LY_ENOT if the whole check failed and hashes cannot be used.
*/
static LY_ERR
eval_name_test_with_predicate_get_scnode(const struct ly_ctx *ctx, const struct lyd_node *node, const char *name,
uint32_t name_len, const struct lys_module *moveto_mod, enum lyxp_node_type root_type, LY_VALUE_FORMAT format,
const struct lysc_node **found)
{
const struct lysc_node *scnode, *scnode2;
const struct lys_module *mod;
uint32_t idx = 0;
assert((format == LY_VALUE_JSON) || moveto_mod);
continue_search:
scnode = NULL;
if (!node) {
if ((format == LY_VALUE_JSON) && !moveto_mod) {
/* search all modules for a single match */
while ((mod = ly_ctx_get_module_iter(ctx, &idx))) {
if (!mod->implemented) {
continue;
}
scnode = lys_find_child(NULL, mod, name, name_len, 0, 0);
if (scnode) {
/* we have found a match */
break;
}
}
if (!scnode) {
/* all modules searched */
idx = 0;
}
} else {
/* search in top-level */
scnode = lys_find_child(NULL, moveto_mod, name, name_len, 0, 0);
}
} else if (node->schema && (!*found || (lysc_data_parent(*found) != node->schema))) {
if ((format == LY_VALUE_JSON) && !moveto_mod) {
/* we must adjust the module to inherit the one from the context node */
moveto_mod = node->schema->module;
}
/* search in children, do not repeat the same search */
if (node->schema->nodetype & (LYS_RPC | LYS_ACTION)) {
/* make sure the node is unique, whether in input or output */
scnode = lys_find_child(node->schema, moveto_mod, name, name_len, 0, 0);
scnode2 = lys_find_child(node->schema, moveto_mod, name, name_len, 0, LYS_GETNEXT_OUTPUT);
if (scnode && scnode2) {
/* conflict, do not use hashes */
scnode = NULL;
} else if (scnode2) {
scnode = scnode2;
}
} else {
scnode = lys_find_child(node->schema, moveto_mod, name, name_len, 0, 0);
}
} /* else skip redundant search */
/* additional context check */
if (scnode && (root_type == LYXP_NODE_ROOT_CONFIG) && (scnode->flags & LYS_CONFIG_R)) {
scnode = NULL;
}
if (scnode) {
if (*found) {
/* we found a schema node with the same name but at different level, give up, too complicated
* (more hash-based searches would be required, not supported) */
return LY_ENOT;
} else {
/* remember the found schema node and continue to make sure it can be used */
*found = scnode;
}
}
if (idx) {
/* continue searching all the following models */
goto continue_search;
}
return LY_SUCCESS;
}
/**
* @brief Generate message when no matching schema nodes were found for a path segment.
*
* @param[in] set XPath set.
* @param[in] scparent Previous schema parent in the context, if only one.
* @param[in] ncname XPath NCName being evaluated.
* @param[in] ncname_len Length of @p ncname.
* @param[in] expr Whole XPath expression.
* @param[in] options XPath options.
*/
static void
eval_name_test_scnode_no_match_msg(struct lyxp_set *set, const struct lyxp_set_scnode *scparent, const char *ncname,
uint32_t ncname_len, const char *expr, uint32_t options)
{
const char *format;
char *path = NULL, *ppath = NULL;
path = lysc_path(set->cur_scnode, LYSC_PATH_LOG, NULL, 0);
if (scparent) {
/* generate path for the parent */
if (scparent->type == LYXP_NODE_ELEM) {
ppath = lysc_path(scparent->scnode, LYSC_PATH_LOG, NULL, 0);
} else if (scparent->type == LYXP_NODE_ROOT) {
ppath = strdup("<root>");
} else if (scparent->type == LYXP_NODE_ROOT_CONFIG) {
ppath = strdup("<config-root>");
}
}
if (ppath) {
format = "Schema node \"%.*s\" for parent \"%s\" not found; in expr \"%.*s\" with context node \"%s\".";
if (options & LYXP_SCNODE_ERROR) {
LOGERR(set->ctx, LY_ENOTFOUND, format, ncname_len, ncname, ppath, (ncname - expr) + ncname_len, expr, path);
} else {
LOGWRN(set->ctx, format, ncname_len, ncname, ppath, (ncname - expr) + ncname_len, expr, path);
}
} else {
format = "Schema node \"%.*s\" not found; in expr \"%.*s\" with context node \"%s\".";
if (options & LYXP_SCNODE_ERROR) {
LOGERR(set->ctx, LY_ENOTFOUND, format, ncname_len, ncname, (ncname - expr) + ncname_len, expr, path);
} else {
LOGWRN(set->ctx, format, ncname_len, ncname, (ncname - expr) + ncname_len, expr, path);
}
}
free(path);
free(ppath);
}
/**
* @brief Evaluate NameTest and any following Predicates. Logs directly on error.
*
* [5] Step ::= '@'? NodeTest Predicate* | '.' | '..'
* [6] NodeTest ::= NameTest | NodeType '(' ')'
* [7] NameTest ::= '*' | NCName ':' '*' | QName
*
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in] axis What axis to search on.
* @param[in] all_desc Whether to search all the descendants or children only.
* @param[in,out] set Context and result set.
* @param[in] options XPath options.
* @return LY_ERR (LY_EINCOMPLETE on unresolved when, LY_ENOT for not found schema node)
*/
static LY_ERR
eval_name_test_with_predicate(const struct lyxp_expr *exp, uint32_t *tok_idx, enum lyxp_axis axis, ly_bool all_desc,
struct lyxp_set *set, uint32_t options)
{
LY_ERR rc = LY_SUCCESS, r;
const char *ncname, *ncname_dict = NULL;
uint32_t i, ncname_len;
const struct lys_module *moveto_mod = NULL;
const struct lysc_node *scnode = NULL;
struct ly_path_predicate *predicates = NULL;
int scnode_skip_pred = 0;
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
if (options & LYXP_SKIP_EXPR) {
goto moveto;
}
ncname = &exp->expr[exp->tok_pos[*tok_idx - 1]];
ncname_len = exp->tok_len[*tok_idx - 1];
if ((ncname[0] == '*') && (ncname_len == 1)) {
/* all nodes will match */
goto moveto;
}
/* parse (and skip) module name */
rc = moveto_resolve_model(&ncname, &ncname_len, set, NULL, &moveto_mod);
LY_CHECK_GOTO(rc, cleanup);
if ((ncname[0] == '*') && (ncname_len == 1)) {
/* all nodes from the module will match */
goto moveto;
}
if (((set->format == LY_VALUE_JSON) || moveto_mod) && (axis == LYXP_AXIS_CHILD) && !all_desc &&
(set->type == LYXP_SET_NODE_SET)) {
/* find the matching schema node in some parent in the context */
for (i = 0; i < set->used; ++i) {
if (eval_name_test_with_predicate_get_scnode(set->ctx, set->val.nodes[i].node, ncname, ncname_len,
moveto_mod, set->root_type, set->format, &scnode)) {
/* check failed */
scnode = NULL;
break;
}
}
if (scnode && (scnode->nodetype & (LYS_LIST | LYS_LEAFLIST))) {
/* try to create the predicates */
if (eval_name_test_try_compile_predicates(exp, tok_idx, scnode, set, &predicates)) {
/* hashes cannot be used */
scnode = NULL;
}
}
}
if (!scnode) {
/* we are not able to match based on a schema node and not all the modules match ("*"),
* use dictionary for efficient comparison */
LY_CHECK_GOTO(rc = lydict_insert(set->ctx, ncname, ncname_len, &ncname_dict), cleanup);
}
moveto:
/* move to the attribute(s), data node(s), or schema node(s) */
if (axis == LYXP_AXIS_ATTRIBUTE) {
if (!(options & LYXP_SKIP_EXPR) && (options & LYXP_SCNODE_ALL)) {
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE);
} else {
if (all_desc) {
rc = moveto_attr_alldesc(set, moveto_mod, ncname_dict, options);
} else {
rc = moveto_attr(set, moveto_mod, ncname_dict, options);
}
LY_CHECK_GOTO(rc, cleanup);
}
} else {
if (!(options & LYXP_SKIP_EXPR) && (options & LYXP_SCNODE_ALL)) {
const struct lyxp_set_scnode *scparent = NULL;
ly_bool found = 0;
/* remember parent if there is only one, to print in the warning */
for (i = 0; i < set->used; ++i) {
if (set->val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_CTX) {
if (!scparent) {
/* remember the context node */
scparent = &set->val.scnodes[i];
} else {
/* several context nodes, no reasonable error possible */
scparent = NULL;
break;
}
}
}
if (all_desc && (axis == LYXP_AXIS_CHILD)) {
/* efficient evaluation that does not add all the descendants into the set */
rc = moveto_scnode_alldesc_child(set, moveto_mod, ncname_dict, options);
} else {
if (all_desc) {
/* "//" == "/descendant-or-self::node()/" */
rc = xpath_pi_node(set, LYXP_AXIS_DESCENDANT_OR_SELF, options);
LY_CHECK_GOTO(rc, cleanup);
}
rc = moveto_scnode(set, moveto_mod, ncname_dict, axis, options);
}
LY_CHECK_GOTO(rc, cleanup);
i = set->used;
do {
--i;
if (set->val.scnodes[i].in_ctx > LYXP_SET_SCNODE_ATOM_NODE) {
found = 1;
break;
}
} while (i);
if (!found) {
/* generate message */
eval_name_test_scnode_no_match_msg(set, scparent, ncname, ncname_len, exp->expr, options);
if (options & LYXP_SCNODE_ERROR) {
/* error */
set->not_found = 1;
}
/* skip the predicates and the rest of this path to not generate invalid warnings */
rc = LY_ENOT;
scnode_skip_pred = 1;
}
} else {
if (all_desc && (axis == LYXP_AXIS_CHILD)) {
/* efficient evaluation */
rc = moveto_node_alldesc_child(set, moveto_mod, ncname_dict, options);
} else if (scnode && (axis == LYXP_AXIS_CHILD)) {
/* we can find the child nodes using hashes */
rc = moveto_node_hash_child(set, scnode, predicates, options);
} else {
if (all_desc) {
/* "//" == "/descendant-or-self::node()/" */
rc = xpath_pi_node(set, LYXP_AXIS_DESCENDANT_OR_SELF, options);
LY_CHECK_GOTO(rc, cleanup);
}
rc = moveto_node(set, moveto_mod, ncname_dict, axis, options);
}
LY_CHECK_GOTO(rc, cleanup);
}
}
if (scnode_skip_pred) {
/* skip predicates */
options |= LYXP_SKIP_EXPR;
}
/* Predicate* */
while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_BRACK1)) {
r = eval_predicate(exp, tok_idx, set, options, axis);
LY_CHECK_ERR_GOTO(r, rc = r, cleanup);
}
cleanup:
if (scnode_skip_pred) {
/* restore options */
options &= ~LYXP_SKIP_EXPR;
}
lydict_remove(set->ctx, ncname_dict);
ly_path_predicates_free(set->ctx, predicates);
return rc;
}
/**
* @brief Evaluate NodeType and any following Predicates. Logs directly on error.
*
* [5] Step ::= '@'? NodeTest Predicate* | '.' | '..'
* [6] NodeTest ::= NameTest | NodeType '(' ')'
* [8] NodeType ::= 'text' | 'node'
*
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in] axis Axis to search on.
* @param[in] all_desc Whether to search all the descendants or axis only.
* @param[in,out] set Context and result set.
* @param[in] options XPath options.
* @return LY_ERR (LY_EINCOMPLETE on unresolved when)
*/
static LY_ERR
eval_node_type_with_predicate(const struct lyxp_expr *exp, uint32_t *tok_idx, enum lyxp_axis axis, ly_bool all_desc,
struct lyxp_set *set, uint32_t options)
{
LY_ERR rc;
(void)all_desc;
if (!(options & LYXP_SKIP_EXPR)) {
assert(exp->tok_len[*tok_idx] == 4);
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "node", 4)) {
rc = xpath_pi_node(set, axis, options);
} else {
assert(!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "text", 4));
rc = xpath_pi_text(set, axis, options);
}
LY_CHECK_RET(rc);
}
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
/* '(' */
assert(exp->tokens[*tok_idx] == LYXP_TOKEN_PAR1);
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
/* ')' */
assert(exp->tokens[*tok_idx] == LYXP_TOKEN_PAR2);
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
/* Predicate* */
while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_BRACK1)) {
rc = eval_predicate(exp, tok_idx, set, options, axis);
LY_CHECK_RET(rc);
}
return LY_SUCCESS;
}
/**
* @brief Evaluate RelativeLocationPath. Logs directly on error.
*
* [4] RelativeLocationPath ::= Step | RelativeLocationPath '/' Step | RelativeLocationPath '//' Step
* [5] Step ::= '@'? NodeTest Predicate* | '.' | '..'
* [6] NodeTest ::= NameTest | NodeType '(' ')'
*
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in] all_desc Whether to search all the descendants or children only.
* @param[in,out] set Context and result set.
* @param[in] options XPath options.
* @return LY_ERR (YL_EINCOMPLETE on unresolved when)
*/
static LY_ERR
eval_relative_location_path(const struct lyxp_expr *exp, uint32_t *tok_idx, ly_bool all_desc, struct lyxp_set *set,
uint32_t options)
{
LY_ERR rc = LY_SUCCESS;
enum lyxp_axis axis;
int scnode_skip_path = 0;
goto step;
do {
/* evaluate '/' or '//' */
if (exp->tok_len[*tok_idx] == 1) {
all_desc = 0;
} else {
assert(exp->tok_len[*tok_idx] == 2);
all_desc = 1;
}
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
step:
/* AxisSpecifier */
if (exp->tokens[*tok_idx] == LYXP_TOKEN_AXISNAME) {
axis = str2axis(exp->expr + exp->tok_pos[*tok_idx], exp->tok_len[*tok_idx]);
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
assert(exp->tokens[*tok_idx] == LYXP_TOKEN_DCOLON);
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
} else if (exp->tokens[*tok_idx] == LYXP_TOKEN_AT) {
axis = LYXP_AXIS_ATTRIBUTE;
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
} else {
/* default */
axis = LYXP_AXIS_CHILD;
}
/* NodeTest Predicate* */
switch (exp->tokens[*tok_idx]) {
case LYXP_TOKEN_DOT:
/* evaluate '.' */
if (!(options & LYXP_SKIP_EXPR)) {
if (((options & LYXP_SCNODE_ALL) && (set->type != LYXP_SET_SCNODE_SET)) ||
(!(options & LYXP_SCNODE_ALL) && (set->type != LYXP_SET_NODE_SET))) {
LOGVAL(set->ctx, LY_VCODE_XP_INOP_1, "path operator", print_set_type(set));
rc = LY_EVALID;
goto cleanup;
}
if (all_desc) {
rc = xpath_pi_node(set, LYXP_AXIS_DESCENDANT_OR_SELF, options);
LY_CHECK_GOTO(rc, cleanup);
}
rc = xpath_pi_node(set, LYXP_AXIS_SELF, options);
LY_CHECK_GOTO(rc, cleanup);
}
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
break;
case LYXP_TOKEN_DDOT:
/* evaluate '..' */
if (!(options & LYXP_SKIP_EXPR)) {
if (((options & LYXP_SCNODE_ALL) && (set->type != LYXP_SET_SCNODE_SET)) ||
(!(options & LYXP_SCNODE_ALL) && (set->type != LYXP_SET_NODE_SET))) {
LOGVAL(set->ctx, LY_VCODE_XP_INOP_1, "path operator", print_set_type(set));
rc = LY_EVALID;
goto cleanup;
}
if (all_desc) {
rc = xpath_pi_node(set, LYXP_AXIS_DESCENDANT_OR_SELF, options);
LY_CHECK_GOTO(rc, cleanup);
}
rc = xpath_pi_node(set, LYXP_AXIS_PARENT, options);
LY_CHECK_GOTO(rc, cleanup);
}
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
break;
case LYXP_TOKEN_NAMETEST:
/* evaluate NameTest Predicate* */
rc = eval_name_test_with_predicate(exp, tok_idx, axis, all_desc, set, options);
if (rc == LY_ENOT) {
assert(options & LYXP_SCNODE_ALL);
rc = LY_SUCCESS;
/* skip the rest of this path */
scnode_skip_path = 1;
options |= LYXP_SKIP_EXPR;
}
LY_CHECK_GOTO(rc, cleanup);
break;
case LYXP_TOKEN_NODETYPE:
/* evaluate NodeType Predicate* */
rc = eval_node_type_with_predicate(exp, tok_idx, axis, all_desc, set, options);
LY_CHECK_GOTO(rc, cleanup);
break;
default:
LOGINT(set->ctx);
rc = LY_EINT;
goto cleanup;
}
} while (!exp_check_token2(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_PATH, LYXP_TOKEN_OPER_RPATH));
cleanup:
if (scnode_skip_path) {
options &= ~LYXP_SKIP_EXPR;
}
return rc;
}
/**
* @brief Evaluate AbsoluteLocationPath. Logs directly on error.
*
* [3] AbsoluteLocationPath ::= '/' RelativeLocationPath? | '//' RelativeLocationPath
*
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in,out] set Context and result set.
* @param[in] options XPath options.
* @return LY_ERR (LY_EINCOMPLETE on unresolved when)
*/
static LY_ERR
eval_absolute_location_path(const struct lyxp_expr *exp, uint32_t *tok_idx, struct lyxp_set *set, uint32_t options)
{
ly_bool all_desc;
if (!(options & LYXP_SKIP_EXPR)) {
/* no matter what tokens follow, we need to be at the root */
LY_CHECK_RET(moveto_root(set, options));
}
/* '/' RelativeLocationPath? */
if (exp->tok_len[*tok_idx] == 1) {
/* evaluate '/' - deferred */
all_desc = 0;
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
if (lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_NONE)) {
return LY_SUCCESS;
}
switch (exp->tokens[*tok_idx]) {
case LYXP_TOKEN_DOT:
case LYXP_TOKEN_DDOT:
case LYXP_TOKEN_AXISNAME:
case LYXP_TOKEN_AT:
case LYXP_TOKEN_NAMETEST:
case LYXP_TOKEN_NODETYPE:
LY_CHECK_RET(eval_relative_location_path(exp, tok_idx, all_desc, set, options));
break;
default:
break;
}
} else {
/* '//' RelativeLocationPath */
/* evaluate '//' - deferred so as not to waste memory by remembering all the nodes */
all_desc = 1;
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
LY_CHECK_RET(eval_relative_location_path(exp, tok_idx, all_desc, set, options));
}
return LY_SUCCESS;
}
/**
* @brief Evaluate FunctionCall. Logs directly on error.
*
* [11] FunctionCall ::= FunctionName '(' ( Expr ( ',' Expr )* )? ')'
*
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in,out] set Context and result set.
* @param[in] options XPath options.
* @return LY_ERR (LY_EINCOMPLETE on unresolved when)
*/
static LY_ERR
eval_function_call(const struct lyxp_expr *exp, uint32_t *tok_idx, struct lyxp_set *set, uint32_t options)
{
LY_ERR rc;
LY_ERR (*xpath_func)(struct lyxp_set **, uint32_t, struct lyxp_set *, uint32_t) = NULL;
uint32_t arg_count = 0, i;
struct lyxp_set **args = NULL, **args_aux;
if (!(options & LYXP_SKIP_EXPR)) {
/* FunctionName */
switch (exp->tok_len[*tok_idx]) {
case 3:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "not", 3)) {
xpath_func = &xpath_not;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "sum", 3)) {
xpath_func = &xpath_sum;
}
break;
case 4:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "lang", 4)) {
xpath_func = &xpath_lang;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "last", 4)) {
xpath_func = &xpath_last;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "name", 4)) {
xpath_func = &xpath_name;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "true", 4)) {
xpath_func = &xpath_true;
}
break;
case 5:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "count", 5)) {
xpath_func = &xpath_count;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "false", 5)) {
xpath_func = &xpath_false;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "floor", 5)) {
xpath_func = &xpath_floor;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "round", 5)) {
xpath_func = &xpath_round;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "deref", 5)) {
xpath_func = &xpath_deref;
}
break;
case 6:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "concat", 6)) {
xpath_func = &xpath_concat;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "number", 6)) {
xpath_func = &xpath_number;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "string", 6)) {
xpath_func = &xpath_string;
}
break;
case 7:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "boolean", 7)) {
xpath_func = &xpath_boolean;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "ceiling", 7)) {
xpath_func = &xpath_ceiling;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "current", 7)) {
xpath_func = &xpath_current;
}
break;
case 8:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "contains", 8)) {
xpath_func = &xpath_contains;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "position", 8)) {
xpath_func = &xpath_position;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "re-match", 8)) {
xpath_func = &xpath_re_match;
}
break;
case 9:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "substring", 9)) {
xpath_func = &xpath_substring;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "translate", 9)) {
xpath_func = &xpath_translate;
}
break;
case 10:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "local-name", 10)) {
xpath_func = &xpath_local_name;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "enum-value", 10)) {
xpath_func = &xpath_enum_value;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "bit-is-set", 10)) {
xpath_func = &xpath_bit_is_set;
}
break;
case 11:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "starts-with", 11)) {
xpath_func = &xpath_starts_with;
}
break;
case 12:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "derived-from", 12)) {
xpath_func = &xpath_derived_from;
}
break;
case 13:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "namespace-uri", 13)) {
xpath_func = &xpath_namespace_uri;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "string-length", 13)) {
xpath_func = &xpath_string_length;
}
break;
case 15:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "normalize-space", 15)) {
xpath_func = &xpath_normalize_space;
} else if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "substring-after", 15)) {
xpath_func = &xpath_substring_after;
}
break;
case 16:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "substring-before", 16)) {
xpath_func = &xpath_substring_before;
}
break;
case 20:
if (!strncmp(&exp->expr[exp->tok_pos[*tok_idx]], "derived-from-or-self", 20)) {
xpath_func = &xpath_derived_from_or_self;
}
break;
}
if (!xpath_func) {
LOGVAL(set->ctx, LY_VCODE_XP_INFUNC, (int)exp->tok_len[*tok_idx], &exp->expr[exp->tok_pos[*tok_idx]]);
return LY_EVALID;
}
}
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
/* '(' */
assert(exp->tokens[*tok_idx] == LYXP_TOKEN_PAR1);
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
/* ( Expr ( ',' Expr )* )? */
if (exp->tokens[*tok_idx] != LYXP_TOKEN_PAR2) {
if (!(options & LYXP_SKIP_EXPR)) {
args = malloc(sizeof *args);
LY_CHECK_ERR_GOTO(!args, LOGMEM(set->ctx); rc = LY_EMEM, cleanup);
arg_count = 1;
args[0] = set_copy(set);
if (!args[0]) {
rc = LY_EMEM;
goto cleanup;
}
rc = eval_expr_select(exp, tok_idx, 0, args[0], options);
LY_CHECK_GOTO(rc, cleanup);
set->not_found = args[0]->not_found;
} else {
rc = eval_expr_select(exp, tok_idx, 0, set, options);
LY_CHECK_GOTO(rc, cleanup);
}
}
while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_COMMA)) {
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
if (!(options & LYXP_SKIP_EXPR)) {
++arg_count;
args_aux = realloc(args, arg_count * sizeof *args);
LY_CHECK_ERR_GOTO(!args_aux, arg_count--; LOGMEM(set->ctx); rc = LY_EMEM, cleanup);
args = args_aux;
args[arg_count - 1] = set_copy(set);
if (!args[arg_count - 1]) {
rc = LY_EMEM;
goto cleanup;
}
rc = eval_expr_select(exp, tok_idx, 0, args[arg_count - 1], options);
LY_CHECK_GOTO(rc, cleanup);
if (args[arg_count - 1]->not_found) {
set->not_found = 1;
}
} else {
rc = eval_expr_select(exp, tok_idx, 0, set, options);
LY_CHECK_GOTO(rc, cleanup);
}
}
/* ')' */
assert(exp->tokens[*tok_idx] == LYXP_TOKEN_PAR2);
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
if (!(options & LYXP_SKIP_EXPR)) {
/* evaluate function */
rc = xpath_func(args, arg_count, set, options);
if (options & LYXP_SCNODE_ALL) {
/* merge all nodes from arg evaluations */
for (i = 0; i < arg_count; ++i) {
set_scnode_clear_ctx(args[i], LYXP_SET_SCNODE_ATOM_NODE);
lyxp_set_scnode_merge(set, args[i]);
}
}
} else {
rc = LY_SUCCESS;
}
cleanup:
for (i = 0; i < arg_count; ++i) {
lyxp_set_free(args[i]);
}
free(args);
return rc;
}
/**
* @brief Evaluate Number. Logs directly on error.
*
* @param[in] ctx Context for errors.
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in,out] set Context and result set. On NULL the rule is only parsed.
* @return LY_ERR
*/
static LY_ERR
eval_number(struct ly_ctx *ctx, const struct lyxp_expr *exp, uint32_t *tok_idx, struct lyxp_set *set)
{
long double num;
char *endptr;
if (set) {
errno = 0;
num = strtold(&exp->expr[exp->tok_pos[*tok_idx]], &endptr);
if (errno) {
LOGVAL(ctx, LY_VCODE_XP_INTOK, "Unknown", &exp->expr[exp->tok_pos[*tok_idx]]);
LOGVAL(ctx, LYVE_XPATH, "Failed to convert \"%.*s\" into a long double (%s).",
(int)exp->tok_len[*tok_idx], &exp->expr[exp->tok_pos[*tok_idx]], strerror(errno));
return LY_EVALID;
} else if ((uint32_t)(endptr - &exp->expr[exp->tok_pos[*tok_idx]]) != exp->tok_len[*tok_idx]) {
LOGVAL(ctx, LY_VCODE_XP_INTOK, "Unknown", &exp->expr[exp->tok_pos[*tok_idx]]);
LOGVAL(ctx, LYVE_XPATH, "Failed to convert \"%.*s\" into a long double.",
(int)exp->tok_len[*tok_idx], &exp->expr[exp->tok_pos[*tok_idx]]);
return LY_EVALID;
}
set_fill_number(set, num);
}
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
return LY_SUCCESS;
}
LY_ERR
lyxp_vars_find(const struct ly_ctx *ctx, const struct lyxp_var *vars, const char *name, size_t name_len,
struct lyxp_var **var)
{
LY_ARRAY_COUNT_TYPE u;
assert(name);
if (!name_len) {
name_len = strlen(name);
}
LY_ARRAY_FOR(vars, u) {
if (!strncmp(vars[u].name, name, name_len)) {
if (var) {
*var = (struct lyxp_var *)&vars[u];
}
return LY_SUCCESS;
}
}
if (ctx) {
LOGERR(ctx, LY_ENOTFOUND, "Variable \"%.*s\" not defined.", (int)name_len, name);
}
return LY_ENOTFOUND;
}
/**
* @brief Evaluate VariableReference.
*
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in] vars [Sized array](@ref sizedarrays) of XPath variables.
* @param[in,out] set Context and result set.
* @param[in] options XPath options.
* @return LY_ERR value.
*/
static LY_ERR
eval_variable_reference(const struct lyxp_expr *exp, uint32_t *tok_idx, struct lyxp_set *set, uint32_t options)
{
LY_ERR ret;
const char *name;
struct lyxp_var *var;
struct lyxp_expr *tokens = NULL;
uint32_t token_index, name_len;
/* find out the name and value of the variable */
name = &exp->expr[exp->tok_pos[*tok_idx]];
name_len = exp->tok_len[*tok_idx];
ret = lyxp_vars_find(set->ctx, set->vars, name, name_len, &var);
LY_CHECK_RET(ret);
/* parse value */
ret = lyxp_expr_parse(set->ctx, var->value, 0, 1, &tokens);
LY_CHECK_GOTO(ret, cleanup);
/* evaluate value */
token_index = 0;
ret = eval_expr_select(tokens, &token_index, 0, set, options);
LY_CHECK_GOTO(ret, cleanup);
cleanup:
lyxp_expr_free(set->ctx, tokens);
return ret;
}
/**
* @brief Evaluate PathExpr. Logs directly on error.
*
* [12] PathExpr ::= LocationPath | PrimaryExpr Predicate*
* | PrimaryExpr Predicate* '/' RelativeLocationPath
* | PrimaryExpr Predicate* '//' RelativeLocationPath
* [2] LocationPath ::= RelativeLocationPath | AbsoluteLocationPath
* [10] PrimaryExpr ::= VariableReference | '(' Expr ')' | Literal | Number | FunctionCall
*
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in,out] set Context and result set.
* @param[in] options XPath options.
* @return LY_ERR (LY_EINCOMPLETE on unresolved when)
*/
static LY_ERR
eval_path_expr(const struct lyxp_expr *exp, uint32_t *tok_idx, struct lyxp_set *set, uint32_t options)
{
ly_bool all_desc;
LY_ERR rc;
switch (exp->tokens[*tok_idx]) {
case LYXP_TOKEN_PAR1:
/* '(' Expr ')' */
/* '(' */
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
/* Expr */
rc = eval_expr_select(exp, tok_idx, 0, set, options);
LY_CHECK_RET(rc);
/* ')' */
assert(exp->tokens[*tok_idx] == LYXP_TOKEN_PAR2);
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
goto predicate;
case LYXP_TOKEN_DOT:
case LYXP_TOKEN_DDOT:
case LYXP_TOKEN_AXISNAME:
case LYXP_TOKEN_AT:
case LYXP_TOKEN_NAMETEST:
case LYXP_TOKEN_NODETYPE:
/* RelativeLocationPath */
rc = eval_relative_location_path(exp, tok_idx, 0, set, options);
LY_CHECK_RET(rc);
break;
case LYXP_TOKEN_VARREF:
/* VariableReference */
rc = eval_variable_reference(exp, tok_idx, set, options);
LY_CHECK_RET(rc);
++(*tok_idx);
goto predicate;
case LYXP_TOKEN_FUNCNAME:
/* FunctionCall */
rc = eval_function_call(exp, tok_idx, set, options);
LY_CHECK_RET(rc);
goto predicate;
case LYXP_TOKEN_OPER_PATH:
case LYXP_TOKEN_OPER_RPATH:
/* AbsoluteLocationPath */
rc = eval_absolute_location_path(exp, tok_idx, set, options);
LY_CHECK_RET(rc);
break;
case LYXP_TOKEN_LITERAL:
/* Literal */
if ((options & LYXP_SKIP_EXPR) || (options & LYXP_SCNODE_ALL)) {
if (!(options & LYXP_SKIP_EXPR)) {
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
}
eval_literal(exp, tok_idx, NULL);
} else {
eval_literal(exp, tok_idx, set);
}
goto predicate;
case LYXP_TOKEN_NUMBER:
/* Number */
if ((options & LYXP_SKIP_EXPR) || (options & LYXP_SCNODE_ALL)) {
if (!(options & LYXP_SKIP_EXPR)) {
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
}
rc = eval_number(NULL, exp, tok_idx, NULL);
} else {
rc = eval_number(set->ctx, exp, tok_idx, set);
}
LY_CHECK_RET(rc);
goto predicate;
default:
LOGVAL(set->ctx, LY_VCODE_XP_INTOK, lyxp_token2str(exp->tokens[*tok_idx]), &exp->expr[exp->tok_pos[*tok_idx]]);
return LY_EVALID;
}
return LY_SUCCESS;
predicate:
/* Predicate* */
while (!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_BRACK1)) {
rc = eval_predicate(exp, tok_idx, set, options, LYXP_AXIS_CHILD);
LY_CHECK_RET(rc);
}
/* ('/' or '//') RelativeLocationPath */
if (!exp_check_token2(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_PATH, LYXP_TOKEN_OPER_RPATH)) {
/* evaluate '/' or '//' */
if (exp->tokens[*tok_idx] == LYXP_TOKEN_OPER_PATH) {
all_desc = 0;
} else {
all_desc = 1;
}
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
rc = eval_relative_location_path(exp, tok_idx, all_desc, set, options);
LY_CHECK_RET(rc);
}
return LY_SUCCESS;
}
/**
* @brief Evaluate UnionExpr. Logs directly on error.
*
* [20] UnionExpr ::= PathExpr | UnionExpr '|' PathExpr
*
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in] repeat How many times this expression is repeated.
* @param[in,out] set Context and result set.
* @param[in] options XPath options.
* @return LY_ERR (LY_EINCOMPLETE on unresolved when)
*/
static LY_ERR
eval_union_expr(const struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t repeat, struct lyxp_set *set, uint32_t options)
{
LY_ERR rc = LY_SUCCESS;
uint32_t i;
struct lyxp_set orig_set, set2;
ly_bool found = 0;
assert(repeat);
set_init(&orig_set, set);
set_init(&set2, set);
set_fill_set(&orig_set, set);
rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_UNION, set, options);
LY_CHECK_GOTO(rc, cleanup);
if (set->not_found) {
set->not_found = 0;
} else {
found = 1;
}
/* ('|' PathExpr)* */
for (i = 0; i < repeat; ++i) {
assert(exp->tokens[*tok_idx] == LYXP_TOKEN_OPER_UNI);
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
if (options & LYXP_SKIP_EXPR) {
rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_UNION, set, options);
LY_CHECK_GOTO(rc, cleanup);
continue;
}
set_fill_set(&set2, &orig_set);
rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_UNION, &set2, options);
LY_CHECK_GOTO(rc, cleanup);
if (!set2.not_found) {
found = 1;
}
/* eval */
if (options & LYXP_SCNODE_ALL) {
lyxp_set_scnode_merge(set, &set2);
} else {
rc = moveto_union(set, &set2);
LY_CHECK_GOTO(rc, cleanup);
}
}
cleanup:
lyxp_set_free_content(&orig_set);
lyxp_set_free_content(&set2);
if (!found) {
set->not_found = 1;
}
return rc;
}
/**
* @brief Evaluate UnaryExpr. Logs directly on error.
*
* [19] UnaryExpr ::= UnionExpr | '-' UnaryExpr
*
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in] repeat How many times this expression is repeated.
* @param[in,out] set Context and result set.
* @param[in] options XPath options.
* @return LY_ERR (LY_EINCOMPLETE on unresolved when)
*/
static LY_ERR
eval_unary_expr(const struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t repeat, struct lyxp_set *set, uint32_t options)
{
LY_ERR rc;
uint32_t this_op, i;
assert(repeat);
/* ('-')+ */
this_op = *tok_idx;
for (i = 0; i < repeat; ++i) {
assert(!lyxp_check_token(NULL, exp, *tok_idx, LYXP_TOKEN_OPER_MATH) && (exp->expr[exp->tok_pos[*tok_idx]] == '-'));
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
}
rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_UNARY, set, options);
LY_CHECK_RET(rc);
if (!(options & LYXP_SKIP_EXPR) && (repeat % 2)) {
if (options & LYXP_SCNODE_ALL) {
warn_operands(set->ctx, set, NULL, 1, exp->expr, exp->tok_pos[this_op]);
} else {
rc = moveto_op_math(set, NULL, &exp->expr[exp->tok_pos[this_op]]);
LY_CHECK_RET(rc);
}
}
return LY_SUCCESS;
}
/**
* @brief Evaluate MultiplicativeExpr. Logs directly on error.
*
* [18] MultiplicativeExpr ::= UnaryExpr
* | MultiplicativeExpr '*' UnaryExpr
* | MultiplicativeExpr 'div' UnaryExpr
* | MultiplicativeExpr 'mod' UnaryExpr
*
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in] repeat How many times this expression is repeated.
* @param[in,out] set Context and result set.
* @param[in] options XPath options.
* @return LY_ERR (LY_EINCOMPLETE on unresolved when)
*/
static LY_ERR
eval_multiplicative_expr(const struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t repeat, struct lyxp_set *set,
uint32_t options)
{
LY_ERR rc = LY_SUCCESS;
uint32_t i, this_op;
struct lyxp_set orig_set, set2;
assert(repeat);
set_init(&orig_set, set);
set_init(&set2, set);
set_fill_set(&orig_set, set);
rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_MULTIPLICATIVE, set, options);
LY_CHECK_GOTO(rc, cleanup);
/* ('*' / 'div' / 'mod' UnaryExpr)* */
for (i = 0; i < repeat; ++i) {
this_op = *tok_idx;
assert(exp->tokens[*tok_idx] == LYXP_TOKEN_OPER_MATH);
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
if (options & LYXP_SKIP_EXPR) {
rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_MULTIPLICATIVE, set, options);
LY_CHECK_GOTO(rc, cleanup);
continue;
}
set_fill_set(&set2, &orig_set);
rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_MULTIPLICATIVE, &set2, options);
LY_CHECK_GOTO(rc, cleanup);
if (set2.not_found) {
set->not_found = 1;
}
/* eval */
if (options & LYXP_SCNODE_ALL) {
warn_operands(set->ctx, set, &set2, 1, exp->expr, exp->tok_pos[this_op - 1]);
lyxp_set_scnode_merge(set, &set2);
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
} else {
rc = moveto_op_math(set, &set2, &exp->expr[exp->tok_pos[this_op]]);
LY_CHECK_GOTO(rc, cleanup);
}
}
cleanup:
lyxp_set_free_content(&orig_set);
lyxp_set_free_content(&set2);
return rc;
}
/**
* @brief Evaluate AdditiveExpr. Logs directly on error.
*
* [17] AdditiveExpr ::= MultiplicativeExpr
* | AdditiveExpr '+' MultiplicativeExpr
* | AdditiveExpr '-' MultiplicativeExpr
*
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in] repeat How many times this expression is repeated.
* @param[in,out] set Context and result set.
* @param[in] options XPath options.
* @return LY_ERR (LY_EINCOMPLETE on unresolved when)
*/
static LY_ERR
eval_additive_expr(const struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t repeat, struct lyxp_set *set, uint32_t options)
{
LY_ERR rc = LY_SUCCESS;
uint32_t i, this_op;
struct lyxp_set orig_set, set2;
assert(repeat);
set_init(&orig_set, set);
set_init(&set2, set);
set_fill_set(&orig_set, set);
rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_ADDITIVE, set, options);
LY_CHECK_GOTO(rc, cleanup);
/* ('+' / '-' MultiplicativeExpr)* */
for (i = 0; i < repeat; ++i) {
this_op = *tok_idx;
assert(exp->tokens[*tok_idx] == LYXP_TOKEN_OPER_MATH);
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
if (options & LYXP_SKIP_EXPR) {
rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_ADDITIVE, set, options);
LY_CHECK_GOTO(rc, cleanup);
continue;
}
set_fill_set(&set2, &orig_set);
rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_ADDITIVE, &set2, options);
LY_CHECK_GOTO(rc, cleanup);
if (set2.not_found) {
set->not_found = 1;
}
/* eval */
if (options & LYXP_SCNODE_ALL) {
warn_operands(set->ctx, set, &set2, 1, exp->expr, exp->tok_pos[this_op - 1]);
lyxp_set_scnode_merge(set, &set2);
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
} else {
rc = moveto_op_math(set, &set2, &exp->expr[exp->tok_pos[this_op]]);
LY_CHECK_GOTO(rc, cleanup);
}
}
cleanup:
lyxp_set_free_content(&orig_set);
lyxp_set_free_content(&set2);
return rc;
}
/**
* @brief Evaluate RelationalExpr. Logs directly on error.
*
* [16] RelationalExpr ::= AdditiveExpr
* | RelationalExpr '<' AdditiveExpr
* | RelationalExpr '>' AdditiveExpr
* | RelationalExpr '<=' AdditiveExpr
* | RelationalExpr '>=' AdditiveExpr
*
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in] repeat How many times this expression is repeated.
* @param[in,out] set Context and result set.
* @param[in] options XPath options.
* @return LY_ERR (LY_EINCOMPLETE on unresolved when)
*/
static LY_ERR
eval_relational_expr(const struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t repeat, struct lyxp_set *set, uint32_t options)
{
LY_ERR rc = LY_SUCCESS;
uint32_t i, this_op;
struct lyxp_set orig_set, set2;
assert(repeat);
set_init(&orig_set, set);
set_init(&set2, set);
set_fill_set(&orig_set, set);
rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_RELATIONAL, set, options);
LY_CHECK_GOTO(rc, cleanup);
/* ('<' / '>' / '<=' / '>=' AdditiveExpr)* */
for (i = 0; i < repeat; ++i) {
this_op = *tok_idx;
assert(exp->tokens[*tok_idx] == LYXP_TOKEN_OPER_COMP);
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
if (options & LYXP_SKIP_EXPR) {
rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_RELATIONAL, set, options);
LY_CHECK_GOTO(rc, cleanup);
continue;
}
set_fill_set(&set2, &orig_set);
rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_RELATIONAL, &set2, options);
LY_CHECK_GOTO(rc, cleanup);
if (set2.not_found) {
set->not_found = 1;
}
/* eval */
if (options & LYXP_SCNODE_ALL) {
warn_operands(set->ctx, set, &set2, 1, exp->expr, exp->tok_pos[this_op - 1]);
lyxp_set_scnode_merge(set, &set2);
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
} else {
ly_bool result;
rc = moveto_op_comp(set, &set2, &exp->expr[exp->tok_pos[this_op]], &result);
LY_CHECK_GOTO(rc, cleanup);
set_fill_boolean(set, result);
}
}
cleanup:
lyxp_set_free_content(&orig_set);
lyxp_set_free_content(&set2);
return rc;
}
/**
* @brief Evaluate EqualityExpr. Logs directly on error.
*
* [15] EqualityExpr ::= RelationalExpr | EqualityExpr '=' RelationalExpr
* | EqualityExpr '!=' RelationalExpr
*
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in] repeat How many times this expression is repeated.
* @param[in,out] set Context and result set.
* @param[in] options XPath options.
* @return LY_ERR (LY_EINCOMPLETE on unresolved when)
*/
static LY_ERR
eval_equality_expr(const struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t repeat, struct lyxp_set *set, uint32_t options)
{
LY_ERR rc = LY_SUCCESS;
uint32_t i, this_op;
struct lyxp_set orig_set, set2;
assert(repeat);
set_init(&orig_set, set);
set_init(&set2, set);
set_fill_set(&orig_set, set);
rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_EQUALITY, set, options);
LY_CHECK_GOTO(rc, cleanup);
/* ('=' / '!=' RelationalExpr)* */
for (i = 0; i < repeat; ++i) {
this_op = *tok_idx;
assert((exp->tokens[*tok_idx] == LYXP_TOKEN_OPER_EQUAL) || (exp->tokens[*tok_idx] == LYXP_TOKEN_OPER_NEQUAL));
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (options & LYXP_SKIP_EXPR ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
if (options & LYXP_SKIP_EXPR) {
rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_EQUALITY, set, options);
LY_CHECK_GOTO(rc, cleanup);
continue;
}
set_fill_set(&set2, &orig_set);
rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_EQUALITY, &set2, options);
LY_CHECK_GOTO(rc, cleanup);
if (set2.not_found) {
set->not_found = 1;
}
/* eval */
if (options & LYXP_SCNODE_ALL) {
warn_operands(set->ctx, set, &set2, 0, exp->expr, exp->tok_pos[this_op - 1]);
warn_equality_value(exp, set, *tok_idx - 1, this_op - 1, *tok_idx - 1);
warn_equality_value(exp, &set2, this_op - 1, this_op - 1, *tok_idx - 1);
lyxp_set_scnode_merge(set, &set2);
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_VAL);
} else {
ly_bool result;
rc = moveto_op_comp(set, &set2, &exp->expr[exp->tok_pos[this_op]], &result);
LY_CHECK_GOTO(rc, cleanup);
set_fill_boolean(set, result);
}
}
cleanup:
lyxp_set_free_content(&orig_set);
lyxp_set_free_content(&set2);
return rc;
}
/**
* @brief Evaluate AndExpr. Logs directly on error.
*
* [14] AndExpr ::= EqualityExpr | AndExpr 'and' EqualityExpr
*
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in] repeat How many times this expression is repeated.
* @param[in,out] set Context and result set.
* @param[in] options XPath options.
* @return LY_ERR (LY_EINCOMPLETE on unresolved when)
*/
static LY_ERR
eval_and_expr(const struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t repeat, struct lyxp_set *set, uint32_t options)
{
LY_ERR rc = LY_SUCCESS;
struct lyxp_set orig_set, set2;
uint32_t i;
assert(repeat);
set_init(&orig_set, set);
set_init(&set2, set);
set_fill_set(&orig_set, set);
rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_AND, set, options);
LY_CHECK_GOTO(rc, cleanup);
if (!(options & LYXP_SKIP_EXPR)) {
if (options & LYXP_SCNODE_ALL) {
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE);
} else {
/* cast to boolean, we know that will be the final result */
lyxp_set_cast(set, LYXP_SET_BOOLEAN);
}
}
/* ('and' EqualityExpr)* */
for (i = 0; i < repeat; ++i) {
assert(exp->tokens[*tok_idx] == LYXP_TOKEN_OPER_LOG);
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, ((options & LYXP_SKIP_EXPR) || !set->val.bln ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
/* lazy evaluation */
if ((options & LYXP_SKIP_EXPR) || ((set->type == LYXP_SET_BOOLEAN) && !set->val.bln)) {
rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_AND, set, options | LYXP_SKIP_EXPR);
LY_CHECK_GOTO(rc, cleanup);
continue;
}
set_fill_set(&set2, &orig_set);
rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_AND, &set2, options);
LY_CHECK_GOTO(rc, cleanup);
if (set2.not_found) {
set->not_found = 1;
}
/* eval - just get boolean value actually */
if (set->type == LYXP_SET_SCNODE_SET) {
set_scnode_clear_ctx(&set2, LYXP_SET_SCNODE_ATOM_NODE);
lyxp_set_scnode_merge(set, &set2);
} else {
lyxp_set_cast(&set2, LYXP_SET_BOOLEAN);
set_fill_set(set, &set2);
}
}
cleanup:
lyxp_set_free_content(&orig_set);
lyxp_set_free_content(&set2);
return rc;
}
/**
* @brief Evaluate OrExpr. Logs directly on error.
*
* [13] OrExpr ::= AndExpr | OrExpr 'or' AndExpr
*
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in] repeat How many times this expression is repeated.
* @param[in,out] set Context and result set.
* @param[in] options XPath options.
* @return LY_ERR (LY_EINCOMPLETE on unresolved when)
*/
static LY_ERR
eval_or_expr(const struct lyxp_expr *exp, uint32_t *tok_idx, uint32_t repeat, struct lyxp_set *set, uint32_t options)
{
LY_ERR rc = LY_SUCCESS;
struct lyxp_set orig_set, set2;
uint32_t i;
assert(repeat);
set_init(&orig_set, set);
set_init(&set2, set);
set_fill_set(&orig_set, set);
rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_OR, set, options);
LY_CHECK_GOTO(rc, cleanup);
if (!(options & LYXP_SKIP_EXPR)) {
if (options & LYXP_SCNODE_ALL) {
set_scnode_clear_ctx(set, LYXP_SET_SCNODE_ATOM_NODE);
} else {
/* cast to boolean, we know that will be the final result */
lyxp_set_cast(set, LYXP_SET_BOOLEAN);
}
}
/* ('or' AndExpr)* */
for (i = 0; i < repeat; ++i) {
assert(exp->tokens[*tok_idx] == LYXP_TOKEN_OPER_LOG);
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, ((options & LYXP_SKIP_EXPR) || set->val.bln ? "skipped" : "parsed"),
lyxp_token2str(exp->tokens[*tok_idx]), exp->tok_pos[*tok_idx]);
++(*tok_idx);
/* lazy evaluation */
if ((options & LYXP_SKIP_EXPR) || ((set->type == LYXP_SET_BOOLEAN) && set->val.bln)) {
rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_OR, set, options | LYXP_SKIP_EXPR);
LY_CHECK_GOTO(rc, cleanup);
continue;
}
set_fill_set(&set2, &orig_set);
/* expr_type cound have been LYXP_EXPR_NONE in all these later calls (except for the first one),
* but it does not matter */
rc = eval_expr_select(exp, tok_idx, LYXP_EXPR_OR, &set2, options);
LY_CHECK_GOTO(rc, cleanup);
if (set2.not_found) {
set->not_found = 1;
}
/* eval - just get boolean value actually */
if (set->type == LYXP_SET_SCNODE_SET) {
set_scnode_clear_ctx(&set2, LYXP_SET_SCNODE_ATOM_NODE);
lyxp_set_scnode_merge(set, &set2);
} else {
lyxp_set_cast(&set2, LYXP_SET_BOOLEAN);
set_fill_set(set, &set2);
}
}
cleanup:
lyxp_set_free_content(&orig_set);
lyxp_set_free_content(&set2);
return rc;
}
/**
* @brief Decide what expression is at the pointer @p tok_idx and evaluate it accordingly.
*
* @param[in] exp Parsed XPath expression.
* @param[in] tok_idx Position in the expression @p exp.
* @param[in] etype Expression type to evaluate.
* @param[in,out] set Context and result set.
* @param[in] options XPath options.
* @return LY_ERR (LY_EINCOMPLETE on unresolved when)
*/
static LY_ERR
eval_expr_select(const struct lyxp_expr *exp, uint32_t *tok_idx, enum lyxp_expr_type etype, struct lyxp_set *set,
uint32_t options)
{
uint32_t i, count;
enum lyxp_expr_type next_etype;
LY_ERR rc;
/* process operator repeats */
if (!exp->repeat[*tok_idx]) {
next_etype = LYXP_EXPR_NONE;
} else {
/* find etype repeat */
for (i = 0; exp->repeat[*tok_idx][i] > etype; ++i) {}
/* select one-priority lower because etype expression called us */
if (i) {
next_etype = exp->repeat[*tok_idx][i - 1];
/* count repeats for that expression */
for (count = 0; i && exp->repeat[*tok_idx][i - 1] == next_etype; ++count, --i) {}
} else {
next_etype = LYXP_EXPR_NONE;
}
}
/* decide what expression are we parsing based on the repeat */
switch (next_etype) {
case LYXP_EXPR_OR:
rc = eval_or_expr(exp, tok_idx, count, set, options);
break;
case LYXP_EXPR_AND:
rc = eval_and_expr(exp, tok_idx, count, set, options);
break;
case LYXP_EXPR_EQUALITY:
rc = eval_equality_expr(exp, tok_idx, count, set, options);
break;
case LYXP_EXPR_RELATIONAL:
rc = eval_relational_expr(exp, tok_idx, count, set, options);
break;
case LYXP_EXPR_ADDITIVE:
rc = eval_additive_expr(exp, tok_idx, count, set, options);
break;
case LYXP_EXPR_MULTIPLICATIVE:
rc = eval_multiplicative_expr(exp, tok_idx, count, set, options);
break;
case LYXP_EXPR_UNARY:
rc = eval_unary_expr(exp, tok_idx, count, set, options);
break;
case LYXP_EXPR_UNION:
rc = eval_union_expr(exp, tok_idx, count, set, options);
break;
case LYXP_EXPR_NONE:
rc = eval_path_expr(exp, tok_idx, set, options);
break;
default:
LOGINT_RET(set->ctx);
}
return rc;
}
/**
* @brief Get root type.
*
* @param[in] ctx_node Context node.
* @param[in] ctx_scnode Schema context node.
* @param[in] options XPath options.
* @return Root type.
*/
static enum lyxp_node_type
lyxp_get_root_type(const struct lyd_node *ctx_node, const struct lysc_node *ctx_scnode, uint32_t options)
{
const struct lysc_node *op;
/* explicit */
if (options & LYXP_ACCESS_TREE_ALL) {
return LYXP_NODE_ROOT;
} else if (options & LYXP_ACCESS_TREE_CONFIG) {
return LYXP_NODE_ROOT_CONFIG;
}
if (options & LYXP_SCNODE_ALL) {
/* schema */
for (op = ctx_scnode; op && !(op->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)); op = op->parent) {}
if (op || !(options & LYXP_SCNODE_SCHEMA)) {
/* general root that can access everything */
return LYXP_NODE_ROOT;
} else if (!ctx_scnode || (ctx_scnode->flags & LYS_CONFIG_W)) {
/* root context node can access only config data (because we said so, it is unspecified) */
return LYXP_NODE_ROOT_CONFIG;
}
return LYXP_NODE_ROOT;
}
/* data */
op = ctx_node ? ctx_node->schema : NULL;
for ( ; op && !(op->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)); op = op->parent) {}
if (op || !(options & LYXP_SCHEMA)) {
/* general root that can access everything */
return LYXP_NODE_ROOT;
} else if (!ctx_node || !ctx_node->schema || (ctx_node->schema->flags & LYS_CONFIG_W)) {
/* root context node can access only config data (because we said so, it is unspecified) */
return LYXP_NODE_ROOT_CONFIG;
}
return LYXP_NODE_ROOT;
}
LY_ERR
lyxp_eval(const struct ly_ctx *ctx, const struct lyxp_expr *exp, const struct lys_module *cur_mod,
LY_VALUE_FORMAT format, void *prefix_data, const struct lyd_node *cur_node, const struct lyd_node *ctx_node,
const struct lyd_node *tree, const struct lyxp_var *vars, struct lyxp_set *set, uint32_t options)
{
uint32_t tok_idx = 0;
LY_ERR rc;
LY_CHECK_ARG_RET(ctx, ctx, exp, set, LY_EINVAL);
if (!cur_mod && ((format == LY_VALUE_SCHEMA) || (format == LY_VALUE_SCHEMA_RESOLVED))) {
LOGERR(ctx, LY_EINVAL, "Current module must be set if schema format is used.");
return LY_EINVAL;
}
if (tree) {
/* adjust the pointer to be the first top-level sibling */
while (tree->parent) {
tree = lyd_parent(tree);
}
tree = lyd_first_sibling(tree);
if (lysc_data_parent(tree->schema)) {
/* unable to evaluate absolute paths */
LOGERR(ctx, LY_EINVAL, "Data node \"%s\" has no parent but is not instance of a top-level schema node.",
LYD_NAME(tree));
return LY_EINVAL;
}
}
/* prepare set for evaluation */
memset(set, 0, sizeof *set);
set->type = LYXP_SET_NODE_SET;
set->root_type = lyxp_get_root_type(ctx_node, NULL, options);
set_insert_node(set, (struct lyd_node *)ctx_node, 0, ctx_node ? LYXP_NODE_ELEM : set->root_type, 0);
set->ctx = (struct ly_ctx *)ctx;
set->cur_node = cur_node;
for (set->context_op = cur_node ? cur_node->schema : NULL;
set->context_op && !(set->context_op->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF));
set->context_op = set->context_op->parent) {}
set->tree = tree;
set->cur_mod = cur_mod;
set->format = format;
set->prefix_data = prefix_data;
set->vars = vars;
if (set->cur_node) {
LOG_LOCSET(NULL, set->cur_node);
}
/* evaluate */
rc = eval_expr_select(exp, &tok_idx, 0, set, options);
if (!rc && set->not_found) {
rc = LY_ENOTFOUND;
}
if (rc) {
lyxp_set_free_content(set);
}
if (set->cur_node) {
LOG_LOCBACK(0, 1);
}
return rc;
}
#if 0
/* full xml printing of set elements, not used currently */
void
lyxp_set_print_xml(FILE *f, struct lyxp_set *set)
{
uint32_t i;
char *str_num;
struct lyout out;
memset(&out, 0, sizeof out);
out.type = LYOUT_STREAM;
out.method.f = f;
switch (set->type) {
case LYXP_SET_EMPTY:
ly_print_(&out, "Empty XPath set\n\n");
break;
case LYXP_SET_BOOLEAN:
ly_print_(&out, "Boolean XPath set:\n");
ly_print_(&out, "%s\n\n", set->value.bool ? "true" : "false");
break;
case LYXP_SET_STRING:
ly_print_(&out, "String XPath set:\n");
ly_print_(&out, "\"%s\"\n\n", set->value.str);
break;
case LYXP_SET_NUMBER:
ly_print_(&out, "Number XPath set:\n");
if (isnan(set->value.num)) {
str_num = strdup("NaN");
} else if ((set->value.num == 0) || (set->value.num == -0.0f)) {
str_num = strdup("0");
} else if (isinf(set->value.num) && !signbit(set->value.num)) {
str_num = strdup("Infinity");
} else if (isinf(set->value.num) && signbit(set->value.num)) {
str_num = strdup("-Infinity");
} else if ((long long)set->value.num == set->value.num) {
if (asprintf(&str_num, "%lld", (long long)set->value.num) == -1) {
str_num = NULL;
}
} else {
if (asprintf(&str_num, "%03.1Lf", set->value.num) == -1) {
str_num = NULL;
}
}
if (!str_num) {
LOGMEM;
return;
}
ly_print_(&out, "%s\n\n", str_num);
free(str_num);
break;
case LYXP_SET_NODE_SET:
ly_print_(&out, "Node XPath set:\n");
for (i = 0; i < set->used; ++i) {
ly_print_(&out, "%d. ", i + 1);
switch (set->node_type[i]) {
case LYXP_NODE_ROOT_ALL:
ly_print_(&out, "ROOT all\n\n");
break;
case LYXP_NODE_ROOT_CONFIG:
ly_print_(&out, "ROOT config\n\n");
break;
case LYXP_NODE_ROOT_STATE:
ly_print_(&out, "ROOT state\n\n");
break;
case LYXP_NODE_ROOT_NOTIF:
ly_print_(&out, "ROOT notification \"%s\"\n\n", set->value.nodes[i]->schema->name);
break;
case LYXP_NODE_ROOT_RPC:
ly_print_(&out, "ROOT rpc \"%s\"\n\n", set->value.nodes[i]->schema->name);
break;
case LYXP_NODE_ROOT_OUTPUT:
ly_print_(&out, "ROOT output \"%s\"\n\n", set->value.nodes[i]->schema->name);
break;
case LYXP_NODE_ELEM:
ly_print_(&out, "ELEM \"%s\"\n", set->value.nodes[i]->schema->name);
xml_print_node(&out, 1, set->value.nodes[i], 1, LYP_FORMAT);
ly_print_(&out, "\n");
break;
case LYXP_NODE_TEXT:
ly_print_(&out, "TEXT \"%s\"\n\n", ((struct lyd_node_leaf_list *)set->value.nodes[i])->value_str);
break;
case LYXP_NODE_ATTR:
ly_print_(&out, "ATTR \"%s\" = \"%s\"\n\n", set->value.attrs[i]->name, set->value.attrs[i]->value);
break;
}
}
break;
}
}
#endif
LY_ERR
lyxp_set_cast(struct lyxp_set *set, enum lyxp_set_type target)
{
long double num;
char *str;
LY_ERR rc;
if (!set || (set->type == target)) {
return LY_SUCCESS;
}
/* it's not possible to convert anything into a node set */
assert(target != LYXP_SET_NODE_SET);
if (set->type == LYXP_SET_SCNODE_SET) {
lyxp_set_free_content(set);
return LY_EINVAL;
}
/* to STRING */
if ((target == LYXP_SET_STRING) || ((target == LYXP_SET_NUMBER) && (set->type == LYXP_SET_NODE_SET))) {
switch (set->type) {
case LYXP_SET_NUMBER:
if (isnan(set->val.num)) {
set->val.str = strdup("NaN");
LY_CHECK_ERR_RET(!set->val.str, LOGMEM(set->ctx), -1);
} else if ((set->val.num == 0) || (set->val.num == -0.0f)) {
set->val.str = strdup("0");
LY_CHECK_ERR_RET(!set->val.str, LOGMEM(set->ctx), -1);
} else if (isinf(set->val.num) && !signbit(set->val.num)) {
set->val.str = strdup("Infinity");
LY_CHECK_ERR_RET(!set->val.str, LOGMEM(set->ctx), -1);
} else if (isinf(set->val.num) && signbit(set->val.num)) {
set->val.str = strdup("-Infinity");
LY_CHECK_ERR_RET(!set->val.str, LOGMEM(set->ctx), -1);
} else if ((long long)set->val.num == set->val.num) {
if (asprintf(&str, "%lld", (long long)set->val.num) == -1) {
LOGMEM_RET(set->ctx);
}
set->val.str = str;
} else {
if (asprintf(&str, "%03.1Lf", set->val.num) == -1) {
LOGMEM_RET(set->ctx);
}
set->val.str = str;
}
break;
case LYXP_SET_BOOLEAN:
if (set->val.bln) {
set->val.str = strdup("true");
} else {
set->val.str = strdup("false");
}
LY_CHECK_ERR_RET(!set->val.str, LOGMEM(set->ctx), LY_EMEM);
break;
case LYXP_SET_NODE_SET:
/* we need the set sorted, it affects the result */
assert(!set_sort(set));
rc = cast_node_set_to_string(set, &str);
LY_CHECK_RET(rc);
lyxp_set_free_content(set);
set->val.str = str;
break;
default:
LOGINT_RET(set->ctx);
}
set->type = LYXP_SET_STRING;
}
/* to NUMBER */
if (target == LYXP_SET_NUMBER) {
switch (set->type) {
case LYXP_SET_STRING:
num = cast_string_to_number(set->val.str);
lyxp_set_free_content(set);
set->val.num = num;
break;
case LYXP_SET_BOOLEAN:
if (set->val.bln) {
set->val.num = 1;
} else {
set->val.num = 0;
}
break;
default:
LOGINT_RET(set->ctx);
}
set->type = LYXP_SET_NUMBER;
}
/* to BOOLEAN */
if (target == LYXP_SET_BOOLEAN) {
switch (set->type) {
case LYXP_SET_NUMBER:
if ((set->val.num == 0) || (set->val.num == -0.0f) || isnan(set->val.num)) {
set->val.bln = 0;
} else {
set->val.bln = 1;
}
break;
case LYXP_SET_STRING:
if (set->val.str[0]) {
lyxp_set_free_content(set);
set->val.bln = 1;
} else {
lyxp_set_free_content(set);
set->val.bln = 0;
}
break;
case LYXP_SET_NODE_SET:
if (set->used) {
lyxp_set_free_content(set);
set->val.bln = 1;
} else {
lyxp_set_free_content(set);
set->val.bln = 0;
}
break;
default:
LOGINT_RET(set->ctx);
}
set->type = LYXP_SET_BOOLEAN;
}
return LY_SUCCESS;
}
LY_ERR
lyxp_atomize(const struct ly_ctx *ctx, const struct lyxp_expr *exp, const struct lys_module *cur_mod,
LY_VALUE_FORMAT format, void *prefix_data, const struct lysc_node *cur_scnode,
const struct lysc_node *ctx_scnode, struct lyxp_set *set, uint32_t options)
{
LY_ERR rc;
uint32_t tok_idx = 0;
LY_CHECK_ARG_RET(ctx, ctx, exp, set, LY_EINVAL);
if (!cur_mod && ((format == LY_VALUE_SCHEMA) || (format == LY_VALUE_SCHEMA_RESOLVED))) {
LOGARG(NULL, "Current module must be set if schema format is used.");
return LY_EINVAL;
}
/* prepare set for evaluation */
memset(set, 0, sizeof *set);
set->type = LYXP_SET_SCNODE_SET;
set->root_type = lyxp_get_root_type(NULL, ctx_scnode, options);
LY_CHECK_RET(lyxp_set_scnode_insert_node(set, ctx_scnode, ctx_scnode ? LYXP_NODE_ELEM : set->root_type, LYXP_AXIS_SELF, NULL));
set->val.scnodes[0].in_ctx = LYXP_SET_SCNODE_START;
set->ctx = (struct ly_ctx *)ctx;
set->cur_scnode = cur_scnode;
for (set->context_op = cur_scnode;
set->context_op && !(set->context_op->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF));
set->context_op = set->context_op->parent) {}
set->cur_mod = cur_mod;
set->format = format;
set->prefix_data = prefix_data;
if (set->cur_scnode) {
LOG_LOCSET(set->cur_scnode, NULL);
}
/* evaluate */
rc = eval_expr_select(exp, &tok_idx, 0, set, options);
if (!rc && set->not_found) {
rc = LY_ENOTFOUND;
}
if (set->cur_scnode) {
LOG_LOCBACK(1, 0);
}
return rc;
}
LIBYANG_API_DEF const char *
lyxp_get_expr(const struct lyxp_expr *path)
{
if (!path) {
return NULL;
}
return path->expr;
}