blob: 69fe5856727a12267315d882d5156c4853745b44 [file] [log] [blame]
/**
* @file tree_schema.c
* @author Radek Krejci <rkrejci@cesnet.cz>
* @brief Schema tree implementation
*
* Copyright (c) 2015 - 2018 CESNET, z.s.p.o.
*
* This source code is licensed under BSD 3-Clause License (the "License").
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*/
#define _GNU_SOURCE
#include <assert.h>
#include <ctype.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "common.h"
#include "compat.h"
#include "context.h"
#include "dict.h"
#include "log.h"
#include "path.h"
#include "parser.h"
#include "parser_schema.h"
#include "plugins_exts.h"
#include "plugins_types.h"
#include "plugins_exts_internal.h"
#include "set.h"
#include "tree.h"
#include "tree_data.h"
#include "tree_data_internal.h"
#include "tree_schema.h"
#include "tree_schema_internal.h"
#include "xpath.h"
static LY_ERR lys_compile_ext(struct lysc_ctx *ctx, struct lysp_ext_instance *ext_p, struct lysc_ext_instance *ext,
void *parent, LYEXT_PARENT parent_type, const struct lys_module *ext_mod);
/**
* @brief Duplicate string into dictionary
* @param[in] CTX libyang context of the dictionary.
* @param[in] ORIG String to duplicate.
* @param[out] DUP Where to store the result.
*/
#define DUP_STRING(CTX, ORIG, DUP, RET) if (ORIG) {RET = lydict_insert(CTX, ORIG, 0, &DUP);}
#define DUP_STRING_GOTO(CTX, ORIG, DUP, RET, GOTO) if (ORIG) {LY_CHECK_GOTO(RET = lydict_insert(CTX, ORIG, 0, &DUP), GOTO);}
#define COMPILE_ARRAY_GOTO(CTX, ARRAY_P, ARRAY_C, ITER, FUNC, RET, GOTO) \
if (ARRAY_P) { \
LY_ARRAY_CREATE_GOTO((CTX)->ctx, ARRAY_C, LY_ARRAY_COUNT(ARRAY_P), RET, GOTO); \
LY_ARRAY_COUNT_TYPE __array_offset = LY_ARRAY_COUNT(ARRAY_C); \
for (ITER = 0; ITER < LY_ARRAY_COUNT(ARRAY_P); ++ITER) { \
LY_ARRAY_INCREMENT(ARRAY_C); \
RET = FUNC(CTX, &(ARRAY_P)[ITER], &(ARRAY_C)[ITER + __array_offset]); \
LY_CHECK_GOTO(RET != LY_SUCCESS, GOTO); \
} \
}
#define COMPILE_ARRAY1_GOTO(CTX, ARRAY_P, ARRAY_C, PARENT, ITER, FUNC, USES_STATUS, RET, GOTO) \
if (ARRAY_P) { \
LY_ARRAY_CREATE_GOTO((CTX)->ctx, ARRAY_C, LY_ARRAY_COUNT(ARRAY_P), RET, GOTO); \
LY_ARRAY_COUNT_TYPE __array_offset = LY_ARRAY_COUNT(ARRAY_C); \
for (ITER = 0; ITER < LY_ARRAY_COUNT(ARRAY_P); ++ITER) { \
LY_ARRAY_INCREMENT(ARRAY_C); \
RET = FUNC(CTX, &(ARRAY_P)[ITER], PARENT, &(ARRAY_C)[ITER + __array_offset], USES_STATUS); \
LY_CHECK_GOTO(RET != LY_SUCCESS, GOTO); \
} \
}
#define COMPILE_EXTS_GOTO(CTX, EXTS_P, EXT_C, PARENT, PARENT_TYPE, RET, GOTO) \
if (EXTS_P) { \
LY_ARRAY_CREATE_GOTO((CTX)->ctx, EXT_C, LY_ARRAY_COUNT(EXTS_P), RET, GOTO); \
for (LY_ARRAY_COUNT_TYPE __exts_iter = 0, __array_offset = LY_ARRAY_COUNT(EXT_C); __exts_iter < LY_ARRAY_COUNT(EXTS_P); ++__exts_iter) { \
LY_ARRAY_INCREMENT(EXT_C); \
RET = lys_compile_ext(CTX, &(EXTS_P)[__exts_iter], &(EXT_C)[__exts_iter + __array_offset], PARENT, PARENT_TYPE, NULL); \
LY_CHECK_GOTO(RET != LY_SUCCESS, GOTO); \
} \
}
#define COMPILE_ARRAY_UNIQUE_GOTO(CTX, ARRAY_P, ARRAY_C, ITER, FUNC, RET, GOTO) \
if (ARRAY_P) { \
LY_ARRAY_CREATE_GOTO((CTX)->ctx, ARRAY_C, LY_ARRAY_COUNT(ARRAY_P), RET, GOTO); \
LY_ARRAY_COUNT_TYPE __array_offset = LY_ARRAY_COUNT(ARRAY_C); \
for (ITER = 0; ITER < LY_ARRAY_COUNT(ARRAY_P); ++ITER) { \
LY_ARRAY_INCREMENT(ARRAY_C); \
RET = FUNC(CTX, &(ARRAY_P)[ITER], ARRAY_C, &(ARRAY_C)[ITER + __array_offset]); \
LY_CHECK_GOTO(RET != LY_SUCCESS, GOTO); \
} \
}
#define COMPILE_MEMBER_GOTO(CTX, MEMBER_P, MEMBER_C, FUNC, RET, GOTO) \
if (MEMBER_P) { \
MEMBER_C = calloc(1, sizeof *(MEMBER_C)); \
LY_CHECK_ERR_GOTO(!(MEMBER_C), LOGMEM((CTX)->ctx); RET = LY_EMEM, GOTO); \
RET = FUNC(CTX, MEMBER_P, MEMBER_C); \
LY_CHECK_GOTO(RET != LY_SUCCESS, GOTO); \
}
#define COMPILE_MEMBER_ARRAY_GOTO(CTX, MEMBER_P, ARRAY_C, FUNC, RET, GOTO) \
if (MEMBER_P) { \
LY_ARRAY_CREATE_GOTO((CTX)->ctx, ARRAY_C, 1, RET, GOTO); \
LY_ARRAY_COUNT_TYPE __array_offset = LY_ARRAY_COUNT(ARRAY_C); \
LY_ARRAY_INCREMENT(ARRAY_C); \
RET = FUNC(CTX, MEMBER_P, &(ARRAY_C)[__array_offset]); \
LY_CHECK_GOTO(RET != LY_SUCCESS, GOTO); \
}
#define COMPILE_CHECK_UNIQUENESS_ARRAY(CTX, ARRAY, MEMBER, EXCL, STMT, IDENT) \
if (ARRAY) { \
for (LY_ARRAY_COUNT_TYPE u__ = 0; u__ < LY_ARRAY_COUNT(ARRAY); ++u__) { \
if (&(ARRAY)[u__] != EXCL && (void*)((ARRAY)[u__].MEMBER) == (void*)(IDENT)) { \
LOGVAL((CTX)->ctx, LY_VLOG_STR, (CTX)->path, LY_VCODE_DUPIDENT, IDENT, STMT); \
return LY_EVALID; \
} \
} \
}
#define COMPILE_CHECK_UNIQUENESS_PARRAY(CTX, ARRAY, MEMBER, EXCL, STMT, IDENT) \
if (ARRAY) { \
for (LY_ARRAY_COUNT_TYPE u__ = 0; u__ < LY_ARRAY_COUNT(ARRAY); ++u__) { \
if (&(ARRAY)[u__] != EXCL && (void*)((ARRAY)[u__]->MEMBER) == (void*)(IDENT)) { \
LOGVAL((CTX)->ctx, LY_VLOG_STR, (CTX)->path, LY_VCODE_DUPIDENT, IDENT, STMT); \
return LY_EVALID; \
} \
} \
}
struct lysc_ext *
lysc_ext_dup(struct lysc_ext *orig)
{
++orig->refcount;
return orig;
}
static struct lysc_ext_instance *
lysc_ext_instance_dup(struct ly_ctx *ctx, struct lysc_ext_instance *orig)
{
/* TODO - extensions, increase refcount */
(void) ctx;
(void) orig;
return NULL;
}
static LY_ERR
lysc_incomplete_leaf_dflt_add(struct lysc_ctx *ctx, struct lysc_node_leaf *leaf, const char *dflt,
struct lys_module *dflt_mod)
{
struct lysc_incomplete_dflt *r;
uint32_t i;
for (i = 0; i < ctx->dflts.count; ++i) {
r = (struct lysc_incomplete_dflt *)ctx->dflts.objs[i];
if (r->leaf == leaf) {
/* just replace the default */
r->dflt = dflt;
return LY_SUCCESS;
}
}
r = malloc(sizeof *r);
LY_CHECK_ERR_RET(!r, LOGMEM(ctx->ctx), LY_EMEM);
r->leaf = leaf;
r->dflt = dflt;
r->dflts = NULL;
r->dflt_mod = dflt_mod;
LY_CHECK_RET(ly_set_add(&ctx->dflts, r, LY_SET_OPT_USEASLIST, NULL));
return LY_SUCCESS;
}
/**
* @brief Add record into the compile context's list of incomplete default values.
* @param[in] ctx Compile context with the incomplete default values list.
* @param[in] term Term context node with the default value.
* @param[in] value String default value.
* @param[in] val_len Length of @p value.
* @param[in] dflt_mod Module of the default value definition to store in the record.
* @return LY_EMEM in case of memory allocation failure.
* @return LY_SUCCESS
*/
static LY_ERR
lysc_incomplete_llist_dflts_add(struct lysc_ctx *ctx, struct lysc_node_leaflist *llist, const char **dflts,
struct lys_module *dflt_mod)
{
struct lysc_incomplete_dflt *r;
uint32_t i;
for (i = 0; i < ctx->dflts.count; ++i) {
r = (struct lysc_incomplete_dflt *)ctx->dflts.objs[i];
if (r->llist == llist) {
/* just replace the defaults */
r->dflts = dflts;
return LY_SUCCESS;
}
}
r = malloc(sizeof *r);
LY_CHECK_ERR_RET(!r, LOGMEM(ctx->ctx), LY_EMEM);
r->llist = llist;
r->dflt = NULL;
r->dflts = dflts;
r->dflt_mod = dflt_mod;
LY_CHECK_RET(ly_set_add(&ctx->dflts, r, LY_SET_OPT_USEASLIST, NULL));
return LY_SUCCESS;
}
/**
* @brief Remove record of the given default value from the compile context's list of incomplete default values.
* @param[in] ctx Compile context with the incomplete default values list.
* @param[in] dflt Incomplete default values identifying the record to remove.
*/
static void
lysc_incomplete_dflt_remove(struct lysc_ctx *ctx, struct lysc_node *term)
{
uint32_t u;
struct lysc_incomplete_dflt *r;
for (u = 0; u < ctx->dflts.count; ++u) {
r = ctx->dflts.objs[u];
if (r->leaf == (struct lysc_node_leaf *)term) {
free(ctx->dflts.objs[u]);
memmove(&ctx->dflts.objs[u], &ctx->dflts.objs[u + 1], (ctx->dflts.count - (u + 1)) * sizeof *ctx->dflts.objs);
--ctx->dflts.count;
return;
}
}
}
void
lysc_update_path(struct lysc_ctx *ctx, struct lysc_node *parent, const char *name)
{
int len;
uint8_t nextlevel = 0; /* 0 - no starttag, 1 - '/' starttag, 2 - '=' starttag + '}' endtag */
if (!name) {
/* removing last path segment */
if (ctx->path[ctx->path_len - 1] == '}') {
for ( ; ctx->path[ctx->path_len] != '=' && ctx->path[ctx->path_len] != '{'; --ctx->path_len) {}
if (ctx->path[ctx->path_len] == '=') {
ctx->path[ctx->path_len++] = '}';
} else {
/* not a top-level special tag, remove also preceiding '/' */
goto remove_nodelevel;
}
} else {
remove_nodelevel:
for ( ; ctx->path[ctx->path_len] != '/'; --ctx->path_len) {}
if (ctx->path_len == 0) {
/* top-level (last segment) */
ctx->path_len = 1;
}
}
/* set new terminating NULL-byte */
ctx->path[ctx->path_len] = '\0';
} else {
if (ctx->path_len > 1) {
if (!parent && ctx->path[ctx->path_len - 1] == '}' && ctx->path[ctx->path_len - 2] != '\'') {
/* extension of the special tag */
nextlevel = 2;
--ctx->path_len;
} else {
/* there is already some path, so add next level */
nextlevel = 1;
}
} /* else the path is just initiated with '/', so do not add additional slash in case of top-level nodes */
if (nextlevel != 2) {
if ((parent && parent->module == ctx->mod) || (!parent && ctx->path_len > 1 && name[0] == '{')) {
/* module not changed, print the name unprefixed */
len = snprintf(&ctx->path[ctx->path_len], LYSC_CTX_BUFSIZE - ctx->path_len, "%s%s", nextlevel ? "/" : "", name);
} else {
len = snprintf(&ctx->path[ctx->path_len], LYSC_CTX_BUFSIZE - ctx->path_len, "%s%s:%s", nextlevel ? "/" : "", ctx->mod->name, name);
}
} else {
len = snprintf(&ctx->path[ctx->path_len], LYSC_CTX_BUFSIZE - ctx->path_len, "='%s'}", name);
}
if (len >= LYSC_CTX_BUFSIZE - (int)ctx->path_len) {
/* output truncated */
ctx->path_len = LYSC_CTX_BUFSIZE - 1;
} else {
ctx->path_len += len;
}
}
}
/**
* @brief Duplicate the compiled pattern structure.
*
* Instead of duplicating memory, the reference counter in the @p orig is increased.
*
* @param[in] orig The pattern structure to duplicate.
* @return The duplicated structure to use.
*/
static struct lysc_pattern *
lysc_pattern_dup(struct lysc_pattern *orig)
{
++orig->refcount;
return orig;
}
/**
* @brief Duplicate the array of compiled patterns.
*
* The sized array itself is duplicated, but the pattern structures are just shadowed by increasing their reference counter.
*
* @param[in] ctx Libyang context for logging.
* @param[in] orig The patterns sized array to duplicate.
* @return New sized array as a copy of @p orig.
* @return NULL in case of memory allocation error.
*/
static struct lysc_pattern **
lysc_patterns_dup(struct ly_ctx *ctx, struct lysc_pattern **orig)
{
struct lysc_pattern **dup = NULL;
LY_ARRAY_COUNT_TYPE u;
assert(orig);
LY_ARRAY_CREATE_RET(ctx, dup, LY_ARRAY_COUNT(orig), NULL);
LY_ARRAY_FOR(orig, u) {
dup[u] = lysc_pattern_dup(orig[u]);
LY_ARRAY_INCREMENT(dup);
}
return dup;
}
/**
* @brief Duplicate compiled range structure.
*
* @param[in] ctx Libyang context for logging.
* @param[in] orig The range structure to be duplicated.
* @return New compiled range structure as a copy of @p orig.
* @return NULL in case of memory allocation error.
*/
struct lysc_range *
lysc_range_dup(struct ly_ctx *ctx, const struct lysc_range *orig)
{
struct lysc_range *dup;
LY_ERR ret;
assert(orig);
dup = calloc(1, sizeof *dup);
LY_CHECK_ERR_RET(!dup, LOGMEM(ctx), NULL);
if (orig->parts) {
LY_ARRAY_CREATE_GOTO(ctx, dup->parts, LY_ARRAY_COUNT(orig->parts), ret, cleanup);
LY_ARRAY_COUNT(dup->parts) = LY_ARRAY_COUNT(orig->parts);
memcpy(dup->parts, orig->parts, LY_ARRAY_COUNT(dup->parts) * sizeof *dup->parts);
}
DUP_STRING_GOTO(ctx, orig->eapptag, dup->eapptag, ret, cleanup);
DUP_STRING_GOTO(ctx, orig->emsg, dup->emsg, ret, cleanup);
dup->exts = lysc_ext_instance_dup(ctx, orig->exts);
return dup;
cleanup:
free(dup);
(void) ret; /* set but not used due to the return type */
return NULL;
}
/**
* @brief Stack for processing if-feature expressions.
*/
struct iff_stack {
size_t size; /**< number of items in the stack */
size_t index; /**< first empty item */
uint8_t *stack; /**< stack - array of @ref ifftokens to create the if-feature expression in prefix format */
};
/**
* @brief Add @ref ifftokens into the stack.
* @param[in] stack The if-feature stack to use.
* @param[in] value One of the @ref ifftokens to store in the stack.
* @return LY_EMEM in case of memory allocation error
* @return LY_ESUCCESS if the value successfully stored.
*/
static LY_ERR
iff_stack_push(struct iff_stack *stack, uint8_t value)
{
if (stack->index == stack->size) {
stack->size += 4;
stack->stack = ly_realloc(stack->stack, stack->size * sizeof *stack->stack);
LY_CHECK_ERR_RET(!stack->stack, LOGMEM(NULL); stack->size = 0, LY_EMEM);
}
stack->stack[stack->index++] = value;
return LY_SUCCESS;
}
/**
* @brief Get (and remove) the last item form the stack.
* @param[in] stack The if-feature stack to use.
* @return The value from the top of the stack.
*/
static uint8_t
iff_stack_pop(struct iff_stack *stack)
{
assert(stack && stack->index);
stack->index--;
return stack->stack[stack->index];
}
/**
* @brief Clean up the stack.
* @param[in] stack The if-feature stack to use.
*/
static void
iff_stack_clean(struct iff_stack *stack)
{
stack->size = 0;
free(stack->stack);
}
/**
* @brief Store the @ref ifftokens (@p op) on the given position in the 2bits array
* (libyang format of the if-feature expression).
* @param[in,out] list The 2bits array to modify.
* @param[in] op The operand (@ref ifftokens) to store.
* @param[in] pos Position (0-based) where to store the given @p op.
*/
static void
iff_setop(uint8_t *list, uint8_t op, size_t pos)
{
uint8_t *item;
uint8_t mask = 3;
assert(op <= 3); /* max 2 bits */
item = &list[pos / 4];
mask = mask << 2 * (pos % 4);
*item = (*item) & ~mask;
*item = (*item) | (op << 2 * (pos % 4));
}
#define LYS_IFF_LP 0x04 /**< Additional, temporary, value of @ref ifftokens: ( */
#define LYS_IFF_RP 0x08 /**< Additional, temporary, value of @ref ifftokens: ) */
/**
* @brief Find a feature of the given name and referenced in the given module.
*
* If the compiled schema is available (the schema is implemented), the feature from the compiled schema is
* returned. Otherwise, the special array of pre-compiled features is used to search for the feature. Such
* features are always disabled (feature from not implemented schema cannot be enabled), but in case the schema
* will be made implemented in future (no matter if implicitly via augmenting/deviating it or explicitly via
* ly_ctx_module_implement()), the compilation of these feature structure is finished, but the pointers
* assigned till that time will be still valid.
*
* @param[in] mod Module where the feature was referenced (used to resolve prefix of the feature).
* @param[in] name Name of the feature including possible prefix.
* @param[in] len Length of the string representing the feature identifier in the name variable (mandatory!).
* @return Pointer to the feature structure if found, NULL otherwise.
*/
static struct lysc_feature *
lys_feature_find(struct lys_module *mod, const char *name, size_t len)
{
size_t i;
LY_ARRAY_COUNT_TYPE u;
struct lysc_feature *f;
assert(mod);
for (i = 0; i < len; ++i) {
if (name[i] == ':') {
/* we have a prefixed feature */
mod = lys_module_find_prefix(mod, name, i);
LY_CHECK_RET(!mod, NULL);
name = &name[i + 1];
len = len - i - 1;
}
}
/* we have the correct module, get the feature */
LY_ARRAY_FOR(mod->features, u) {
f = &mod->features[u];
if (!ly_strncmp(f->name, name, len)) {
return f;
}
}
return NULL;
}
/**
* @brief Fill in the prepared compiled extensions definition structure according to the parsed extension definition.
*/
static LY_ERR
lys_compile_extension(struct lysc_ctx *ctx, const struct lys_module *ext_mod, struct lysp_ext *ext_p, struct lysc_ext **ext)
{
LY_ERR ret = LY_SUCCESS;
if (!ext_p->compiled) {
lysc_update_path(ctx, NULL, "{extension}");
lysc_update_path(ctx, NULL, ext_p->name);
/* compile the extension definition */
ext_p->compiled = calloc(1, sizeof **ext);
ext_p->compiled->refcount = 1;
DUP_STRING_GOTO(ctx->ctx, ext_p->name, ext_p->compiled->name, ret, done);
DUP_STRING_GOTO(ctx->ctx, ext_p->argument, ext_p->compiled->argument, ret, done);
ext_p->compiled->module = (struct lys_module *)ext_mod;
COMPILE_EXTS_GOTO(ctx, ext_p->exts, ext_p->compiled->exts, *ext, LYEXT_PAR_EXT, ret, done);
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
/* find extension definition plugin */
ext_p->compiled->plugin = lyext_get_plugin(ext_p->compiled);
}
*ext = lysc_ext_dup(ext_p->compiled);
done:
return ret;
}
/**
* @brief Fill in the prepared compiled extension instance structure according to the parsed extension instance.
*
* @param[in] ctx Compilation context.
* @param[in] ext_p Parsed extension instance.
* @param[in,out] ext Prepared compiled extension instance.
* @param[in] parent Extension instance parent.
* @param[in] parent_type Extension instance parent type.
* @param[in] ext_mod Optional module with the extension instance extension definition, set only for internal annotations.
*/
static LY_ERR
lys_compile_ext(struct lysc_ctx *ctx, struct lysp_ext_instance *ext_p, struct lysc_ext_instance *ext, void *parent,
LYEXT_PARENT parent_type, const struct lys_module *ext_mod)
{
LY_ERR ret = LY_SUCCESS;
const char *name;
size_t u;
LY_ARRAY_COUNT_TYPE v;
const char *prefixed_name = NULL;
DUP_STRING(ctx->ctx, ext_p->argument, ext->argument, ret);
LY_CHECK_RET(ret);
ext->insubstmt = ext_p->insubstmt;
ext->insubstmt_index = ext_p->insubstmt_index;
ext->module = ctx->mod_def;
ext->parent = parent;
ext->parent_type = parent_type;
lysc_update_path(ctx, ext->parent_type == LYEXT_PAR_NODE ? (struct lysc_node *)ext->parent : NULL, "{extension}");
/* get module where the extension definition should be placed */
for (u = strlen(ext_p->name); u && ext_p->name[u - 1] != ':'; --u) {}
if (ext_p->yin) {
/* YIN parser has to replace prefixes by the namespace - XML namespace/prefix pairs may differs form the YANG schema's
* namespace/prefix pair. YIN parser does not have the imports available, so mapping from XML namespace to the
* YANG (import) prefix must be done here. */
if (!ly_strncmp(ctx->mod_def->ns, ext_p->name, u - 1)) {
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, &ext_p->name[u], 0, &prefixed_name), cleanup);
u = 0;
} else {
assert(ctx->mod_def->parsed);
LY_ARRAY_FOR(ctx->mod_def->parsed->imports, v) {
if (!ly_strncmp(ctx->mod_def->parsed->imports[v].module->ns, ext_p->name, u - 1)) {
char *s;
LY_CHECK_ERR_GOTO(asprintf(&s, "%s:%s", ctx->mod_def->parsed->imports[v].prefix, &ext_p->name[u]) == -1,
ret = LY_EMEM, cleanup);
LY_CHECK_GOTO(ret = lydict_insert_zc(ctx->ctx, s, &prefixed_name), cleanup);
u = strlen(ctx->mod_def->parsed->imports[v].prefix) + 1; /* add semicolon */
break;
}
}
}
if (!prefixed_name) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid XML prefix of \"%.*s\" namespace used for extension instance identifier.", u, ext_p->name);
ret = LY_EVALID;
goto cleanup;
}
} else {
prefixed_name = ext_p->name;
}
lysc_update_path(ctx, NULL, prefixed_name);
if (!ext_mod) {
ext_mod = u ? lys_module_find_prefix(ctx->mod_def, prefixed_name, u - 1) : ctx->mod_def;
if (!ext_mod) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid prefix \"%.*s\" used for extension instance identifier.", u, prefixed_name);
ret = LY_EVALID;
goto cleanup;
} else if (!ext_mod->parsed->extensions) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Extension instance \"%s\" refers \"%s\" module that does not contain extension definitions.",
prefixed_name, ext_mod->name);
ret = LY_EVALID;
goto cleanup;
}
}
name = &prefixed_name[u];
/* find the parsed extension definition there */
LY_ARRAY_FOR(ext_mod->parsed->extensions, v) {
if (!strcmp(name, ext_mod->parsed->extensions[v].name)) {
/* compile extension definition and assign it */
LY_CHECK_GOTO(ret = lys_compile_extension(ctx, ext_mod, &ext_mod->parsed->extensions[v], &ext->def), cleanup);
break;
}
}
if (!ext->def) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Extension definition of extension instance \"%s\" not found.", prefixed_name);
ret = LY_EVALID;
goto cleanup;
}
/* unify the parsed extension from YIN and YANG sources. Without extension definition, it is not possible
* to get extension's argument from YIN source, so it is stored as one of the substatements. Here we have
* to find it, mark it with LYS_YIN_ARGUMENT and store it in the compiled structure. */
if (ext_p->yin && ext->def->argument && !ext->argument) {
/* Schema was parsed from YIN and an argument is expected, ... */
struct lysp_stmt *stmt = NULL;
if (ext->def->flags & LYS_YINELEM_TRUE) {
/* ... argument was the first XML child element */
if (ext_p->child && !(ext_p->child->flags & LYS_YIN_ATTR)) {
/* TODO check namespace of the statement */
if (!strcmp(ext_p->child->stmt, ext->def->argument)) {
stmt = ext_p->child;
}
}
} else {
/* ... argument was one of the XML attributes which are represented as child stmt
* with LYS_YIN_ATTR flag */
for (stmt = ext_p->child; stmt && (stmt->flags & LYS_YIN_ATTR); stmt = stmt->next) {
if (!strcmp(stmt->stmt, ext->def->argument)) {
/* this is the extension's argument */
break;
}
}
}
if (!stmt) {
/* missing extension's argument */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Extension instance \"%s\" misses argument \"%s\".", prefixed_name, ext->def->argument);
ret = LY_EVALID;
goto cleanup;
}
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, stmt->arg, 0, &ext->argument), cleanup);
stmt->flags |= LYS_YIN_ARGUMENT;
}
if (prefixed_name != ext_p->name) {
lydict_remove(ctx->ctx, ext_p->name);
ext_p->name = prefixed_name;
if (!ext_p->argument && ext->argument) {
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, ext->argument, 0, &ext_p->argument), cleanup);
}
}
if (ext->def->plugin && ext->def->plugin->compile) {
if (ext->argument) {
lysc_update_path(ctx, (struct lysc_node *)ext, ext->argument);
}
LY_CHECK_GOTO(ret = ext->def->plugin->compile(ctx, ext_p, ext), cleanup);
if (ext->argument) {
lysc_update_path(ctx, NULL, NULL);
}
}
ext_p->compiled = ext;
cleanup:
if (prefixed_name && prefixed_name != ext_p->name) {
lydict_remove(ctx->ctx, prefixed_name);
}
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
return ret;
}
/**
* @brief Compile information from the if-feature statement
* @param[in] ctx Compile context.
* @param[in] value The if-feature argument to process. It is pointer-to-pointer-to-char just to unify the compile functions.
* @param[in,out] iff Prepared (empty) compiled if-feature structure to fill.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_iffeature(struct lysc_ctx *ctx, const char **value, struct lysc_iffeature *iff)
{
LY_ERR rc = LY_SUCCESS;
const char *c = *value;
int64_t i, j;
int8_t op_len, last_not = 0, checkversion = 0;
LY_ARRAY_COUNT_TYPE f_size = 0, expr_size = 0, f_exp = 1;
uint8_t op;
struct iff_stack stack = {0, 0, NULL};
struct lysc_feature *f;
assert(c);
/* pre-parse the expression to get sizes for arrays, also do some syntax checks of the expression */
for (i = j = 0; c[i]; i++) {
if (c[i] == '(') {
j++;
checkversion = 1;
continue;
} else if (c[i] == ')') {
j--;
continue;
} else if (isspace(c[i])) {
checkversion = 1;
continue;
}
if (!strncmp(&c[i], "not", op_len = 3) || !strncmp(&c[i], "and", op_len = 3) || !strncmp(&c[i], "or", op_len = 2)) {
uint64_t spaces;
for (spaces = 0; c[i + op_len + spaces] && isspace(c[i + op_len + spaces]); spaces++);
if (c[i + op_len + spaces] == '\0') {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid value \"%s\" of if-feature - unexpected end of expression.", *value);
return LY_EVALID;
} else if (!isspace(c[i + op_len])) {
/* feature name starting with the not/and/or */
last_not = 0;
f_size++;
} else if (c[i] == 'n') { /* not operation */
if (last_not) {
/* double not */
expr_size = expr_size - 2;
last_not = 0;
} else {
last_not = 1;
}
} else { /* and, or */
if (f_exp != f_size) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid value \"%s\" of if-feature - missing feature/expression before \"%.*s\" operation.", *value, op_len, &c[i]);
return LY_EVALID;
}
f_exp++;
/* not a not operation */
last_not = 0;
}
i += op_len;
} else {
f_size++;
last_not = 0;
}
expr_size++;
while (!isspace(c[i])) {
if (!c[i] || c[i] == ')' || c[i] == '(') {
i--;
break;
}
i++;
}
}
if (j) {
/* not matching count of ( and ) */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid value \"%s\" of if-feature - non-matching opening and closing parentheses.", *value);
return LY_EVALID;
}
if (f_exp != f_size) {
/* features do not match the needed arguments for the logical operations */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid value \"%s\" of if-feature - number of features in expression does not match "
"the required number of operands for the operations.", *value);
return LY_EVALID;
}
if (checkversion || expr_size > 1) {
/* check that we have 1.1 module */
if (ctx->mod_def->version != LYS_VERSION_1_1) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid value \"%s\" of if-feature - YANG 1.1 expression in YANG 1.0 module.", *value);
return LY_EVALID;
}
}
/* allocate the memory */
LY_ARRAY_CREATE_RET(ctx->ctx, iff->features, f_size, LY_EMEM);
iff->expr = calloc((j = (expr_size / 4) + ((expr_size % 4) ? 1 : 0)), sizeof *iff->expr);
stack.stack = malloc(expr_size * sizeof *stack.stack);
LY_CHECK_ERR_GOTO(!stack.stack || !iff->expr, LOGMEM(ctx->ctx); rc = LY_EMEM, error);
stack.size = expr_size;
f_size--; expr_size--; /* used as indexes from now */
for (i--; i >= 0; i--) {
if (c[i] == ')') {
/* push it on stack */
iff_stack_push(&stack, LYS_IFF_RP);
continue;
} else if (c[i] == '(') {
/* pop from the stack into result all operators until ) */
while ((op = iff_stack_pop(&stack)) != LYS_IFF_RP) {
iff_setop(iff->expr, op, expr_size--);
}
continue;
} else if (isspace(c[i])) {
continue;
}
/* end of operator or operand -> find beginning and get what is it */
j = i + 1;
while (i >= 0 && !isspace(c[i]) && c[i] != '(') {
i--;
}
i++; /* go back by one step */
if (!strncmp(&c[i], "not", 3) && isspace(c[i + 3])) {
if (stack.index && stack.stack[stack.index - 1] == LYS_IFF_NOT) {
/* double not */
iff_stack_pop(&stack);
} else {
/* not has the highest priority, so do not pop from the stack
* as in case of AND and OR */
iff_stack_push(&stack, LYS_IFF_NOT);
}
} else if (!strncmp(&c[i], "and", 3) && isspace(c[i + 3])) {
/* as for OR - pop from the stack all operators with the same or higher
* priority and store them to the result, then push the AND to the stack */
while (stack.index && stack.stack[stack.index - 1] <= LYS_IFF_AND) {
op = iff_stack_pop(&stack);
iff_setop(iff->expr, op, expr_size--);
}
iff_stack_push(&stack, LYS_IFF_AND);
} else if (!strncmp(&c[i], "or", 2) && isspace(c[i + 2])) {
while (stack.index && stack.stack[stack.index - 1] <= LYS_IFF_OR) {
op = iff_stack_pop(&stack);
iff_setop(iff->expr, op, expr_size--);
}
iff_stack_push(&stack, LYS_IFF_OR);
} else {
/* feature name, length is j - i */
/* add it to the expression */
iff_setop(iff->expr, LYS_IFF_F, expr_size--);
/* now get the link to the feature definition */
f = lys_feature_find(ctx->mod_def, &c[i], j - i);
LY_CHECK_ERR_GOTO(!f, LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid value \"%s\" of if-feature - unable to find feature \"%.*s\".", *value, j - i, &c[i]);
rc = LY_EVALID, error)
iff->features[f_size] = f;
LY_ARRAY_INCREMENT(iff->features);
f_size--;
}
}
while (stack.index) {
op = iff_stack_pop(&stack);
iff_setop(iff->expr, op, expr_size--);
}
if (++expr_size || ++f_size) {
/* not all expected operators and operands found */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid value \"%s\" of if-feature - processing error.", *value);
rc = LY_EINT;
} else {
rc = LY_SUCCESS;
}
error:
/* cleanup */
iff_stack_clean(&stack);
return rc;
}
/**
* @brief Get the XPath context node for the given schema node.
* @param[in] start The schema node where the XPath expression appears.
* @return The context node to evaluate XPath expression in given schema node.
* @return NULL in case the context node is the root node.
*/
static struct lysc_node *
lysc_xpath_context(struct lysc_node *start)
{
for (; start && !(start->nodetype & (LYS_CONTAINER | LYS_LEAF | LYS_LEAFLIST | LYS_LIST | LYS_ANYDATA | LYS_RPC | LYS_ACTION | LYS_NOTIF));
start = start->parent) {}
return start;
}
/**
* @brief Compile information from the when statement
* @param[in] ctx Compile context.
* @param[in] when_p The parsed when statement structure.
* @param[in] flags Flags of the node with the "when" defiition.
* @param[in] node Node that inherited the "when" definition, must be connected to parents.
* @param[out] when Pointer where to store pointer to the created compiled when structure.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_when(struct lysc_ctx *ctx, struct lysp_when *when_p, uint16_t flags, struct lysc_node *node, struct lysc_when **when)
{
LY_ERR ret = LY_SUCCESS;
*when = calloc(1, sizeof **when);
(*when)->refcount = 1;
(*when)->cond = lyxp_expr_parse(ctx->ctx, when_p->cond, 0, 1);
(*when)->module = ctx->mod_def;
(*when)->context = lysc_xpath_context(node);
DUP_STRING_GOTO(ctx->ctx, when_p->dsc, (*when)->dsc, ret, done);
DUP_STRING_GOTO(ctx->ctx, when_p->ref, (*when)->ref, ret, done);
LY_CHECK_ERR_GOTO(!(*when)->cond, ret = ly_errcode(ctx->ctx), done);
COMPILE_EXTS_GOTO(ctx, when_p->exts, (*when)->exts, (*when), LYEXT_PAR_WHEN, ret, done);
(*when)->flags = flags & LYS_STATUS_MASK;
done:
return ret;
}
/**
* @brief Compile information from the must statement
* @param[in] ctx Compile context.
* @param[in] must_p The parsed must statement structure.
* @param[in,out] must Prepared (empty) compiled must structure to fill.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_must(struct lysc_ctx *ctx, struct lysp_restr *must_p, struct lysc_must *must)
{
LY_ERR ret = LY_SUCCESS;
must->cond = lyxp_expr_parse(ctx->ctx, must_p->arg, 0, 1);
LY_CHECK_ERR_GOTO(!must->cond, ret = ly_errcode(ctx->ctx), done);
must->module = ctx->mod_def;
DUP_STRING_GOTO(ctx->ctx, must_p->eapptag, must->eapptag, ret, done);
DUP_STRING_GOTO(ctx->ctx, must_p->emsg, must->emsg, ret, done);
DUP_STRING_GOTO(ctx->ctx, must_p->dsc, must->dsc, ret, done);
DUP_STRING_GOTO(ctx->ctx, must_p->ref, must->ref, ret, done);
COMPILE_EXTS_GOTO(ctx, must_p->exts, must->exts, must, LYEXT_PAR_MUST, ret, done);
done:
return ret;
}
/**
* @brief Compile information in the import statement - make sure there is the target module
* @param[in] ctx Compile context.
* @param[in] imp_p The parsed import statement structure to fill the module to.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_import(struct lysc_ctx *ctx, struct lysp_import *imp_p)
{
const struct lys_module *mod = NULL;
LY_ERR ret = LY_SUCCESS;
/* make sure that we have the parsed version (lysp_) of the imported module to import groupings or typedefs.
* The compiled version is needed only for augments, deviates and leafrefs, so they are checked (and added,
* if needed) when these nodes are finally being instantiated and validated at the end of schema compilation. */
if (!imp_p->module->parsed) {
/* try to use filepath if present */
if (imp_p->module->filepath) {
struct ly_in *in;
if (ly_in_new_filepath(imp_p->module->filepath, 0, &in)) {
LOGINT(ctx->ctx);
} else {
LY_CHECK_RET(lys_parse(ctx->ctx, in, !strcmp(&imp_p->module->filepath[strlen(imp_p->module->filepath - 4)],
".yin") ? LYS_IN_YIN : LYS_IN_YANG, &mod));
if (mod != imp_p->module) {
LOGERR(ctx->ctx, LY_EINT, "Filepath \"%s\" of the module \"%s\" does not match.",
imp_p->module->filepath, imp_p->module->name);
mod = NULL;
}
}
ly_in_free(in, 1);
}
if (!mod) {
if (lysp_load_module(ctx->ctx, imp_p->module->name, imp_p->module->revision, 0, 1, (struct lys_module **)&mod)) {
LOGERR(ctx->ctx, LY_ENOTFOUND, "Unable to reload \"%s\" module to import it into \"%s\", source data not found.",
imp_p->module->name, ctx->mod->name);
return LY_ENOTFOUND;
}
}
}
return ret;
}
LY_ERR
lys_identity_precompile(struct lysc_ctx *ctx_sc, struct ly_ctx *ctx, struct lys_module *module,
struct lysp_ident *identities_p, struct lysc_ident **identities)
{
LY_ARRAY_COUNT_TYPE offset = 0, u, v;
struct lysc_ctx context = {0};
LY_ERR ret = LY_SUCCESS;
assert(ctx_sc || ctx);
if (!ctx_sc) {
context.ctx = ctx;
context.mod = module;
context.mod_def = module;
context.path_len = 1;
context.path[0] = '/';
ctx_sc = &context;
}
if (!identities_p) {
return LY_SUCCESS;
}
if (*identities) {
offset = LY_ARRAY_COUNT(*identities);
}
lysc_update_path(ctx_sc, NULL, "{identity}");
LY_ARRAY_CREATE_RET(ctx_sc->ctx, *identities, LY_ARRAY_COUNT(identities_p), LY_EMEM);
LY_ARRAY_FOR(identities_p, u) {
lysc_update_path(ctx_sc, NULL, identities_p[u].name);
LY_ARRAY_INCREMENT(*identities);
COMPILE_CHECK_UNIQUENESS_ARRAY(ctx_sc, *identities, name, &(*identities)[offset + u], "identity", identities_p[u].name);
DUP_STRING_GOTO(ctx_sc->ctx, identities_p[u].name, (*identities)[offset + u].name, ret, done);
DUP_STRING_GOTO(ctx_sc->ctx, identities_p[u].dsc, (*identities)[offset + u].dsc, ret, done);
DUP_STRING_GOTO(ctx_sc->ctx, identities_p[u].ref, (*identities)[offset + u].ref, ret, done);
(*identities)[offset + u].module = ctx_sc->mod;
COMPILE_ARRAY_GOTO(ctx_sc, identities_p[u].iffeatures, (*identities)[offset + u].iffeatures, v,
lys_compile_iffeature, ret, done);
/* backlinks (derived) can be added no sooner than when all the identities in the current module are present */
COMPILE_EXTS_GOTO(ctx_sc, identities_p[u].exts, (*identities)[offset + u].exts, &(*identities)[offset + u],
LYEXT_PAR_IDENT, ret, done);
(*identities)[offset + u].flags = identities_p[u].flags;
lysc_update_path(ctx_sc, NULL, NULL);
}
lysc_update_path(ctx_sc, NULL, NULL);
done:
return ret;
}
/**
* @brief Check circular dependency of identities - identity MUST NOT reference itself (via their base statement).
*
* The function works in the same way as lys_compile_feature_circular_check() with different structures and error messages.
*
* @param[in] ctx Compile context for logging.
* @param[in] ident The base identity (its derived list is being extended by the identity being currently processed).
* @param[in] derived The list of derived identities of the identity being currently processed (not the one provided as @p ident)
* @return LY_SUCCESS if everything is ok.
* @return LY_EVALID if the identity is derived from itself.
*/
static LY_ERR
lys_compile_identity_circular_check(struct lysc_ctx *ctx, struct lysc_ident *ident, struct lysc_ident **derived)
{
LY_ERR ret = LY_SUCCESS;
LY_ARRAY_COUNT_TYPE u, v;
struct ly_set recursion = {0};
struct lysc_ident *drv;
if (!derived) {
return LY_SUCCESS;
}
for (u = 0; u < LY_ARRAY_COUNT(derived); ++u) {
if (ident == derived[u]) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Identity \"%s\" is indirectly derived from itself.", ident->name);
ret = LY_EVALID;
goto cleanup;
}
ret = ly_set_add(&recursion, derived[u], 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
for (v = 0; v < recursion.count; ++v) {
drv = recursion.objs[v];
if (!drv->derived) {
continue;
}
for (u = 0; u < LY_ARRAY_COUNT(drv->derived); ++u) {
if (ident == drv->derived[u]) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Identity \"%s\" is indirectly derived from itself.", ident->name);
ret = LY_EVALID;
goto cleanup;
}
ret = ly_set_add(&recursion, drv->derived[u], 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
}
cleanup:
ly_set_erase(&recursion, NULL);
return ret;
}
/**
* @brief Find and process the referenced base identities from another identity or identityref
*
* For bases in identity set backlinks to them from the base identities. For identityref, store
* the array of pointers to the base identities. So one of the ident or bases parameter must be set
* to distinguish these two use cases.
*
* @param[in] ctx Compile context, not only for logging but also to get the current module to resolve prefixes.
* @param[in] bases_p Array of names (including prefix if necessary) of base identities.
* @param[in] ident Referencing identity to work with, NULL for identityref.
* @param[in] bases Array of bases of identityref to fill in.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_identity_bases(struct lysc_ctx *ctx, struct lys_module *context_module, const char **bases_p,
struct lysc_ident *ident, struct lysc_ident ***bases)
{
LY_ARRAY_COUNT_TYPE u, v;
const char *s, *name;
struct lys_module *mod;
struct lysc_ident **idref;
assert(ident || bases);
if (LY_ARRAY_COUNT(bases_p) > 1 && ctx->mod_def->version < 2) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Multiple bases in %s are allowed only in YANG 1.1 modules.", ident ? "identity" : "identityref type");
return LY_EVALID;
}
LY_ARRAY_FOR(bases_p, u) {
s = strchr(bases_p[u], ':');
if (s) {
/* prefixed identity */
name = &s[1];
mod = lys_module_find_prefix(context_module, bases_p[u], s - bases_p[u]);
} else {
name = bases_p[u];
mod = context_module;
}
if (!mod) {
if (ident) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid prefix used for base (%s) of identity \"%s\".", bases_p[u], ident->name);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid prefix used for base (%s) of identityref.", bases_p[u]);
}
return LY_EVALID;
}
idref = NULL;
LY_ARRAY_FOR(mod->identities, v) {
if (!strcmp(name, mod->identities[v].name)) {
if (ident) {
if (ident == &mod->identities[v]) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Identity \"%s\" is derived from itself.", ident->name);
return LY_EVALID;
}
LY_CHECK_RET(lys_compile_identity_circular_check(ctx, &mod->identities[v], ident->derived));
/* we have match! store the backlink */
LY_ARRAY_NEW_RET(ctx->ctx, mod->identities[v].derived, idref, LY_EMEM);
*idref = ident;
} else {
/* we have match! store the found identity */
LY_ARRAY_NEW_RET(ctx->ctx, *bases, idref, LY_EMEM);
*idref = &mod->identities[v];
}
break;
}
}
if (!idref || !(*idref)) {
if (ident) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Unable to find base (%s) of identity \"%s\".", bases_p[u], ident->name);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Unable to find base (%s) of identityref.", bases_p[u]);
}
return LY_EVALID;
}
}
return LY_SUCCESS;
}
/**
* @brief For the given array of identities, set the backlinks from all their base identities.
* @param[in] ctx Compile context, not only for logging but also to get the current module to resolve prefixes.
* @param[in] idents_p Array of identities definitions from the parsed schema structure.
* @param[in] idents Array of referencing identities to which the backlinks are supposed to be set.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_identities_derived(struct lysc_ctx *ctx, struct lysp_ident *idents_p, struct lysc_ident *idents)
{
LY_ARRAY_COUNT_TYPE u;
lysc_update_path(ctx, NULL, "{identity}");
for (u = 0; u < LY_ARRAY_COUNT(idents_p); ++u) {
if (!idents_p[u].bases) {
continue;
}
lysc_update_path(ctx, NULL, idents[u].name);
LY_CHECK_RET(lys_compile_identity_bases(ctx, idents[u].module, idents_p[u].bases, &idents[u], NULL));
lysc_update_path(ctx, NULL, NULL);
}
lysc_update_path(ctx, NULL, NULL);
return LY_SUCCESS;
}
LY_ERR
lys_feature_precompile(struct lysc_ctx *ctx_sc, struct ly_ctx *ctx, struct lys_module *module,
struct lysp_feature *features_p, struct lysc_feature **features)
{
LY_ERR ret = LY_SUCCESS;
LY_ARRAY_COUNT_TYPE offset = 0, u;
struct lysc_ctx context = {0};
assert(ctx_sc || ctx);
if (!ctx_sc) {
context.ctx = ctx;
context.mod = module;
context.path_len = 1;
context.path[0] = '/';
ctx_sc = &context;
}
if (!features_p) {
return LY_SUCCESS;
}
if (*features) {
offset = LY_ARRAY_COUNT(*features);
}
lysc_update_path(ctx_sc, NULL, "{feature}");
LY_ARRAY_CREATE_RET(ctx_sc->ctx, *features, LY_ARRAY_COUNT(features_p), LY_EMEM);
LY_ARRAY_FOR(features_p, u) {
lysc_update_path(ctx_sc, NULL, features_p[u].name);
LY_ARRAY_INCREMENT(*features);
COMPILE_CHECK_UNIQUENESS_ARRAY(ctx_sc, *features, name, &(*features)[offset + u], "feature", features_p[u].name);
DUP_STRING_GOTO(ctx_sc->ctx, features_p[u].name, (*features)[offset + u].name, ret, done);
DUP_STRING_GOTO(ctx_sc->ctx, features_p[u].dsc, (*features)[offset + u].dsc, ret, done);
DUP_STRING_GOTO(ctx_sc->ctx, features_p[u].ref, (*features)[offset + u].ref, ret, done);
(*features)[offset + u].flags = features_p[u].flags;
(*features)[offset + u].module = ctx_sc->mod;
lysc_update_path(ctx_sc, NULL, NULL);
}
lysc_update_path(ctx_sc, NULL, NULL);
done:
return ret;
}
/**
* @brief Check circular dependency of features - feature MUST NOT reference itself (via their if-feature statement).
*
* The function works in the same way as lys_compile_identity_circular_check() with different structures and error messages.
*
* @param[in] ctx Compile context for logging.
* @param[in] feature The feature referenced in if-feature statement (its depfeatures list is being extended by the feature
* being currently processed).
* @param[in] depfeatures The list of depending features of the feature being currently processed (not the one provided as @p feature)
* @return LY_SUCCESS if everything is ok.
* @return LY_EVALID if the feature references indirectly itself.
*/
static LY_ERR
lys_compile_feature_circular_check(struct lysc_ctx *ctx, struct lysc_feature *feature, struct lysc_feature **depfeatures)
{
LY_ERR ret = LY_SUCCESS;
LY_ARRAY_COUNT_TYPE u, v;
struct ly_set recursion = {0};
struct lysc_feature *drv;
if (!depfeatures) {
return LY_SUCCESS;
}
for (u = 0; u < LY_ARRAY_COUNT(depfeatures); ++u) {
if (feature == depfeatures[u]) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Feature \"%s\" is indirectly referenced from itself.", feature->name);
ret = LY_EVALID;
goto cleanup;
}
ret = ly_set_add(&recursion, depfeatures[u], 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
for (v = 0; v < recursion.count; ++v) {
drv = recursion.objs[v];
if (!drv->depfeatures) {
continue;
}
for (u = 0; u < LY_ARRAY_COUNT(drv->depfeatures); ++u) {
if (feature == drv->depfeatures[u]) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Feature \"%s\" is indirectly referenced from itself.", feature->name);
ret = LY_EVALID;
goto cleanup;
}
ly_set_add(&recursion, drv->depfeatures[u], 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
}
cleanup:
ly_set_erase(&recursion, NULL);
return ret;
}
/**
* @brief Create pre-compiled features array.
*
* See lys_feature_precompile() for more details.
*
* @param[in] ctx Compile context.
* @param[in] feature_p Parsed feature definition to compile.
* @param[in,out] features List of already (pre)compiled features to find the corresponding precompiled feature structure.
* @return LY_ERR value.
*/
static LY_ERR
lys_feature_precompile_finish(struct lysc_ctx *ctx, struct lysp_feature *feature_p, struct lysc_feature *features)
{
LY_ARRAY_COUNT_TYPE u, v, x;
struct lysc_feature *feature, **df;
LY_ERR ret = LY_SUCCESS;
/* find the preprecompiled feature */
LY_ARRAY_FOR(features, x) {
if (strcmp(features[x].name, feature_p->name)) {
continue;
}
feature = &features[x];
lysc_update_path(ctx, NULL, "{feature}");
lysc_update_path(ctx, NULL, feature_p->name);
/* finish compilation started in lys_feature_precompile() */
COMPILE_EXTS_GOTO(ctx, feature_p->exts, feature->exts, feature, LYEXT_PAR_FEATURE, ret, done);
COMPILE_ARRAY_GOTO(ctx, feature_p->iffeatures, feature->iffeatures, u, lys_compile_iffeature, ret, done);
if (feature->iffeatures) {
for (u = 0; u < LY_ARRAY_COUNT(feature->iffeatures); ++u) {
if (feature->iffeatures[u].features) {
for (v = 0; v < LY_ARRAY_COUNT(feature->iffeatures[u].features); ++v) {
/* check for circular dependency - direct reference first,... */
if (feature == feature->iffeatures[u].features[v]) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Feature \"%s\" is referenced from itself.", feature->name);
return LY_EVALID;
}
/* ... and indirect circular reference */
LY_CHECK_RET(lys_compile_feature_circular_check(ctx, feature->iffeatures[u].features[v], feature->depfeatures));
/* add itself into the dependants list */
LY_ARRAY_NEW_RET(ctx->ctx, feature->iffeatures[u].features[v]->depfeatures, df, LY_EMEM);
*df = feature;
}
}
}
}
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
done:
return ret;
}
LOGINT(ctx->ctx);
return LY_EINT;
}
/**
* @brief Revert compiled list of features back to the precompiled state.
*
* Function is needed in case the compilation failed and the schema is expected to revert back to the non-compiled status.
* The features are supposed to be stored again as dis_features in ::lys_module structure.
*
* @param[in] ctx Compilation context.
* @param[in] mod The module structure still holding the compiled (but possibly not finished, only the list of compiled features is taken) schema
* and supposed to hold the dis_features list.
*/
static void
lys_feature_precompile_revert(struct lysc_ctx *ctx, struct lys_module *mod)
{
LY_ARRAY_COUNT_TYPE u, v;
/* in the dis_features list, remove all the parts (from finished compiling process)
* which may points into the data being freed here */
LY_ARRAY_FOR(mod->features, u) {
LY_ARRAY_FOR(mod->features[u].iffeatures, v) {
lysc_iffeature_free(ctx->ctx, &mod->features[u].iffeatures[v]);
}
LY_ARRAY_FREE(mod->features[u].iffeatures);
mod->features[u].iffeatures = NULL;
LY_ARRAY_FOR(mod->features[u].exts, v) {
lysc_ext_instance_free(ctx->ctx, &(mod->features[u].exts)[v]);
}
LY_ARRAY_FREE(mod->features[u].exts);
mod->features[u].exts = NULL;
}
}
/**
* @brief Validate and normalize numeric value from a range definition.
* @param[in] ctx Compile context.
* @param[in] basetype Base YANG built-in type of the node connected with the range restriction. Actually only LY_TYPE_DEC64 is important to
* allow processing of the fractions. The fraction point is extracted from the value which is then normalize according to given frdigits into
* valcopy to allow easy parsing and storing of the value. libyang stores decimal number without the decimal point which is always recovered from
* the known fraction-digits value. So, with fraction-digits 2, number 3.14 is stored as 314 and number 1 is stored as 100.
* @param[in] frdigits The fraction-digits of the type in case of LY_TYPE_DEC64.
* @param[in] value String value of the range boundary.
* @param[out] len Number of the processed bytes from the value. Processing stops on the first character which is not part of the number boundary.
* @param[out] valcopy NULL-terminated string with the numeric value to parse and store.
* @return LY_ERR value - LY_SUCCESS, LY_EMEM, LY_EVALID (no number) or LY_EINVAL (decimal64 not matching fraction-digits value).
*/
LY_ERR
range_part_check_value_syntax(struct lysc_ctx *ctx, LY_DATA_TYPE basetype, uint8_t frdigits, const char *value, size_t *len, char **valcopy)
{
size_t fraction = 0, size;
*len = 0;
assert(value);
/* parse value */
if (!isdigit(value[*len]) && (value[*len] != '-') && (value[*len] != '+')) {
return LY_EVALID;
}
if ((value[*len] == '-') || (value[*len] == '+')) {
++(*len);
}
while (isdigit(value[*len])) {
++(*len);
}
if ((basetype != LY_TYPE_DEC64) || (value[*len] != '.') || !isdigit(value[*len + 1])) {
if (basetype == LY_TYPE_DEC64) {
goto decimal;
} else {
*valcopy = strndup(value, *len);
return LY_SUCCESS;
}
}
fraction = *len;
++(*len);
while (isdigit(value[*len])) {
++(*len);
}
if (basetype == LY_TYPE_DEC64) {
decimal:
assert(frdigits);
if (fraction && (*len - 1 - fraction > frdigits)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Range boundary \"%.*s\" of decimal64 type exceeds defined number (%u) of fraction digits.",
*len, value, frdigits);
return LY_EINVAL;
}
if (fraction) {
size = (*len) + (frdigits - ((*len) - 1 - fraction));
} else {
size = (*len) + frdigits + 1;
}
*valcopy = malloc(size * sizeof **valcopy);
LY_CHECK_ERR_RET(!(*valcopy), LOGMEM(ctx->ctx), LY_EMEM);
(*valcopy)[size - 1] = '\0';
if (fraction) {
memcpy(&(*valcopy)[0], &value[0], fraction);
memcpy(&(*valcopy)[fraction], &value[fraction + 1], (*len) - 1 - (fraction));
memset(&(*valcopy)[(*len) - 1], '0', frdigits - ((*len) - 1 - fraction));
} else {
memcpy(&(*valcopy)[0], &value[0], *len);
memset(&(*valcopy)[*len], '0', frdigits);
}
}
return LY_SUCCESS;
}
/**
* @brief Check that values in range are in ascendant order.
* @param[in] unsigned_value Flag to note that we are working with unsigned values.
* @param[in] max Flag to distinguish if checking min or max value. min value must be strictly higher than previous,
* max can be also equal.
* @param[in] value Current value to check.
* @param[in] prev_value The last seen value.
* @return LY_SUCCESS or LY_EEXIST for invalid order.
*/
static LY_ERR
range_part_check_ascendancy(ly_bool unsigned_value, ly_bool max, int64_t value, int64_t prev_value)
{
if (unsigned_value) {
if ((max && (uint64_t)prev_value > (uint64_t)value) || (!max && (uint64_t)prev_value >= (uint64_t)value)) {
return LY_EEXIST;
}
} else {
if ((max && prev_value > value) || (!max && prev_value >= value)) {
return LY_EEXIST;
}
}
return LY_SUCCESS;
}
/**
* @brief Set min/max value of the range part.
* @param[in] ctx Compile context.
* @param[in] part Range part structure to fill.
* @param[in] max Flag to distinguish if storing min or max value.
* @param[in] prev The last seen value to check that all values in range are specified in ascendant order.
* @param[in] basetype Type of the value to get know implicit min/max values and other checking rules.
* @param[in] first Flag for the first value of the range to avoid ascendancy order.
* @param[in] length_restr Flag to distinguish between range and length restrictions. Only for logging.
* @param[in] frdigits The fraction-digits value in case of LY_TYPE_DEC64 basetype.
* @param[in] base_range Range from the type from which the current type is derived (if not built-in) to get type's min and max values.
* @param[in,out] value Numeric range value to be stored, if not provided the type's min/max value is set.
* @return LY_ERR value - LY_SUCCESS, LY_EDENIED (value brokes type's boundaries), LY_EVALID (not a number),
* LY_EEXIST (value is smaller than the previous one), LY_EINVAL (decimal64 value does not corresponds with the
* frdigits value), LY_EMEM.
*/
static LY_ERR
range_part_minmax(struct lysc_ctx *ctx, struct lysc_range_part *part, ly_bool max, int64_t prev, LY_DATA_TYPE basetype,
ly_bool first, ly_bool length_restr, uint8_t frdigits, struct lysc_range *base_range, const char **value)
{
LY_ERR ret = LY_SUCCESS;
char *valcopy = NULL;
size_t len;
if (value) {
ret = range_part_check_value_syntax(ctx, basetype, frdigits, *value, &len, &valcopy);
LY_CHECK_GOTO(ret, finalize);
}
if (!valcopy && base_range) {
if (max) {
part->max_64 = base_range->parts[LY_ARRAY_COUNT(base_range->parts) - 1].max_64;
} else {
part->min_64 = base_range->parts[0].min_64;
}
if (!first) {
ret = range_part_check_ascendancy(basetype <= LY_TYPE_STRING ? 1 : 0, max, max ? part->max_64 : part->min_64, prev);
}
goto finalize;
}
switch (basetype) {
case LY_TYPE_INT8: /* range */
if (valcopy) {
ret = ly_parse_int(valcopy, strlen(valcopy), INT64_C(-128), INT64_C(127), 10, max ? &part->max_64 : &part->min_64);
} else if (max) {
part->max_64 = INT64_C(127);
} else {
part->min_64 = INT64_C(-128);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(0, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_INT16: /* range */
if (valcopy) {
ret = ly_parse_int(valcopy, strlen(valcopy), INT64_C(-32768), INT64_C(32767), 10, max ? &part->max_64 : &part->min_64);
} else if (max) {
part->max_64 = INT64_C(32767);
} else {
part->min_64 = INT64_C(-32768);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(0, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_INT32: /* range */
if (valcopy) {
ret = ly_parse_int(valcopy, strlen(valcopy), INT64_C(-2147483648), INT64_C(2147483647), 10, max ? &part->max_64 : &part->min_64);
} else if (max) {
part->max_64 = INT64_C(2147483647);
} else {
part->min_64 = INT64_C(-2147483648);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(0, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_INT64: /* range */
case LY_TYPE_DEC64: /* range */
if (valcopy) {
ret = ly_parse_int(valcopy, strlen(valcopy), INT64_C(-9223372036854775807) - INT64_C(1), INT64_C(9223372036854775807), 10,
max ? &part->max_64 : &part->min_64);
} else if (max) {
part->max_64 = INT64_C(9223372036854775807);
} else {
part->min_64 = INT64_C(-9223372036854775807) - INT64_C(1);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(0, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_UINT8: /* range */
if (valcopy) {
ret = ly_parse_uint(valcopy, strlen(valcopy), UINT64_C(255), 10, max ? &part->max_u64 : &part->min_u64);
} else if (max) {
part->max_u64 = UINT64_C(255);
} else {
part->min_u64 = UINT64_C(0);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(1, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_UINT16: /* range */
if (valcopy) {
ret = ly_parse_uint(valcopy, strlen(valcopy), UINT64_C(65535), 10, max ? &part->max_u64 : &part->min_u64);
} else if (max) {
part->max_u64 = UINT64_C(65535);
} else {
part->min_u64 = UINT64_C(0);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(1, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_UINT32: /* range */
if (valcopy) {
ret = ly_parse_uint(valcopy, strlen(valcopy), UINT64_C(4294967295), 10, max ? &part->max_u64 : &part->min_u64);
} else if (max) {
part->max_u64 = UINT64_C(4294967295);
} else {
part->min_u64 = UINT64_C(0);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(1, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_UINT64: /* range */
case LY_TYPE_STRING: /* length */
case LY_TYPE_BINARY: /* length */
if (valcopy) {
ret = ly_parse_uint(valcopy, strlen(valcopy), UINT64_C(18446744073709551615), 10, max ? &part->max_u64 : &part->min_u64);
} else if (max) {
part->max_u64 = UINT64_C(18446744073709551615);
} else {
part->min_u64 = UINT64_C(0);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(1, max, max ? part->max_64 : part->min_64, prev);
}
break;
default:
LOGINT(ctx->ctx);
ret = LY_EINT;
}
finalize:
if (ret == LY_EDENIED) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - value \"%s\" does not fit the type limitations.",
length_restr ? "length" : "range", valcopy ? valcopy : *value);
} else if (ret == LY_EVALID) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - invalid value \"%s\".",
length_restr ? "length" : "range", valcopy ? valcopy : *value);
} else if (ret == LY_EEXIST) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - values are not in ascending order (%s).",
length_restr ? "length" : "range",
(valcopy && basetype != LY_TYPE_DEC64) ? valcopy : value ? *value : max ? "max" : "min");
} else if (!ret && value) {
*value = *value + len;
}
free(valcopy);
return ret;
}
/**
* @brief Compile the parsed range restriction.
* @param[in] ctx Compile context.
* @param[in] range_p Parsed range structure to compile.
* @param[in] basetype Base YANG built-in type of the node with the range restriction.
* @param[in] length_restr Flag to distinguish between range and length restrictions. Only for logging.
* @param[in] frdigits The fraction-digits value in case of LY_TYPE_DEC64 basetype.
* @param[in] base_range Range restriction of the type from which the current type is derived. The current
* range restriction must be more restrictive than the base_range.
* @param[in,out] range Pointer to the created current range structure.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_type_range(struct lysc_ctx *ctx, struct lysp_restr *range_p, LY_DATA_TYPE basetype, ly_bool length_restr,
uint8_t frdigits, struct lysc_range *base_range, struct lysc_range **range)
{
LY_ERR ret = LY_EVALID;
const char *expr;
struct lysc_range_part *parts = NULL, *part;
ly_bool range_expected = 0, uns;
LY_ARRAY_COUNT_TYPE parts_done = 0, u, v;
assert(range);
assert(range_p);
expr = range_p->arg;
while (1) {
if (isspace(*expr)) {
++expr;
} else if (*expr == '\0') {
if (range_expected) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - unexpected end of the expression after \"..\" (%s).",
length_restr ? "length" : "range", range_p->arg);
goto cleanup;
} else if (!parts || parts_done == LY_ARRAY_COUNT(parts)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - unexpected end of the expression (%s).",
length_restr ? "length" : "range", range_p->arg);
goto cleanup;
}
parts_done++;
break;
} else if (!strncmp(expr, "min", 3)) {
if (parts) {
/* min cannot be used elsewhere than in the first part */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - unexpected data before min keyword (%.*s).", length_restr ? "length" : "range",
expr - range_p->arg, range_p->arg);
goto cleanup;
}
expr += 3;
LY_ARRAY_NEW_GOTO(ctx->ctx, parts, part, ret, cleanup);
LY_CHECK_GOTO(range_part_minmax(ctx, part, 0, 0, basetype, 1, length_restr, frdigits, base_range, NULL), cleanup);
part->max_64 = part->min_64;
} else if (*expr == '|') {
if (!parts || range_expected) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - unexpected beginning of the expression (%s).", length_restr ? "length" : "range", expr);
goto cleanup;
}
expr++;
parts_done++;
/* process next part of the expression */
} else if (!strncmp(expr, "..", 2)) {
expr += 2;
while (isspace(*expr)) {
expr++;
}
if (!parts || LY_ARRAY_COUNT(parts) == parts_done) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - unexpected \"..\" without a lower bound.", length_restr ? "length" : "range");
goto cleanup;
}
/* continue expecting the upper boundary */
range_expected = 1;
} else if (isdigit(*expr) || (*expr == '-') || (*expr == '+')) {
/* number */
if (range_expected) {
part = &parts[LY_ARRAY_COUNT(parts) - 1];
LY_CHECK_GOTO(range_part_minmax(ctx, part, 1, part->min_64, basetype, 0, length_restr, frdigits, NULL, &expr), cleanup);
range_expected = 0;
} else {
LY_ARRAY_NEW_GOTO(ctx->ctx, parts, part, ret, cleanup);
LY_CHECK_GOTO(range_part_minmax(ctx, part, 0, parts_done ? parts[LY_ARRAY_COUNT(parts) - 2].max_64 : 0,
basetype, parts_done ? 0 : 1, length_restr, frdigits, NULL, &expr), cleanup);
part->max_64 = part->min_64;
}
/* continue with possible another expression part */
} else if (!strncmp(expr, "max", 3)) {
expr += 3;
while (isspace(*expr)) {
expr++;
}
if (*expr != '\0') {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "Invalid %s restriction - unexpected data after max keyword (%s).",
length_restr ? "length" : "range", expr);
goto cleanup;
}
if (range_expected) {
part = &parts[LY_ARRAY_COUNT(parts) - 1];
LY_CHECK_GOTO(range_part_minmax(ctx, part, 1, part->min_64, basetype, 0, length_restr, frdigits, base_range, NULL), cleanup);
range_expected = 0;
} else {
LY_ARRAY_NEW_GOTO(ctx->ctx, parts, part, ret, cleanup);
LY_CHECK_GOTO(range_part_minmax(ctx, part, 1, parts_done ? parts[LY_ARRAY_COUNT(parts) - 2].max_64 : 0,
basetype, parts_done ? 0 : 1, length_restr, frdigits, base_range, NULL), cleanup);
part->min_64 = part->max_64;
}
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "Invalid %s restriction - unexpected data (%s).",
length_restr ? "length" : "range", expr);
goto cleanup;
}
}
/* check with the previous range/length restriction */
if (base_range) {
switch (basetype) {
case LY_TYPE_BINARY:
case LY_TYPE_UINT8:
case LY_TYPE_UINT16:
case LY_TYPE_UINT32:
case LY_TYPE_UINT64:
case LY_TYPE_STRING:
uns = 1;
break;
case LY_TYPE_DEC64:
case LY_TYPE_INT8:
case LY_TYPE_INT16:
case LY_TYPE_INT32:
case LY_TYPE_INT64:
uns = 0;
break;
default:
LOGINT(ctx->ctx);
ret = LY_EINT;
goto cleanup;
}
for (u = v = 0; u < parts_done && v < LY_ARRAY_COUNT(base_range->parts); ++u) {
if ((uns && parts[u].min_u64 < base_range->parts[v].min_u64) || (!uns && parts[u].min_64 < base_range->parts[v].min_64)) {
goto baseerror;
}
/* current lower bound is not lower than the base */
if (base_range->parts[v].min_64 == base_range->parts[v].max_64) {
/* base has single value */
if (base_range->parts[v].min_64 == parts[u].min_64) {
/* both lower bounds are the same */
if (parts[u].min_64 != parts[u].max_64) {
/* current continues with a range */
goto baseerror;
} else {
/* equal single values, move both forward */
++v;
continue;
}
} else {
/* base is single value lower than current range, so the
* value from base range is removed in the current,
* move only base and repeat checking */
++v;
--u;
continue;
}
} else {
/* base is the range */
if (parts[u].min_64 == parts[u].max_64) {
/* current is a single value */
if ((uns && parts[u].max_u64 > base_range->parts[v].max_u64) || (!uns && parts[u].max_64 > base_range->parts[v].max_64)) {
/* current is behind the base range, so base range is omitted,
* move the base and keep the current for further check */
++v;
--u;
} /* else it is within the base range, so move the current, but keep the base */
continue;
} else {
/* both are ranges - check the higher bound, the lower was already checked */
if ((uns && parts[u].max_u64 > base_range->parts[v].max_u64) || (!uns && parts[u].max_64 > base_range->parts[v].max_64)) {
/* higher bound is higher than the current higher bound */
if ((uns && parts[u].min_u64 > base_range->parts[v].max_u64) || (!uns && parts[u].min_64 > base_range->parts[v].max_64)) {
/* but the current lower bound is also higher, so the base range is omitted,
* continue with the same current, but move the base */
--u;
++v;
continue;
}
/* current range starts within the base range but end behind it */
goto baseerror;
} else {
/* current range is smaller than the base,
* move current, but stay with the base */
continue;
}
}
}
}
if (u != parts_done) {
baseerror:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - the derived restriction (%s) is not equally or more limiting.",
length_restr ? "length" : "range", range_p->arg);
goto cleanup;
}
}
if (!(*range)) {
*range = calloc(1, sizeof **range);
LY_CHECK_ERR_RET(!(*range), LOGMEM(ctx->ctx), LY_EMEM);
}
/* we rewrite the following values as the types chain is being processed */
if (range_p->eapptag) {
lydict_remove(ctx->ctx, (*range)->eapptag);
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, range_p->eapptag, 0, &(*range)->eapptag), cleanup);
}
if (range_p->emsg) {
lydict_remove(ctx->ctx, (*range)->emsg);
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, range_p->emsg, 0, &(*range)->emsg), cleanup);
}
if (range_p->dsc) {
lydict_remove(ctx->ctx, (*range)->dsc);
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, range_p->dsc, 0, &(*range)->dsc), cleanup);
}
if (range_p->ref) {
lydict_remove(ctx->ctx, (*range)->ref);
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, range_p->ref, 0, &(*range)->ref), cleanup);
}
/* extensions are taken only from the last range by the caller */
(*range)->parts = parts;
parts = NULL;
ret = LY_SUCCESS;
cleanup:
LY_ARRAY_FREE(parts);
return ret;
}
/**
* @brief Checks pattern syntax.
*
* @param[in] ctx Context.
* @param[in] log_path Path for logging errors.
* @param[in] pattern Pattern to check.
* @param[in,out] pcre2_code Compiled PCRE2 pattern. If NULL, the compiled information used to validate pattern are freed.
* @return LY_ERR value - LY_SUCCESS, LY_EMEM, LY_EVALID.
*/
LY_ERR
lys_compile_type_pattern_check(struct ly_ctx *ctx, const char *log_path, const char *pattern, pcre2_code **code)
{
size_t idx, idx2, start, end, size, brack;
char *perl_regex, *ptr;
int err_code;
const char *orig_ptr;
PCRE2_SIZE err_offset;
pcre2_code *code_local;
#define URANGE_LEN 19
char *ublock2urange[][2] = {
{"BasicLatin", "[\\x{0000}-\\x{007F}]"},
{"Latin-1Supplement", "[\\x{0080}-\\x{00FF}]"},
{"LatinExtended-A", "[\\x{0100}-\\x{017F}]"},
{"LatinExtended-B", "[\\x{0180}-\\x{024F}]"},
{"IPAExtensions", "[\\x{0250}-\\x{02AF}]"},
{"SpacingModifierLetters", "[\\x{02B0}-\\x{02FF}]"},
{"CombiningDiacriticalMarks", "[\\x{0300}-\\x{036F}]"},
{"Greek", "[\\x{0370}-\\x{03FF}]"},
{"Cyrillic", "[\\x{0400}-\\x{04FF}]"},
{"Armenian", "[\\x{0530}-\\x{058F}]"},
{"Hebrew", "[\\x{0590}-\\x{05FF}]"},
{"Arabic", "[\\x{0600}-\\x{06FF}]"},
{"Syriac", "[\\x{0700}-\\x{074F}]"},
{"Thaana", "[\\x{0780}-\\x{07BF}]"},
{"Devanagari", "[\\x{0900}-\\x{097F}]"},
{"Bengali", "[\\x{0980}-\\x{09FF}]"},
{"Gurmukhi", "[\\x{0A00}-\\x{0A7F}]"},
{"Gujarati", "[\\x{0A80}-\\x{0AFF}]"},
{"Oriya", "[\\x{0B00}-\\x{0B7F}]"},
{"Tamil", "[\\x{0B80}-\\x{0BFF}]"},
{"Telugu", "[\\x{0C00}-\\x{0C7F}]"},
{"Kannada", "[\\x{0C80}-\\x{0CFF}]"},
{"Malayalam", "[\\x{0D00}-\\x{0D7F}]"},
{"Sinhala", "[\\x{0D80}-\\x{0DFF}]"},
{"Thai", "[\\x{0E00}-\\x{0E7F}]"},
{"Lao", "[\\x{0E80}-\\x{0EFF}]"},
{"Tibetan", "[\\x{0F00}-\\x{0FFF}]"},
{"Myanmar", "[\\x{1000}-\\x{109F}]"},
{"Georgian", "[\\x{10A0}-\\x{10FF}]"},
{"HangulJamo", "[\\x{1100}-\\x{11FF}]"},
{"Ethiopic", "[\\x{1200}-\\x{137F}]"},
{"Cherokee", "[\\x{13A0}-\\x{13FF}]"},
{"UnifiedCanadianAboriginalSyllabics", "[\\x{1400}-\\x{167F}]"},
{"Ogham", "[\\x{1680}-\\x{169F}]"},
{"Runic", "[\\x{16A0}-\\x{16FF}]"},
{"Khmer", "[\\x{1780}-\\x{17FF}]"},
{"Mongolian", "[\\x{1800}-\\x{18AF}]"},
{"LatinExtendedAdditional", "[\\x{1E00}-\\x{1EFF}]"},
{"GreekExtended", "[\\x{1F00}-\\x{1FFF}]"},
{"GeneralPunctuation", "[\\x{2000}-\\x{206F}]"},
{"SuperscriptsandSubscripts", "[\\x{2070}-\\x{209F}]"},
{"CurrencySymbols", "[\\x{20A0}-\\x{20CF}]"},
{"CombiningMarksforSymbols", "[\\x{20D0}-\\x{20FF}]"},
{"LetterlikeSymbols", "[\\x{2100}-\\x{214F}]"},
{"NumberForms", "[\\x{2150}-\\x{218F}]"},
{"Arrows", "[\\x{2190}-\\x{21FF}]"},
{"MathematicalOperators", "[\\x{2200}-\\x{22FF}]"},
{"MiscellaneousTechnical", "[\\x{2300}-\\x{23FF}]"},
{"ControlPictures", "[\\x{2400}-\\x{243F}]"},
{"OpticalCharacterRecognition", "[\\x{2440}-\\x{245F}]"},
{"EnclosedAlphanumerics", "[\\x{2460}-\\x{24FF}]"},
{"BoxDrawing", "[\\x{2500}-\\x{257F}]"},
{"BlockElements", "[\\x{2580}-\\x{259F}]"},
{"GeometricShapes", "[\\x{25A0}-\\x{25FF}]"},
{"MiscellaneousSymbols", "[\\x{2600}-\\x{26FF}]"},
{"Dingbats", "[\\x{2700}-\\x{27BF}]"},
{"BraillePatterns", "[\\x{2800}-\\x{28FF}]"},
{"CJKRadicalsSupplement", "[\\x{2E80}-\\x{2EFF}]"},
{"KangxiRadicals", "[\\x{2F00}-\\x{2FDF}]"},
{"IdeographicDescriptionCharacters", "[\\x{2FF0}-\\x{2FFF}]"},
{"CJKSymbolsandPunctuation", "[\\x{3000}-\\x{303F}]"},
{"Hiragana", "[\\x{3040}-\\x{309F}]"},
{"Katakana", "[\\x{30A0}-\\x{30FF}]"},
{"Bopomofo", "[\\x{3100}-\\x{312F}]"},
{"HangulCompatibilityJamo", "[\\x{3130}-\\x{318F}]"},
{"Kanbun", "[\\x{3190}-\\x{319F}]"},
{"BopomofoExtended", "[\\x{31A0}-\\x{31BF}]"},
{"EnclosedCJKLettersandMonths", "[\\x{3200}-\\x{32FF}]"},
{"CJKCompatibility", "[\\x{3300}-\\x{33FF}]"},
{"CJKUnifiedIdeographsExtensionA", "[\\x{3400}-\\x{4DB5}]"},
{"CJKUnifiedIdeographs", "[\\x{4E00}-\\x{9FFF}]"},
{"YiSyllables", "[\\x{A000}-\\x{A48F}]"},
{"YiRadicals", "[\\x{A490}-\\x{A4CF}]"},
{"HangulSyllables", "[\\x{AC00}-\\x{D7A3}]"},
{"PrivateUse", "[\\x{E000}-\\x{F8FF}]"},
{"CJKCompatibilityIdeographs", "[\\x{F900}-\\x{FAFF}]"},
{"AlphabeticPresentationForms", "[\\x{FB00}-\\x{FB4F}]"},
{"ArabicPresentationForms-A", "[\\x{FB50}-\\x{FDFF}]"},
{"CombiningHalfMarks", "[\\x{FE20}-\\x{FE2F}]"},
{"CJKCompatibilityForms", "[\\x{FE30}-\\x{FE4F}]"},
{"SmallFormVariants", "[\\x{FE50}-\\x{FE6F}]"},
{"ArabicPresentationForms-B", "[\\x{FE70}-\\x{FEFE}]"},
{"HalfwidthandFullwidthForms", "[\\x{FF00}-\\x{FFEF}]"},
{NULL, NULL}
};
/* adjust the expression to a Perl equivalent
* http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/#regexs */
/* allocate space for the transformed pattern */
size = strlen(pattern) + 1;
perl_regex = malloc(size);
LY_CHECK_ERR_RET(!perl_regex, LOGMEM(ctx), LY_EMEM);
perl_regex[0] = '\0';
/* we need to replace all "$" and "^" (that are not in "[]") with "\$" and "\^" */
brack = 0;
idx = 0;
orig_ptr = pattern;
while (orig_ptr[0]) {
switch (orig_ptr[0]) {
case '$':
case '^':
if (!brack) {
/* make space for the extra character */
++size;
perl_regex = ly_realloc(perl_regex, size);
LY_CHECK_ERR_RET(!perl_regex, LOGMEM(ctx), LY_EMEM);
/* print escape slash */
perl_regex[idx] = '\\';
++idx;
}
break;
case '[':
/* must not be escaped */
if ((orig_ptr == pattern) || (orig_ptr[-1] != '\\')) {
++brack;
}
break;
case ']':
if ((orig_ptr == pattern) || (orig_ptr[-1] != '\\')) {
/* pattern was checked and compiled already */
assert(brack);
--brack;
}
break;
default:
break;
}
/* copy char */
perl_regex[idx] = orig_ptr[0];
++idx;
++orig_ptr;
}
perl_regex[idx] = '\0';
/* substitute Unicode Character Blocks with exact Character Ranges */
while ((ptr = strstr(perl_regex, "\\p{Is"))) {
start = ptr - perl_regex;
ptr = strchr(ptr, '}');
if (!ptr) {
LOGVAL(ctx, LY_VLOG_STR, log_path, LY_VCODE_INREGEXP,
pattern, perl_regex + start + 2, "unterminated character property");
free(perl_regex);
return LY_EVALID;
}
end = (ptr - perl_regex) + 1;
/* need more space */
if (end - start < URANGE_LEN) {
perl_regex = ly_realloc(perl_regex, strlen(perl_regex) + (URANGE_LEN - (end - start)) + 1);
LY_CHECK_ERR_RET(!perl_regex, LOGMEM(ctx); free(perl_regex), LY_EMEM);
}
/* find our range */
for (idx = 0; ublock2urange[idx][0]; ++idx) {
if (!strncmp(perl_regex + start + 5, ublock2urange[idx][0], strlen(ublock2urange[idx][0]))) {
break;
}
}
if (!ublock2urange[idx][0]) {
LOGVAL(ctx, LY_VLOG_STR, log_path, LY_VCODE_INREGEXP,
pattern, perl_regex + start + 5, "unknown block name");
free(perl_regex);
return LY_EVALID;
}
/* make the space in the string and replace the block (but we cannot include brackets if it was already enclosed in them) */
for (idx2 = 0, idx = 0; idx2 < start; ++idx2) {
if ((perl_regex[idx2] == '[') && (!idx2 || (perl_regex[idx2 - 1] != '\\'))) {
++idx;
}
if ((perl_regex[idx2] == ']') && (!idx2 || (perl_regex[idx2 - 1] != '\\'))) {
--idx;
}
}
if (idx) {
/* skip brackets */
memmove(perl_regex + start + (URANGE_LEN - 2), perl_regex + end, strlen(perl_regex + end) + 1);
memcpy(perl_regex + start, ublock2urange[idx][1] + 1, URANGE_LEN - 2);
} else {
memmove(perl_regex + start + URANGE_LEN, perl_regex + end, strlen(perl_regex + end) + 1);
memcpy(perl_regex + start, ublock2urange[idx][1], URANGE_LEN);
}
}
/* must return 0, already checked during parsing */
code_local = pcre2_compile((PCRE2_SPTR)perl_regex, PCRE2_ZERO_TERMINATED,
PCRE2_UTF | PCRE2_ANCHORED | PCRE2_ENDANCHORED | PCRE2_DOLLAR_ENDONLY | PCRE2_NO_AUTO_CAPTURE,
&err_code, &err_offset, NULL);
if (!code_local) {
PCRE2_UCHAR err_msg[256] = {0};
pcre2_get_error_message(err_code, err_msg, 256);
LOGVAL(ctx, LY_VLOG_STR, log_path, LY_VCODE_INREGEXP, pattern, perl_regex + err_offset, err_msg);
free(perl_regex);
return LY_EVALID;
}
free(perl_regex);
if (code) {
*code = code_local;
} else {
free(code_local);
}
return LY_SUCCESS;
#undef URANGE_LEN
}
/**
* @brief Compile parsed pattern restriction in conjunction with the patterns from base type.
* @param[in] ctx Compile context.
* @param[in] patterns_p Array of parsed patterns from the current type to compile.
* @param[in] base_patterns Compiled patterns from the type from which the current type is derived.
* Patterns from the base type are inherited to have all the patterns that have to match at one place.
* @param[out] patterns Pointer to the storage for the patterns of the current type.
* @return LY_ERR LY_SUCCESS, LY_EMEM, LY_EVALID.
*/
static LY_ERR
lys_compile_type_patterns(struct lysc_ctx *ctx, struct lysp_restr *patterns_p,
struct lysc_pattern **base_patterns, struct lysc_pattern ***patterns)
{
struct lysc_pattern **pattern;
LY_ARRAY_COUNT_TYPE u;
LY_ERR ret = LY_SUCCESS;
/* first, copy the patterns from the base type */
if (base_patterns) {
*patterns = lysc_patterns_dup(ctx->ctx, base_patterns);
LY_CHECK_ERR_RET(!(*patterns), LOGMEM(ctx->ctx), LY_EMEM);
}
LY_ARRAY_FOR(patterns_p, u) {
LY_ARRAY_NEW_RET(ctx->ctx, (*patterns), pattern, LY_EMEM);
*pattern = calloc(1, sizeof **pattern);
++(*pattern)->refcount;
ret = lys_compile_type_pattern_check(ctx->ctx, ctx->path, &patterns_p[u].arg[1], &(*pattern)->code);
LY_CHECK_RET(ret);
if (patterns_p[u].arg[0] == 0x15) {
(*pattern)->inverted = 1;
}
DUP_STRING_GOTO(ctx->ctx, &patterns_p[u].arg[1], (*pattern)->expr, ret, done);
DUP_STRING_GOTO(ctx->ctx, patterns_p[u].eapptag, (*pattern)->eapptag, ret, done);
DUP_STRING_GOTO(ctx->ctx, patterns_p[u].emsg, (*pattern)->emsg, ret, done);
DUP_STRING_GOTO(ctx->ctx, patterns_p[u].dsc, (*pattern)->dsc, ret, done);
DUP_STRING_GOTO(ctx->ctx, patterns_p[u].ref, (*pattern)->ref, ret, done);
COMPILE_EXTS_GOTO(ctx, patterns_p[u].exts, (*pattern)->exts, (*pattern), LYEXT_PAR_PATTERN, ret, done);
}
done:
return ret;
}
/**
* @brief map of the possible restrictions combination for the specific built-in type.
*/
static uint16_t type_substmt_map[LY_DATA_TYPE_COUNT] = {
0 /* LY_TYPE_UNKNOWN */,
LYS_SET_LENGTH /* LY_TYPE_BINARY */,
LYS_SET_RANGE /* LY_TYPE_UINT8 */,
LYS_SET_RANGE /* LY_TYPE_UINT16 */,
LYS_SET_RANGE /* LY_TYPE_UINT32 */,
LYS_SET_RANGE /* LY_TYPE_UINT64 */,
LYS_SET_LENGTH | LYS_SET_PATTERN /* LY_TYPE_STRING */,
LYS_SET_BIT /* LY_TYPE_BITS */,
0 /* LY_TYPE_BOOL */,
LYS_SET_FRDIGITS | LYS_SET_RANGE /* LY_TYPE_DEC64 */,
0 /* LY_TYPE_EMPTY */,
LYS_SET_ENUM /* LY_TYPE_ENUM */,
LYS_SET_BASE /* LY_TYPE_IDENT */,
LYS_SET_REQINST /* LY_TYPE_INST */,
LYS_SET_REQINST | LYS_SET_PATH /* LY_TYPE_LEAFREF */,
LYS_SET_TYPE /* LY_TYPE_UNION */,
LYS_SET_RANGE /* LY_TYPE_INT8 */,
LYS_SET_RANGE /* LY_TYPE_INT16 */,
LYS_SET_RANGE /* LY_TYPE_INT32 */,
LYS_SET_RANGE /* LY_TYPE_INT64 */
};
/**
* @brief stringification of the YANG built-in data types
*/
const char *ly_data_type2str[LY_DATA_TYPE_COUNT] = {"unknown", "binary", "8bit unsigned integer", "16bit unsigned integer",
"32bit unsigned integer", "64bit unsigned integer", "string", "bits", "boolean", "decimal64", "empty", "enumeration",
"identityref", "instance-identifier", "leafref", "union", "8bit integer", "16bit integer", "32bit integer", "64bit integer"};
/**
* @brief Compile parsed type's enum structures (for enumeration and bits types).
* @param[in] ctx Compile context.
* @param[in] enums_p Array of the parsed enum structures to compile.
* @param[in] basetype Base YANG built-in type from which the current type is derived. Only LY_TYPE_ENUM and LY_TYPE_BITS are expected.
* @param[in] base_enums Array of the compiled enums information from the (latest) base type to check if the current enums are compatible.
* @param[out] enums Newly created array of the compiled enums information for the current type.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_type_enums(struct lysc_ctx *ctx, struct lysp_type_enum *enums_p, LY_DATA_TYPE basetype,
struct lysc_type_bitenum_item *base_enums, struct lysc_type_bitenum_item **enums)
{
LY_ERR ret = LY_SUCCESS;
LY_ARRAY_COUNT_TYPE u, v, match = 0;
int32_t value = 0;
uint32_t position = 0;
struct lysc_type_bitenum_item *e, storage;
if (base_enums && ctx->mod_def->version < 2) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "%s type can be subtyped only in YANG 1.1 modules.",
basetype == LY_TYPE_ENUM ? "Enumeration" : "Bits");
return LY_EVALID;
}
LY_ARRAY_FOR(enums_p, u) {
LY_ARRAY_NEW_RET(ctx->ctx, *enums, e, LY_EMEM);
DUP_STRING_GOTO(ctx->ctx, enums_p[u].name, e->name, ret, done);
DUP_STRING_GOTO(ctx->ctx, enums_p[u].ref, e->dsc, ret, done);
DUP_STRING_GOTO(ctx->ctx, enums_p[u].ref, e->ref, ret, done);
e->flags = enums_p[u].flags & LYS_FLAGS_COMPILED_MASK;
if (base_enums) {
/* check the enum/bit presence in the base type - the set of enums/bits in the derived type must be a subset */
LY_ARRAY_FOR(base_enums, v) {
if (!strcmp(e->name, base_enums[v].name)) {
break;
}
}
if (v == LY_ARRAY_COUNT(base_enums)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s - derived type adds new item \"%s\".",
basetype == LY_TYPE_ENUM ? "enumeration" : "bits", e->name);
return LY_EVALID;
}
match = v;
}
if (basetype == LY_TYPE_ENUM) {
e->flags |= LYS_ISENUM;
if (enums_p[u].flags & LYS_SET_VALUE) {
e->value = (int32_t)enums_p[u].value;
if (!u || e->value >= value) {
value = e->value + 1;
}
/* check collision with other values */
for (v = 0; v < LY_ARRAY_COUNT(*enums) - 1; ++v) {
if (e->value == (*enums)[v].value) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid enumeration - value %d collide in items \"%s\" and \"%s\".",
e->value, e->name, (*enums)[v].name);
return LY_EVALID;
}
}
} else if (base_enums) {
/* inherit the assigned value */
e->value = base_enums[match].value;
if (!u || e->value >= value) {
value = e->value + 1;
}
} else {
/* assign value automatically */
if (u && value == INT32_MIN) {
/* counter overflow */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid enumeration - it is not possible to auto-assign enum value for "
"\"%s\" since the highest value is already 2147483647.", e->name);
return LY_EVALID;
}
e->value = value++;
}
} else { /* LY_TYPE_BITS */
if (enums_p[u].flags & LYS_SET_VALUE) {
e->value = (int32_t)enums_p[u].value;
if (!u || (uint32_t)e->value >= position) {
position = (uint32_t)e->value + 1;
}
/* check collision with other values */
for (v = 0; v < LY_ARRAY_COUNT(*enums) - 1; ++v) {
if (e->value == (*enums)[v].value) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid bits - position %u collide in items \"%s\" and \"%s\".",
(uint32_t)e->value, e->name, (*enums)[v].name);
return LY_EVALID;
}
}
} else if (base_enums) {
/* inherit the assigned value */
e->value = base_enums[match].value;
if (!u || (uint32_t)e->value >= position) {
position = (uint32_t)e->value + 1;
}
} else {
/* assign value automatically */
if (u && position == 0) {
/* counter overflow */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid bits - it is not possible to auto-assign bit position for "
"\"%s\" since the highest value is already 4294967295.", e->name);
return LY_EVALID;
}
e->value = position++;
}
}
if (base_enums) {
/* the assigned values must not change from the derived type */
if (e->value != base_enums[match].value) {
if (basetype == LY_TYPE_ENUM) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid enumeration - value of the item \"%s\" has changed from %d to %d in the derived type.",
e->name, base_enums[match].value, e->value);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid bits - position of the item \"%s\" has changed from %u to %u in the derived type.",
e->name, (uint32_t)base_enums[match].value, (uint32_t)e->value);
}
return LY_EVALID;
}
}
COMPILE_ARRAY_GOTO(ctx, enums_p[u].iffeatures, e->iffeatures, v, lys_compile_iffeature, ret, done);
COMPILE_EXTS_GOTO(ctx, enums_p[u].exts, e->exts, e, basetype == LY_TYPE_ENUM ? LYEXT_PAR_TYPE_ENUM : LYEXT_PAR_TYPE_BIT, ret, done);
if (basetype == LY_TYPE_BITS) {
/* keep bits ordered by position */
for (v = u; v && (*enums)[v - 1].value > e->value; --v) {}
if (v != u) {
memcpy(&storage, e, sizeof *e);
memmove(&(*enums)[v + 1], &(*enums)[v], (u - v) * sizeof **enums);
memcpy(&(*enums)[v], &storage, sizeof storage);
}
}
}
done:
return ret;
}
/**
* @brief Parse path-arg (leafref). Get tokens of the path by repetitive calls of the function.
*
* path-arg = absolute-path / relative-path
* absolute-path = 1*("/" (node-identifier *path-predicate))
* relative-path = 1*(".." "/") descendant-path
*
* @param[in,out] path Path to parse.
* @param[out] prefix Prefix of the token, NULL if there is not any.
* @param[out] pref_len Length of the prefix, 0 if there is not any.
* @param[out] name Name of the token.
* @param[out] nam_len Length of the name.
* @param[out] parent_times Number of leading ".." in the path. Must be 0 on the first call,
* must not be changed between consecutive calls. -1 if the
* path is absolute.
* @param[out] has_predicate Flag to mark whether there is a predicate specified.
* @return LY_ERR value: LY_SUCCESS or LY_EINVAL in case of invalid character in the path.
*/
LY_ERR
lys_path_token(const char **path, const char **prefix, size_t *prefix_len, const char **name, size_t *name_len,
int32_t *parent_times, ly_bool *has_predicate)
{
int32_t par_times = 0;
assert(path && *path);
assert(parent_times);
assert(prefix);
assert(prefix_len);
assert(name);
assert(name_len);
assert(has_predicate);
*prefix = NULL;
*prefix_len = 0;
*name = NULL;
*name_len = 0;
*has_predicate = 0;
if (!*parent_times) {
if (!strncmp(*path, "..", 2)) {
*path += 2;
++par_times;
while (!strncmp(*path, "/..", 3)) {
*path += 3;
++par_times;
}
}
if (par_times) {
*parent_times = par_times;
} else {
*parent_times = -1;
}
}
if (**path != '/') {
return LY_EINVAL;
}
/* skip '/' */
++(*path);
/* node-identifier ([prefix:]name) */
LY_CHECK_RET(ly_parse_nodeid(path, prefix, prefix_len, name, name_len));
if ((**path == '/' && (*path)[1]) || !**path) {
/* path continues by another token or this is the last token */
return LY_SUCCESS;
} else if ((*path)[0] != '[') {
/* unexpected character */
return LY_EINVAL;
} else {
/* predicate starting with [ */
*has_predicate = 1;
return LY_SUCCESS;
}
}
/**
* @brief Check the features used in if-feature statements applicable to the leafref and its target.
*
* The set of features used for target must be a subset of features used for the leafref.
* This is not a perfect, we should compare the truth tables but it could require too much resources
* and RFC 7950 does not require it explicitely, so we simplify that.
*
* @param[in] refnode The leafref node.
* @param[in] target Tha target node of the leafref.
* @return LY_SUCCESS or LY_EVALID;
*/
static LY_ERR
lys_compile_leafref_features_validate(const struct lysc_node *refnode, const struct lysc_node *target)
{
LY_ERR ret = LY_EVALID;
const struct lysc_node *iter;
LY_ARRAY_COUNT_TYPE u, v;
struct ly_set features = {0};
for (iter = refnode; iter; iter = iter->parent) {
if (iter->iffeatures) {
LY_ARRAY_FOR(iter->iffeatures, u) {
LY_ARRAY_FOR(iter->iffeatures[u].features, v) {
LY_CHECK_GOTO(ly_set_add(&features, iter->iffeatures[u].features[v], 0, NULL), cleanup);
}
}
}
}
/* we should have, in features set, a superset of features applicable to the target node.
* If the feature is not present, we don;t have a subset of features applicable
* to the leafref itself. */
for (iter = target; iter; iter = iter->parent) {
if (iter->iffeatures) {
LY_ARRAY_FOR(iter->iffeatures, u) {
LY_ARRAY_FOR(iter->iffeatures[u].features, v) {
if (!ly_set_contains(&features, iter->iffeatures[u].features[v], NULL)) {
/* feature not present */
goto cleanup;
}
}
}
}
}
ret = LY_SUCCESS;
cleanup:
ly_set_erase(&features, NULL);
return ret;
}
static LY_ERR lys_compile_type(struct lysc_ctx *ctx, struct lysp_node *context_node_p, uint16_t context_flags,
struct lysp_module *context_mod, const char *context_name, struct lysp_type *type_p,
struct lysc_type **type, const char **units, const char **dflt, struct lys_module **dflt_mod);
/**
* @brief The core of the lys_compile_type() - compile information about the given type (from typedef or leaf/leaf-list).
* @param[in] ctx Compile context.
* @param[in] context_node_p Schema node where the type/typedef is placed to correctly find the base types.
* @param[in] context_flags Flags of the context node or the referencing typedef to correctly check status of referencing and referenced objects.
* @param[in] context_mod Module of the context node or the referencing typedef to correctly check status of referencing and referenced objects.
* @param[in] context_name Name of the context node or referencing typedef for logging.
* @param[in] type_p Parsed type to compile.
* @param[in] module Context module for the leafref path and identityref (to correctly resolve prefixes)
* @param[in] basetype Base YANG built-in type of the type to compile.
* @param[in] tpdfname Name of the type's typedef, serves as a flag - if it is leaf/leaf-list's type, it is NULL.
* @param[in] base The latest base (compiled) type from which the current type is being derived.
* @param[out] type Newly created type structure with the filled information about the type.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_type_(struct lysc_ctx *ctx, struct lysp_node *context_node_p, uint16_t context_flags,
struct lysp_module *context_mod, const char *context_name, struct lysp_type *type_p,
struct lys_module *module, LY_DATA_TYPE basetype, const char *tpdfname, struct lysc_type *base,
struct lysc_type **type)
{
LY_ERR ret = LY_SUCCESS;
struct lysc_type_bin *bin;
struct lysc_type_num *num;
struct lysc_type_str *str;
struct lysc_type_bits *bits;
struct lysc_type_enum *enumeration;
struct lysc_type_dec *dec;
struct lysc_type_identityref *idref;
struct lysc_type_leafref *lref;
struct lysc_type_union *un, *un_aux;
switch (basetype) {
case LY_TYPE_BINARY:
bin = (struct lysc_type_bin *)(*type);
/* RFC 7950 9.8.1, 9.4.4 - length, number of octets it contains */
if (type_p->length) {
LY_CHECK_RET(lys_compile_type_range(ctx, type_p->length, basetype, 1, 0,
base ? ((struct lysc_type_bin *)base)->length : NULL, &bin->length));
if (!tpdfname) {
COMPILE_EXTS_GOTO(ctx, type_p->length->exts, bin->length->exts, bin->length, LYEXT_PAR_LENGTH, ret, done);
}
}
if (tpdfname) {
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_bin));
}
break;
case LY_TYPE_BITS:
/* RFC 7950 9.7 - bits */
bits = (struct lysc_type_bits *)(*type);
if (type_p->bits) {
LY_CHECK_RET(lys_compile_type_enums(ctx, type_p->bits, basetype,
base ? (struct lysc_type_bitenum_item *)((struct lysc_type_bits *)base)->bits : NULL,
(struct lysc_type_bitenum_item **)&bits->bits));
}
if (!base && !type_p->flags) {
/* type derived from bits built-in type must contain at least one bit */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "bit", "bits type ", tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "bit", "bits type", "");
free(*type);
*type = NULL;
}
return LY_EVALID;
}
if (tpdfname) {
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_bits));
}
break;
case LY_TYPE_DEC64:
dec = (struct lysc_type_dec *)(*type);
/* RFC 7950 9.3.4 - fraction-digits */
if (!base) {
if (!type_p->fraction_digits) {
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "fraction-digits", "decimal64 type ", tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "fraction-digits", "decimal64 type", "");
free(*type);
*type = NULL;
}
return LY_EVALID;
}
dec->fraction_digits = type_p->fraction_digits;
} else {
if (type_p->fraction_digits) {
/* fraction digits is prohibited in types not directly derived from built-in decimal64 */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid fraction-digits substatement for type \"%s\" not directly derived from decimal64 built-in type.",
tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid fraction-digits substatement for type not directly derived from decimal64 built-in type.");
free(*type);
*type = NULL;
}
return LY_EVALID;
}
dec->fraction_digits = ((struct lysc_type_dec *)base)->fraction_digits;
}
/* RFC 7950 9.2.4 - range */
if (type_p->range) {
LY_CHECK_RET(lys_compile_type_range(ctx, type_p->range, basetype, 0, dec->fraction_digits,
base ? ((struct lysc_type_dec *)base)->range : NULL, &dec->range));
if (!tpdfname) {
COMPILE_EXTS_GOTO(ctx, type_p->range->exts, dec->range->exts, dec->range, LYEXT_PAR_RANGE, ret, done);
}
}
if (tpdfname) {
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_dec));
}
break;
case LY_TYPE_STRING:
str = (struct lysc_type_str *)(*type);
/* RFC 7950 9.4.4 - length */
if (type_p->length) {
LY_CHECK_RET(lys_compile_type_range(ctx, type_p->length, basetype, 1, 0,
base ? ((struct lysc_type_str *)base)->length : NULL, &str->length));
if (!tpdfname) {
COMPILE_EXTS_GOTO(ctx, type_p->length->exts, str->length->exts, str->length, LYEXT_PAR_LENGTH, ret, done);
}
} else if (base && ((struct lysc_type_str *)base)->length) {
str->length = lysc_range_dup(ctx->ctx, ((struct lysc_type_str *)base)->length);
}
/* RFC 7950 9.4.5 - pattern */
if (type_p->patterns) {
LY_CHECK_RET(lys_compile_type_patterns(ctx, type_p->patterns,
base ? ((struct lysc_type_str *)base)->patterns : NULL, &str->patterns));
} else if (base && ((struct lysc_type_str *)base)->patterns) {
str->patterns = lysc_patterns_dup(ctx->ctx, ((struct lysc_type_str *)base)->patterns);
}
if (tpdfname) {
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_str));
}
break;
case LY_TYPE_ENUM:
enumeration = (struct lysc_type_enum *)(*type);
/* RFC 7950 9.6 - enum */
if (type_p->enums) {
LY_CHECK_RET(lys_compile_type_enums(ctx, type_p->enums, basetype,
base ? ((struct lysc_type_enum *)base)->enums : NULL, &enumeration->enums));
}
if (!base && !type_p->flags) {
/* type derived from enumerations built-in type must contain at least one enum */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "enum", "enumeration type ", tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "enum", "enumeration type", "");
free(*type);
*type = NULL;
}
return LY_EVALID;
}
if (tpdfname) {
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_enum));
}
break;
case LY_TYPE_INT8:
case LY_TYPE_UINT8:
case LY_TYPE_INT16:
case LY_TYPE_UINT16:
case LY_TYPE_INT32:
case LY_TYPE_UINT32:
case LY_TYPE_INT64:
case LY_TYPE_UINT64:
num = (struct lysc_type_num *)(*type);
/* RFC 6020 9.2.4 - range */
if (type_p->range) {
LY_CHECK_RET(lys_compile_type_range(ctx, type_p->range, basetype, 0, 0,
base ? ((struct lysc_type_num *)base)->range : NULL, &num->range));
if (!tpdfname) {
COMPILE_EXTS_GOTO(ctx, type_p->range->exts, num->range->exts, num->range, LYEXT_PAR_RANGE, ret, done);
}
}
if (tpdfname) {
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_num));
}
break;
case LY_TYPE_IDENT:
idref = (struct lysc_type_identityref *)(*type);
/* RFC 7950 9.10.2 - base */
if (type_p->bases) {
if (base) {
/* only the directly derived identityrefs can contain base specification */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid base substatement for the type \"%s\" not directly derived from identityref built-in type.",
tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid base substatement for the type not directly derived from identityref built-in type.");
free(*type);
*type = NULL;
}
return LY_EVALID;
}
LY_CHECK_RET(lys_compile_identity_bases(ctx, module, type_p->bases, NULL, &idref->bases));
}
if (!base && !type_p->flags) {
/* type derived from identityref built-in type must contain at least one base */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "base", "identityref type ", tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "base", "identityref type", "");
free(*type);
*type = NULL;
}
return LY_EVALID;
}
if (tpdfname) {
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_identityref));
}
break;
case LY_TYPE_LEAFREF:
lref = (struct lysc_type_leafref *)*type;
/* RFC 7950 9.9.3 - require-instance */
if (type_p->flags & LYS_SET_REQINST) {
if (context_mod->mod->version < LYS_VERSION_1_1) {
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Leafref type \"%s\" can be restricted by require-instance statement only in YANG 1.1 modules.", tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Leafref type can be restricted by require-instance statement only in YANG 1.1 modules.");
free(*type);
*type = NULL;
}
return LY_EVALID;
}
lref->require_instance = type_p->require_instance;
} else if (base) {
/* inherit */
lref->require_instance = ((struct lysc_type_leafref *)base)->require_instance;
} else {
/* default is true */
lref->require_instance = 1;
}
if (type_p->path) {
lyxp_expr_dup(ctx->ctx, type_p->path, &lref->path);
lref->path_context = module;
} else if (base) {
lyxp_expr_dup(ctx->ctx, ((struct lysc_type_leafref *)base)->path, &lref->path);
lref->path_context = ((struct lysc_type_leafref *)base)->path_context;
} else if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "path", "leafref type ", tpdfname);
return LY_EVALID;
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "path", "leafref type", "");
free(*type);
*type = NULL;
return LY_EVALID;
}
if (tpdfname) {
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_leafref));
}
break;
case LY_TYPE_INST:
/* RFC 7950 9.9.3 - require-instance */
if (type_p->flags & LYS_SET_REQINST) {
((struct lysc_type_instanceid *)(*type))->require_instance = type_p->require_instance;
} else {
/* default is true */
((struct lysc_type_instanceid *)(*type))->require_instance = 1;
}
if (tpdfname) {
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_instanceid));
}
break;
case LY_TYPE_UNION:
un = (struct lysc_type_union *)(*type);
/* RFC 7950 7.4 - type */
if (type_p->types) {
if (base) {
/* only the directly derived union can contain types specification */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid type substatement for the type \"%s\" not directly derived from union built-in type.",
tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid type substatement for the type not directly derived from union built-in type.");
free(*type);
*type = NULL;
}
return LY_EVALID;
}
/* compile the type */
LY_ARRAY_CREATE_RET(ctx->ctx, un->types, LY_ARRAY_COUNT(type_p->types), LY_EVALID);
for (LY_ARRAY_COUNT_TYPE u = 0, additional = 0; u < LY_ARRAY_COUNT(type_p->types); ++u) {
LY_CHECK_RET(lys_compile_type(ctx, context_node_p, context_flags, context_mod, context_name,
&type_p->types[u], &un->types[u + additional], NULL, NULL, NULL));
if (un->types[u + additional]->basetype == LY_TYPE_UNION) {
/* add space for additional types from the union subtype */
un_aux = (struct lysc_type_union *)un->types[u + additional];
LY_ARRAY_RESIZE_ERR_RET(ctx->ctx, un->types, (*((uint64_t *)(type_p->types) - 1)) + additional + LY_ARRAY_COUNT(un_aux->types) - 1,
lysc_type_free(ctx->ctx, (struct lysc_type *)un_aux), LY_EMEM);
/* copy subtypes of the subtype union */
for (LY_ARRAY_COUNT_TYPE v = 0; v < LY_ARRAY_COUNT(un_aux->types); ++v) {
if (un_aux->types[v]->basetype == LY_TYPE_LEAFREF) {
/* duplicate the whole structure because of the instance-specific path resolving for realtype */
un->types[u + additional] = calloc(1, sizeof(struct lysc_type_leafref));
LY_CHECK_ERR_RET(!un->types[u + additional], LOGMEM(ctx->ctx); lysc_type_free(ctx->ctx, (struct lysc_type *)un_aux), LY_EMEM);
lref = (struct lysc_type_leafref *)un->types[u + additional];
lref->basetype = LY_TYPE_LEAFREF;
lyxp_expr_dup(ctx->ctx, ((struct lysc_type_leafref *)un_aux->types[v])->path, &lref->path);
lref->refcount = 1;
lref->require_instance = ((struct lysc_type_leafref *)un_aux->types[v])->require_instance;
lref->path_context = ((struct lysc_type_leafref *)un_aux->types[v])->path_context;
/* TODO extensions */
} else {
un->types[u + additional] = un_aux->types[v];
++un_aux->types[v]->refcount;
}
++additional;
LY_ARRAY_INCREMENT(un->types);
}
/* compensate u increment in main loop */
--additional;
/* free the replaced union subtype */
lysc_type_free(ctx->ctx, (struct lysc_type *)un_aux);
} else {
LY_ARRAY_INCREMENT(un->types);
}
}
}
if (!base && !type_p->flags) {
/* type derived from union built-in type must contain at least one type */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "type", "union type ", tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "type", "union type", "");
free(*type);
*type = NULL;
}
return LY_EVALID;
}
if (tpdfname) {
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_union));
}
break;
case LY_TYPE_BOOL:
case LY_TYPE_EMPTY:
case LY_TYPE_UNKNOWN: /* just to complete switch */
break;
}
LY_CHECK_ERR_RET(!(*type), LOGMEM(ctx->ctx), LY_EMEM);
done:
return ret;
}
/**
* @brief Compile information about the leaf/leaf-list's type.
* @param[in] ctx Compile context.
* @param[in] context_node_p Schema node where the type/typedef is placed to correctly find the base types.
* @param[in] context_flags Flags of the context node or the referencing typedef to correctly check status of referencing and referenced objects.
* @param[in] context_mod Module of the context node or the referencing typedef to correctly check status of referencing and referenced objects.
* @param[in] context_name Name of the context node or referencing typedef for logging.
* @param[in] type_p Parsed type to compile.
* @param[out] type Newly created (or reused with increased refcount) type structure with the filled information about the type.
* @param[out] units Storage for inheriting units value from the typedefs the current type derives from.
* @param[out] dflt Default value for the type.
* @param[out] dflt_mod Local module for the default value.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_type(struct lysc_ctx *ctx, struct lysp_node *context_node_p, uint16_t context_flags,
struct lysp_module *context_mod, const char *context_name, struct lysp_type *type_p,
struct lysc_type **type, const char **units, const char **dflt, struct lys_module **dflt_mod)
{
LY_ERR ret = LY_SUCCESS;
ly_bool dummyloops = 0;
struct type_context {
const struct lysp_tpdf *tpdf;
struct lysp_node *node;
struct lysp_module *mod;
} *tctx, *tctx_prev = NULL, *tctx_iter;
LY_DATA_TYPE basetype = LY_TYPE_UNKNOWN;
struct lysc_type *base = NULL, *prev_type;
struct ly_set tpdf_chain = {0};
assert((dflt && dflt_mod) || (!dflt && !dflt_mod));
(*type) = NULL;
if (dflt) {
*dflt = NULL;
*dflt_mod = NULL;
}
tctx = calloc(1, sizeof *tctx);
LY_CHECK_ERR_RET(!tctx, LOGMEM(ctx->ctx), LY_EMEM);
for (ret = lysp_type_find(type_p->name, context_node_p, ctx->mod_def->parsed,
&basetype, &tctx->tpdf, &tctx->node, &tctx->mod);
ret == LY_SUCCESS;
ret = lysp_type_find(tctx_prev->tpdf->type.name, tctx_prev->node, tctx_prev->mod,
&basetype, &tctx->tpdf, &tctx->node, &tctx->mod)) {
if (basetype) {
break;
}
/* check status */
ret = lysc_check_status(ctx, context_flags, context_mod, context_name,
tctx->tpdf->flags, tctx->mod, tctx->node ? tctx->node->name : tctx->tpdf->name);
LY_CHECK_ERR_GOTO(ret, free(tctx), cleanup);
if (units && !*units) {
/* inherit units */
DUP_STRING(ctx->ctx, tctx->tpdf->units, *units, ret);
LY_CHECK_ERR_GOTO(ret, free(tctx), cleanup);
}
if (dflt && !*dflt) {
/* inherit default */
*dflt = tctx->tpdf->dflt;
*dflt_mod = tctx->mod->mod;
}
if (dummyloops && (!units || *units) && dflt && *dflt) {
basetype = ((struct type_context *)tpdf_chain.objs[tpdf_chain.count - 1])->tpdf->type.compiled->basetype;
break;
}
if (tctx->tpdf->type.compiled) {
/* it is not necessary to continue, the rest of the chain was already compiled,
* but we still may need to inherit default and units values, so start dummy loops */
basetype = tctx->tpdf->type.compiled->basetype;
ret = ly_set_add(&tpdf_chain, tctx, LY_SET_OPT_USEASLIST, NULL);
LY_CHECK_ERR_GOTO(ret, free(tctx), cleanup);
if ((units && !*units) || (dflt && !*dflt)) {
dummyloops = 1;
goto preparenext;
} else {
tctx = NULL;
break;
}
}
/* circular typedef reference detection */
for (uint32_t u = 0; u < tpdf_chain.count; u++) {
/* local part */
tctx_iter = (struct type_context *)tpdf_chain.objs[u];
if (tctx_iter->mod == tctx->mod && tctx_iter->node == tctx->node && tctx_iter->tpdf == tctx->tpdf) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid \"%s\" type reference - circular chain of types detected.", tctx->tpdf->name);
free(tctx);
ret = LY_EVALID;
goto cleanup;
}
}
for (uint32_t u = 0; u < ctx->tpdf_chain.count; u++) {
/* global part for unions corner case */
tctx_iter = (struct type_context *)ctx->tpdf_chain.objs[u];
if (tctx_iter->mod == tctx->mod && tctx_iter->node == tctx->node && tctx_iter->tpdf == tctx->tpdf) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid \"%s\" type reference - circular chain of types detected.", tctx->tpdf->name);
free(tctx);
ret = LY_EVALID;
goto cleanup;
}
}
/* store information for the following processing */
ret = ly_set_add(&tpdf_chain, tctx, LY_SET_OPT_USEASLIST, NULL);
LY_CHECK_ERR_GOTO(ret, free(tctx), cleanup);
preparenext:
/* prepare next loop */
tctx_prev = tctx;
tctx = calloc(1, sizeof *tctx);
LY_CHECK_ERR_RET(!tctx, LOGMEM(ctx->ctx), LY_EMEM);
}
free(tctx);
/* allocate type according to the basetype */
switch (basetype) {
case LY_TYPE_BINARY:
*type = calloc(1, sizeof(struct lysc_type_bin));
break;
case LY_TYPE_BITS:
*type = calloc(1, sizeof(struct lysc_type_bits));
break;
case LY_TYPE_BOOL:
case LY_TYPE_EMPTY:
*type = calloc(1, sizeof(struct lysc_type));
break;
case LY_TYPE_DEC64:
*type = calloc(1, sizeof(struct lysc_type_dec));
break;
case LY_TYPE_ENUM:
*type = calloc(1, sizeof(struct lysc_type_enum));
break;
case LY_TYPE_IDENT:
*type = calloc(1, sizeof(struct lysc_type_identityref));
break;
case LY_TYPE_INST:
*type = calloc(1, sizeof(struct lysc_type_instanceid));
break;
case LY_TYPE_LEAFREF:
*type = calloc(1, sizeof(struct lysc_type_leafref));
break;
case LY_TYPE_STRING:
*type = calloc(1, sizeof(struct lysc_type_str));
break;
case LY_TYPE_UNION:
*type = calloc(1, sizeof(struct lysc_type_union));
break;
case LY_TYPE_INT8:
case LY_TYPE_UINT8:
case LY_TYPE_INT16:
case LY_TYPE_UINT16:
case LY_TYPE_INT32:
case LY_TYPE_UINT32:
case LY_TYPE_INT64:
case LY_TYPE_UINT64:
*type = calloc(1, sizeof(struct lysc_type_num));
break;
case LY_TYPE_UNKNOWN:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Referenced type \"%s\" not found.", tctx_prev ? tctx_prev->tpdf->type.name : type_p->name);
ret = LY_EVALID;
goto cleanup;
}
LY_CHECK_ERR_GOTO(!(*type), LOGMEM(ctx->ctx), cleanup);
if (~type_substmt_map[basetype] & type_p->flags) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "Invalid type restrictions for %s type.",
ly_data_type2str[basetype]);
free(*type);
(*type) = NULL;
ret = LY_EVALID;
goto cleanup;
}
/* get restrictions from the referred typedefs */
for (uint32_t u = tpdf_chain.count - 1; u + 1 > 0; --u) {
tctx = (struct type_context *)tpdf_chain.objs[u];
/* remember the typedef context for circular check */
ret = ly_set_add(&ctx->tpdf_chain, tctx, LY_SET_OPT_USEASLIST, NULL);
LY_CHECK_GOTO(ret, cleanup);
if (tctx->tpdf->type.compiled) {
base = tctx->tpdf->type.compiled;
continue;
} else if (basetype != LY_TYPE_LEAFREF && (u != tpdf_chain.count - 1) && !(tctx->tpdf->type.flags)) {
/* no change, just use the type information from the base */
base = ((struct lysp_tpdf *)tctx->tpdf)->type.compiled = ((struct type_context *)tpdf_chain.objs[u + 1])->tpdf->type.compiled;
++base->refcount;
continue;
}
++(*type)->refcount;
if (~type_substmt_map[basetype] & tctx->tpdf->type.flags) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "Invalid type \"%s\" restriction(s) for %s type.",
tctx->tpdf->name, ly_data_type2str[basetype]);
ret = LY_EVALID;
goto cleanup;
} else if (basetype == LY_TYPE_EMPTY && tctx->tpdf->dflt) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid type \"%s\" - \"empty\" type must not have a default value (%s).",
tctx->tpdf->name, tctx->tpdf->dflt);
ret = LY_EVALID;
goto cleanup;
}
(*type)->basetype = basetype;
/* TODO user type plugins */
(*type)->plugin = &ly_builtin_type_plugins[basetype];
prev_type = *type;
ret = lys_compile_type_(ctx, tctx->node, tctx->tpdf->flags, tctx->mod, tctx->tpdf->name, &((struct lysp_tpdf *)tctx->tpdf)->type,
basetype & (LY_TYPE_LEAFREF | LY_TYPE_UNION) ? lysp_find_module(ctx->ctx, tctx->mod) : NULL,
basetype, tctx->tpdf->name, base, type);
LY_CHECK_GOTO(ret, cleanup);
base = prev_type;
}
/* remove the processed typedef contexts from the stack for circular check */
ctx->tpdf_chain.count = ctx->tpdf_chain.count - tpdf_chain.count;
/* process the type definition in leaf */
if (type_p->flags || !base || basetype == LY_TYPE_LEAFREF) {
/* get restrictions from the node itself */
(*type)->basetype = basetype;
/* TODO user type plugins */
(*type)->plugin = &ly_builtin_type_plugins[basetype];
++(*type)->refcount;
ret = lys_compile_type_(ctx, context_node_p, context_flags, context_mod, context_name, type_p, ctx->mod_def, basetype, NULL, base, type);
LY_CHECK_GOTO(ret, cleanup);
} else if (basetype != LY_TYPE_BOOL && basetype != LY_TYPE_EMPTY) {
/* no specific restriction in leaf's type definition, copy from the base */
free(*type);
(*type) = base;
++(*type)->refcount;
}
COMPILE_EXTS_GOTO(ctx, type_p->exts, (*type)->exts, (*type), LYEXT_PAR_TYPE, ret, cleanup);
cleanup:
ly_set_erase(&tpdf_chain, free);
return ret;
}
/**
* @brief Compile status information of the given node.
*
* To simplify getting status of the node, the flags are set following inheritance rules, so all the nodes
* has the status correctly set during the compilation.
*
* @param[in] ctx Compile context
* @param[in,out] node_flags Flags of the compiled node which status is supposed to be resolved.
* If the status was set explicitly on the node, it is already set in the flags value and we just check
* the compatibility with the parent's status value.
* @param[in] parent_flags Flags of the parent node to check/inherit the status value.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_status(struct lysc_ctx *ctx, uint16_t *node_flags, uint16_t parent_flags)
{
/* status - it is not inherited by specification, but it does not make sense to have
* current in deprecated or deprecated in obsolete, so we do print warning and inherit status */
if (!((*node_flags) & LYS_STATUS_MASK)) {
if (parent_flags & (LYS_STATUS_DEPRC | LYS_STATUS_OBSLT)) {
if ((parent_flags & 0x3) != 0x3) {
/* do not print the warning when inheriting status from uses - the uses_status value has a special
* combination of bits (0x3) which marks the uses_status value */
LOGWRN(ctx->ctx, "Missing explicit \"%s\" status that was already specified in parent, inheriting.",
(parent_flags & LYS_STATUS_DEPRC) ? "deprecated" : "obsolete");
}
(*node_flags) |= parent_flags & LYS_STATUS_MASK;
} else {
(*node_flags) |= LYS_STATUS_CURR;
}
} else if (parent_flags & LYS_STATUS_MASK) {
/* check status compatibility with the parent */
if ((parent_flags & LYS_STATUS_MASK) > ((*node_flags) & LYS_STATUS_MASK)) {
if ((*node_flags) & LYS_STATUS_CURR) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"A \"current\" status is in conflict with the parent's \"%s\" status.",
(parent_flags & LYS_STATUS_DEPRC) ? "deprecated" : "obsolete");
} else { /* LYS_STATUS_DEPRC */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"A \"deprecated\" status is in conflict with the parent's \"obsolete\" status.");
}
return LY_EVALID;
}
}
return LY_SUCCESS;
}
/**
* @brief Check uniqness of the node/action/notification name.
*
* Data nodes, actions/RPCs and Notifications are stored separately (in distinguish lists) in the schema
* structures, but they share the namespace so we need to check their name collisions.
*
* @param[in] ctx Compile context.
* @param[in] parent Parent of the nodes to check, can be NULL.
* @param[in] name Name of the item to find in the given lists.
* @param[in] exclude Node that was just added that should be excluded from the name checking.
* @return LY_SUCCESS in case of unique name, LY_EEXIST otherwise.
*/
static LY_ERR
lys_compile_node_uniqness(struct lysc_ctx *ctx, const struct lysc_node *parent, const char *name,
const struct lysc_node *exclude)
{
const struct lysc_node *iter, *iter2;
const struct lysc_action *actions;
const struct lysc_notif *notifs;
uint32_t getnext_flags;
LY_ARRAY_COUNT_TYPE u;
#define CHECK_NODE(iter, exclude, name) (iter != (void *)exclude && (iter)->module == exclude->module && !strcmp(name, (iter)->name))
if (exclude->nodetype == LYS_CASE) {
/* check restricted only to all the cases */
assert(parent->nodetype == LYS_CHOICE);
LY_LIST_FOR(lysc_node_children(parent, 0), iter) {
if (CHECK_NODE(iter, exclude, name)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DUPIDENT, name, "case");
return LY_EEXIST;
}
}
return LY_SUCCESS;
}
/* no reason for our parent to be choice anymore */
assert(!parent || (parent->nodetype != LYS_CHOICE));
if (parent && (parent->nodetype == LYS_CASE)) {
/* move to the first data definition parent */
parent = lysc_data_parent(parent);
}
getnext_flags = LYS_GETNEXT_NOSTATECHECK | LYS_GETNEXT_WITHCHOICE;
if (parent && (parent->nodetype & (LYS_RPC | LYS_ACTION)) && (exclude->flags & LYS_CONFIG_R)) {
getnext_flags |= LYS_GETNEXT_OUTPUT;
}
iter = NULL;
while ((iter = lys_getnext(iter, parent, ctx->mod->compiled, getnext_flags))) {
if (CHECK_NODE(iter, exclude, name)) {
goto error;
}
/* we must compare with both the choice and all its nested data-definiition nodes (but not recursively) */
if (iter->nodetype == LYS_CHOICE) {
iter2 = NULL;
while ((iter2 = lys_getnext(iter2, iter, NULL, LYS_GETNEXT_NOSTATECHECK))) {
if (CHECK_NODE(iter2, exclude, name)) {
goto error;
}
}
}
}
actions = parent ? lysc_node_actions(parent) : ctx->mod->compiled->rpcs;
LY_ARRAY_FOR(actions, u) {
if (CHECK_NODE(&actions[u], exclude, name)) {
goto error;
}
}
notifs = parent ? lysc_node_notifs(parent) : ctx->mod->compiled->notifs;
LY_ARRAY_FOR(notifs, u) {
if (CHECK_NODE(&notifs[u], exclude, name)) {
goto error;
}
}
return LY_SUCCESS;
error:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DUPIDENT, name, "data definition/RPC/action/notification");
return LY_EEXIST;
#undef CHECK_NODE
}
static LY_ERR lys_compile_node(struct lysc_ctx *ctx, struct lysp_node *node_p, struct lysc_node *parent, uint16_t uses_status);
/**
* @brief Compile parsed RPC/action schema node information.
* @param[in] ctx Compile context
* @param[in] action_p Parsed RPC/action schema node.
* @param[in] parent Parent node of the action, NULL in case of RPC (top-level action)
* @param[in,out] action Prepared (empty) compiled action structure to fill.
* @param[in] uses_status If the RPC/action is being placed instead of uses, here we have the uses's status value (as node's flags).
* Zero means no uses, non-zero value with no status bit set mean the default status.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_action(struct lysc_ctx *ctx, struct lysp_action *action_p,
struct lysc_node *parent, struct lysc_action *action, uint16_t uses_status)
{
LY_ERR ret = LY_SUCCESS;
struct lysp_node *child_p;
LY_ARRAY_COUNT_TYPE u;
uint32_t opt_prev = ctx->options;
lysc_update_path(ctx, parent, action_p->name);
/* member needed for uniqueness check lys_getnext() */
action->nodetype = parent ? LYS_ACTION : LYS_RPC;
action->module = ctx->mod;
action->parent = parent;
LY_CHECK_RET(lys_compile_node_uniqness(ctx, parent, action_p->name, (struct lysc_node *)action));
if (ctx->options & (LYSC_OPT_RPC_MASK | LYSC_OPT_NOTIFICATION)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Action \"%s\" is placed inside %s.", action_p->name,
ctx->options & LYSC_OPT_RPC_MASK ? "another RPC/action" : "notification");
return LY_EVALID;
}
if (!(ctx->options & LYSC_OPT_FREE_SP)) {
action->sp = action_p;
}
action->flags = action_p->flags & LYS_FLAGS_COMPILED_MASK;
/* status - it is not inherited by specification, but it does not make sense to have
* current in deprecated or deprecated in obsolete, so we do print warning and inherit status */
LY_CHECK_RET(lys_compile_status(ctx, &action->flags, uses_status ? uses_status : (parent ? parent->flags : 0)));
DUP_STRING_GOTO(ctx->ctx, action_p->name, action->name, ret, cleanup);
DUP_STRING_GOTO(ctx->ctx, action_p->dsc, action->dsc, ret, cleanup);
DUP_STRING_GOTO(ctx->ctx, action_p->ref, action->ref, ret, cleanup);
COMPILE_ARRAY_GOTO(ctx, action_p->iffeatures, action->iffeatures, u, lys_compile_iffeature, ret, cleanup);
COMPILE_EXTS_GOTO(ctx, action_p->exts, action->exts, action, LYEXT_PAR_NODE, ret, cleanup);
/* input */
lysc_update_path(ctx, (struct lysc_node *)action, "input");
COMPILE_ARRAY_GOTO(ctx, action_p->input.musts, action->input.musts, u, lys_compile_must, ret, cleanup);
COMPILE_EXTS_GOTO(ctx, action_p->input.exts, action->input_exts, &action->input, LYEXT_PAR_INPUT, ret, cleanup);
ctx->options |= LYSC_OPT_RPC_INPUT;
LY_LIST_FOR(action_p->input.data, child_p) {
LY_CHECK_RET(lys_compile_node(ctx, child_p, (struct lysc_node *)action, uses_status));
}
lysc_update_path(ctx, NULL, NULL);
ctx->options = opt_prev;
/* output */
lysc_update_path(ctx, (struct lysc_node *)action, "output");
COMPILE_ARRAY_GOTO(ctx, action_p->output.musts, action->output.musts, u, lys_compile_must, ret, cleanup);
COMPILE_EXTS_GOTO(ctx, action_p->output.exts, action->output_exts, &action->output, LYEXT_PAR_OUTPUT, ret, cleanup);
ctx->options |= LYSC_OPT_RPC_OUTPUT;
LY_LIST_FOR(action_p->output.data, child_p) {
LY_CHECK_RET(lys_compile_node(ctx, child_p, (struct lysc_node *)action, uses_status));
}
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
if ((action_p->input.musts || action_p->output.musts) && !(ctx->options & LYSC_OPT_GROUPING)) {
/* do not check "must" semantics in a grouping */
ret = ly_set_add(&ctx->xpath, action, 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
cleanup:
ctx->options = opt_prev;
return ret;
}
/**
* @brief Compile parsed Notification schema node information.
* @param[in] ctx Compile context
* @param[in] notif_p Parsed Notification schema node.
* @param[in] parent Parent node of the Notification, NULL in case of top-level Notification
* @param[in,out] notif Prepared (empty) compiled notification structure to fill.
* @param[in] uses_status If the Notification is being placed instead of uses, here we have the uses's status value (as node's flags).
* Zero means no uses, non-zero value with no status bit set mean the default status.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_notif(struct lysc_ctx *ctx, struct lysp_notif *notif_p,
struct lysc_node *parent, struct lysc_notif *notif, uint16_t uses_status)
{
LY_ERR ret = LY_SUCCESS;
struct lysp_node *child_p;
LY_ARRAY_COUNT_TYPE u;
uint32_t opt_prev = ctx->options;
lysc_update_path(ctx, parent, notif_p->name);
/* member needed for uniqueness check lys_getnext() */
notif->nodetype = LYS_NOTIF;
notif->module = ctx->mod;
notif->parent = parent;
LY_CHECK_RET(lys_compile_node_uniqness(ctx, parent, notif_p->name, (struct lysc_node *)notif));
if (ctx->options & (LYSC_OPT_RPC_MASK | LYSC_OPT_NOTIFICATION)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Notification \"%s\" is placed inside %s.", notif_p->name,
ctx->options & LYSC_OPT_RPC_MASK ? "RPC/action" : "another notification");
return LY_EVALID;
}
if (!(ctx->options & LYSC_OPT_FREE_SP)) {
notif->sp = notif_p;
}
notif->flags = notif_p->flags & LYS_FLAGS_COMPILED_MASK;
/* status - it is not inherited by specification, but it does not make sense to have
* current in deprecated or deprecated in obsolete, so we do print warning and inherit status */
ret = lys_compile_status(ctx, &notif->flags, uses_status ? uses_status : (parent ? parent->flags : 0));
LY_CHECK_GOTO(ret, cleanup);
DUP_STRING_GOTO(ctx->ctx, notif_p->name, notif->name, ret, cleanup);
DUP_STRING_GOTO(ctx->ctx, notif_p->dsc, notif->dsc, ret, cleanup);
DUP_STRING_GOTO(ctx->ctx, notif_p->ref, notif->ref, ret, cleanup);
COMPILE_ARRAY_GOTO(ctx, notif_p->iffeatures, notif->iffeatures, u, lys_compile_iffeature, ret, cleanup);
COMPILE_ARRAY_GOTO(ctx, notif_p->musts, notif->musts, u, lys_compile_must, ret, cleanup);
if (notif_p->musts && !(ctx->options & LYSC_OPT_GROUPING)) {
/* do not check "must" semantics in a grouping */
ret = ly_set_add(&ctx->xpath, notif, 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
COMPILE_EXTS_GOTO(ctx, notif_p->exts, notif->exts, notif, LYEXT_PAR_NODE, ret, cleanup);
ctx->options |= LYSC_OPT_NOTIFICATION;
LY_LIST_FOR(notif_p->data, child_p) {
ret = lys_compile_node(ctx, child_p, (struct lysc_node *)notif, uses_status);
LY_CHECK_GOTO(ret, cleanup);
}
lysc_update_path(ctx, NULL, NULL);
cleanup:
ctx->options = opt_prev;
return ret;
}
/**
* @brief Compile parsed container node information.
* @param[in] ctx Compile context
* @param[in] node_p Parsed container node.
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the container-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_container(struct lysc_ctx *ctx, struct lysp_node *node_p, struct lysc_node *node)
{
struct lysp_node_container *cont_p = (struct lysp_node_container *)node_p;
struct lysc_node_container *cont = (struct lysc_node_container *)node;
struct lysp_node *child_p;
LY_ARRAY_COUNT_TYPE u;
LY_ERR ret = LY_SUCCESS;
if (cont_p->presence) {
/* explicit presence */
cont->flags |= LYS_PRESENCE;
} else if (cont_p->musts) {
/* container with a must condition */
LOGWRN(ctx->ctx, "Container \"%s\" changed to presence because it has a meaning from its \"must\" condition.", cont_p->name);
cont->flags |= LYS_PRESENCE;
} else if (cont_p->when) {
/* container with a when condition */
LOGWRN(ctx->ctx, "Container \"%s\" changed to presence because it has a meaning from its \"when\" condition.", cont_p->name);
cont->flags |= LYS_PRESENCE;
} else if (cont_p->parent) {
if (cont_p->parent->nodetype == LYS_CHOICE) {
/* container is an implicit case, so its existence decides the existence of the whole case */
LOGWRN(ctx->ctx, "Container \"%s\" changed to presence because it has a meaning as a case of choice \"%s\".",
cont_p->name, cont_p->parent->name);
cont->flags |= LYS_PRESENCE;
} else if ((cont_p->parent->nodetype == LYS_CASE)
&& (((struct lysp_node_case *)cont_p->parent)->child == node_p) && !cont_p->next) {
/* container is the only node in a case, so its existence decides the existence of the whole case */
LOGWRN(ctx->ctx, "Container \"%s\" changed to presence because it has a meaning as a case of choice \"%s\".",
cont_p->name, cont_p->parent->name);
cont->flags |= LYS_PRESENCE;
}
}
/* more cases when the container has meaning but is kept NP for convenience:
* - when condition
* - direct child action/notification
*/
LY_LIST_FOR(cont_p->child, child_p) {
ret = lys_compile_node(ctx, child_p, node, 0);
LY_CHECK_GOTO(ret, done);
}
COMPILE_ARRAY_GOTO(ctx, cont_p->musts, cont->musts, u, lys_compile_must, ret, done);
if (cont_p->musts && !(ctx->options & LYSC_OPT_GROUPING)) {
/* do not check "must" semantics in a grouping */
ret = ly_set_add(&ctx->xpath, cont, 0, NULL);
LY_CHECK_GOTO(ret, done);
}
COMPILE_ARRAY1_GOTO(ctx, cont_p->actions, cont->actions, node, u, lys_compile_action, 0, ret, done);
COMPILE_ARRAY1_GOTO(ctx, cont_p->notifs, cont->notifs, node, u, lys_compile_notif, 0, ret, done);
done:
return ret;
}
/*
* @brief Compile type in leaf/leaf-list node and do all the necessary checks.
* @param[in] ctx Compile context.
* @param[in] context_node Schema node where the type/typedef is placed to correctly find the base types.
* @param[in] type_p Parsed type to compile.
* @param[in,out] leaf Compiled leaf structure (possibly cast leaf-list) to provide node information and to store the compiled type information.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_node_type(struct lysc_ctx *ctx, struct lysp_node *context_node, struct lysp_type *type_p,
struct lysc_node_leaf *leaf)
{
const char *dflt;
struct lys_module *dflt_mod;
LY_CHECK_RET(lys_compile_type(ctx, context_node, leaf->flags, ctx->mod_def->parsed, leaf->name, type_p, &leaf->type,
leaf->units ? NULL : &leaf->units, &dflt, &dflt_mod));
/* store default value, if any */
if (dflt && !(leaf->flags & LYS_SET_DFLT)) {
LY_CHECK_RET(lysc_incomplete_leaf_dflt_add(ctx, leaf, dflt, dflt_mod));
}
if (leaf->type->basetype == LY_TYPE_LEAFREF) {
/* store to validate the path in the current context at the end of schema compiling when all the nodes are present */
LY_CHECK_RET(ly_set_add(&ctx->leafrefs, leaf, 0, NULL));
} else if (leaf->type->basetype == LY_TYPE_UNION) {
LY_ARRAY_COUNT_TYPE u;
LY_ARRAY_FOR(((struct lysc_type_union *)leaf->type)->types, u) {
if (((struct lysc_type_union *)leaf->type)->types[u]->basetype == LY_TYPE_LEAFREF) {
/* store to validate the path in the current context at the end of schema compiling when all the nodes are present */
LY_CHECK_RET(ly_set_add(&ctx->leafrefs, leaf, 0, NULL));
}
}
} else if (leaf->type->basetype == LY_TYPE_EMPTY) {
if (leaf->nodetype == LYS_LEAFLIST && ctx->mod_def->version < LYS_VERSION_1_1) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Leaf-list of type \"empty\" is allowed only in YANG 1.1 modules.");
return LY_EVALID;
}
}
return LY_SUCCESS;
}
/**
* @brief Compile parsed leaf node information.
* @param[in] ctx Compile context
* @param[in] node_p Parsed leaf node.
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the leaf-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_leaf(struct lysc_ctx *ctx, struct lysp_node *node_p, struct lysc_node *node)
{
struct lysp_node_leaf *leaf_p = (struct lysp_node_leaf *)node_p;
struct lysc_node_leaf *leaf = (struct lysc_node_leaf *)node;
LY_ARRAY_COUNT_TYPE u;
LY_ERR ret = LY_SUCCESS;
COMPILE_ARRAY_GOTO(ctx, leaf_p->musts, leaf->musts, u, lys_compile_must, ret, done);
if (leaf_p->musts && !(ctx->options & LYSC_OPT_GROUPING)) {
/* do not check "must" semantics in a grouping */
ret = ly_set_add(&ctx->xpath, leaf, 0, NULL);
LY_CHECK_GOTO(ret, done);
}
if (leaf_p->units) {
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, leaf_p->units, 0, &leaf->units), done);
leaf->flags |= LYS_SET_UNITS;
}
/* compile type */
ret = lys_compile_node_type(ctx, node_p, &leaf_p->type, leaf);
LY_CHECK_GOTO(ret, done);
/* store/update default value */
if (leaf_p->dflt) {
LY_CHECK_RET(lysc_incomplete_leaf_dflt_add(ctx, leaf, leaf_p->dflt, ctx->mod_def));
leaf->flags |= LYS_SET_DFLT;
}
done:
return ret;
}
/**
* @brief Compile parsed leaf-list node information.
* @param[in] ctx Compile context
* @param[in] node_p Parsed leaf-list node.
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the leaf-list-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_leaflist(struct lysc_ctx *ctx, struct lysp_node *node_p, struct lysc_node *node)
{
struct lysp_node_leaflist *llist_p = (struct lysp_node_leaflist *)node_p;
struct lysc_node_leaflist *llist = (struct lysc_node_leaflist *)node;
LY_ARRAY_COUNT_TYPE u;
LY_ERR ret = LY_SUCCESS;
COMPILE_ARRAY_GOTO(ctx, llist_p->musts, llist->musts, u, lys_compile_must, ret, done);
if (llist_p->musts && !(ctx->options & LYSC_OPT_GROUPING)) {
/* do not check "must" semantics in a grouping */
ret = ly_set_add(&ctx->xpath, llist, 0, NULL);
LY_CHECK_GOTO(ret, done);
}
if (llist_p->units) {
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, llist_p->units, 0, &llist->units), done);
llist->flags |= LYS_SET_UNITS;
}
/* compile type */
ret = lys_compile_node_type(ctx, node_p, &llist_p->type, (struct lysc_node_leaf *)llist);
LY_CHECK_GOTO(ret, done);
/* store/update default values */
if (llist_p->dflts) {
LY_CHECK_GOTO(lysc_incomplete_llist_dflts_add(ctx, llist, llist_p->dflts, ctx->mod_def), done);
llist->flags |= LYS_SET_DFLT;
}
llist->min = llist_p->min;
if (llist->min) {
llist->flags |= LYS_MAND_TRUE;
}
llist->max = llist_p->max ? llist_p->max : (uint32_t)-1;
done:
return ret;
}
/**
* @brief Compile information about list's uniques.
* @param[in] ctx Compile context.
* @param[in] context_module Module where the prefixes are going to be resolved.
* @param[in] uniques Sized array list of unique statements.
* @param[in] list Compiled list where the uniques are supposed to be resolved and stored.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_node_list_unique(struct lysc_ctx *ctx, struct lys_module *context_module, const char **uniques, struct lysc_node_list *list)
{
LY_ERR ret = LY_SUCCESS;
struct lysc_node_leaf **key, ***unique;
struct lysc_node *parent;
const char *keystr, *delim;
size_t len;
LY_ARRAY_COUNT_TYPE v;
int8_t config; /* -1 - not yet seen; 0 - LYS_CONFIG_R; 1 - LYS_CONFIG_W */
uint16_t flags;
for (v = 0; v < LY_ARRAY_COUNT(uniques); ++v) {
config = -1;
LY_ARRAY_NEW_RET(ctx->ctx, list->uniques, unique, LY_EMEM);
keystr = uniques[v];
while (keystr) {
delim = strpbrk(keystr, " \t\n");
if (delim) {
len = delim - keystr;
while (isspace(*delim)) {
++delim;
}
} else {
len = strlen(keystr);
}
/* unique node must be present */
LY_ARRAY_NEW_RET(ctx->ctx, *unique, key, LY_EMEM);
ret = lysc_resolve_schema_nodeid(ctx, keystr, len, (struct lysc_node *)list, context_module, LYS_LEAF, 0,
(const struct lysc_node **)key, &flags);
if (ret != LY_SUCCESS) {
if (ret == LY_EDENIED) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Unique's descendant-schema-nodeid \"%.*s\" refers to %s node instead of a leaf.",
len, keystr, lys_nodetype2str((*key)->nodetype));
}
return LY_EVALID;
} else if (flags) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Unique's descendant-schema-nodeid \"%.*s\" refers into %s node.",
len, keystr, flags & LYSC_OPT_NOTIFICATION ? "notification" : "RPC/action");
return LY_EVALID;
}
/* all referenced leafs must be of the same config type */
if (config != -1 && ((((*key)->flags & LYS_CONFIG_W) && config == 0) || (((*key)->flags & LYS_CONFIG_R) && config == 1))) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Unique statement \"%s\" refers to leaves with different config type.", uniques[v]);
return LY_EVALID;
} else if ((*key)->flags & LYS_CONFIG_W) {
config = 1;
} else { /* LYS_CONFIG_R */
config = 0;
}
/* we forbid referencing nested lists because it is unspecified what instance of such a list to use */
for (parent = (*key)->parent; parent != (struct lysc_node *)list; parent = parent->parent) {
if (parent->nodetype == LYS_LIST) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Unique statement \"%s\" refers to a leaf in nested list \"%s\".", uniques[v], parent->name);
return LY_EVALID;
}
}
/* check status */
LY_CHECK_RET(lysc_check_status(ctx, list->flags, list->module, list->name,
(*key)->flags, (*key)->module, (*key)->name));
/* mark leaf as unique */
(*key)->flags |= LYS_UNIQUE;
/* next unique value in line */
keystr = delim;
}
/* next unique definition */
}
return LY_SUCCESS;
}
/**
* @brief Compile parsed list node information.
* @param[in] ctx Compile context
* @param[in] node_p Parsed list node.
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the list-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_list(struct lysc_ctx *ctx, struct lysp_node *node_p, struct lysc_node *node)
{
struct lysp_node_list *list_p = (struct lysp_node_list *)node_p;
struct lysc_node_list *list = (struct lysc_node_list *)node;
struct lysp_node *child_p;
struct lysc_node_leaf *key, *prev_key = NULL;
size_t len;
LY_ARRAY_COUNT_TYPE u;
const char *keystr, *delim;
LY_ERR ret = LY_SUCCESS;
list->min = list_p->min;
if (list->min) {
list->flags |= LYS_MAND_TRUE;
}
list->max = list_p->max ? list_p->max : (uint32_t)-1;
LY_LIST_FOR(list_p->child, child_p) {
LY_CHECK_RET(lys_compile_node(ctx, child_p, node, 0));
}
COMPILE_ARRAY_GOTO(ctx, list_p->musts, list->musts, u, lys_compile_must, ret, done);
if (list_p->musts && !(ctx->options & LYSC_OPT_GROUPING)) {
/* do not check "must" semantics in a grouping */
LY_CHECK_RET(ly_set_add(&ctx->xpath, list, 0, NULL));
}
/* keys */
if ((list->flags & LYS_CONFIG_W) && (!list_p->key || !list_p->key[0])) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS, "Missing key in list representing configuration data.");
return LY_EVALID;
}
/* find all the keys (must be direct children) */
keystr = list_p->key;
if (!keystr) {
/* keyless list */
list->flags |= LYS_KEYLESS;
}
while (keystr) {
delim = strpbrk(keystr, " \t\n");
if (delim) {
len = delim - keystr;
while (isspace(*delim)) {
++delim;
}
} else {
len = strlen(keystr);
}
/* key node must be present */
key = (struct lysc_node_leaf *)lys_find_child(node, node->module, keystr, len, LYS_LEAF, LYS_GETNEXT_NOCHOICE | LYS_GETNEXT_NOSTATECHECK);
if (!(key)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"The list's key \"%.*s\" not found.", len, keystr);
return LY_EVALID;
}
/* keys must be unique */
if (key->flags & LYS_KEY) {
/* the node was already marked as a key */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Duplicated key identifier \"%.*s\".", len, keystr);
return LY_EVALID;
}
lysc_update_path(ctx, (struct lysc_node *)list, key->name);
/* key must have the same config flag as the list itself */
if ((list->flags & LYS_CONFIG_MASK) != (key->flags & LYS_CONFIG_MASK)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS, "Key of the configuration list must not be status leaf.");
return LY_EVALID;
}
if (ctx->mod_def->version < LYS_VERSION_1_1) {
/* YANG 1.0 denies key to be of empty type */
if (key->type->basetype == LY_TYPE_EMPTY) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"List's key cannot be of \"empty\" type until it is in YANG 1.1 module.");
return LY_EVALID;
}
} else {
/* when and if-feature are illegal on list keys */
if (key->when) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"List's key must not have any \"when\" statement.");
return LY_EVALID;
}
if (key->iffeatures) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"List's key must not have any \"if-feature\" statement.");
return LY_EVALID;
}
}
/* check status */
LY_CHECK_RET(lysc_check_status(ctx, list->flags, list->module, list->name,
key->flags, key->module, key->name));
/* ignore default values of the key */
if (key->dflt) {
key->dflt->realtype->plugin->free(ctx->ctx, key->dflt);
lysc_type_free(ctx->ctx, key->dflt->realtype);
free(key->dflt);
key->dflt = NULL;
}
/* mark leaf as key */
key->flags |= LYS_KEY;
/* move it to the correct position */
if ((prev_key && (struct lysc_node *)prev_key != key->prev) || (!prev_key && key->prev->next)) {
/* fix links in closest previous siblings of the key */
if (key->next) {
key->next->prev = key->prev;
} else {
/* last child */
list->child->prev = key->prev;
}
if (key->prev->next) {
key->prev->next = key->next;
}
/* fix links in the key */
if (prev_key) {
key->prev = (struct lysc_node *)prev_key;
key->next = prev_key->next;
} else {
key->prev = list->child->prev;
key->next = list->child;
}
/* fix links in closes future siblings of the key */
if (prev_key) {
if (prev_key->next) {
prev_key->next->prev = (struct lysc_node *)key;
} else {
list->child->prev = (struct lysc_node *)key;
}
prev_key->next = (struct lysc_node *)key;
} else {
list->child->prev = (struct lysc_node *)key;
}
/* fix links in parent */
if (!key->prev->next) {
list->child = (struct lysc_node *)key;
}
}
/* next key value */
prev_key = key;
keystr = delim;
lysc_update_path(ctx, NULL, NULL);
}
/* uniques */
if (list_p->uniques) {
LY_CHECK_RET(lys_compile_node_list_unique(ctx, list->module, list_p->uniques, list));
}
COMPILE_ARRAY1_GOTO(ctx, list_p->actions, list->actions, node, u, lys_compile_action, 0, ret, done);
COMPILE_ARRAY1_GOTO(ctx, list_p->notifs, list->notifs, node, u, lys_compile_notif, 0, ret, done);
done:
return ret;
}
/**
* @brief Do some checks and set the default choice's case.
*
* Selects (and stores into ::lysc_node_choice#dflt) the default case and set LYS_SET_DFLT flag on it.
*
* @param[in] ctx Compile context.
* @param[in] dflt Name of the default branch. Can contain even the prefix, but it make sense only in case it is the prefix of the module itself,
* not the reference to the imported module.
* @param[in,out] ch The compiled choice node, its dflt member is filled to point to the default case node of the choice.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_node_choice_dflt(struct lysc_ctx *ctx, const char *dflt, struct lysc_node_choice *ch)
{
struct lysc_node *iter, *node = (struct lysc_node *)ch;
const char *prefix = NULL, *name;
size_t prefix_len = 0;
/* could use lys_parse_nodeid(), but it checks syntax which is already done in this case by the parsers */
name = strchr(dflt, ':');
if (name) {
prefix = dflt;
prefix_len = name - prefix;
++name;
} else {
name = dflt;
}
if (prefix && ly_strncmp(node->module->prefix, prefix, prefix_len)) {
/* prefixed default case make sense only for the prefix of the schema itself */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid default case referencing a case from different YANG module (by prefix \"%.*s\").",
prefix_len, prefix);
return LY_EVALID;
}
ch->dflt = (struct lysc_node_case *)lys_find_child(node, node->module, name, 0, LYS_CASE, LYS_GETNEXT_NOSTATECHECK | LYS_GETNEXT_WITHCASE);
if (!ch->dflt) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Default case \"%s\" not found.", dflt);
return LY_EVALID;
}
/* no mandatory nodes directly under the default case */
LY_LIST_FOR(ch->dflt->child, iter) {
if (iter->parent != (struct lysc_node *)ch->dflt) {
break;
}
if (iter->flags & LYS_MAND_TRUE) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Mandatory node \"%s\" under the default case \"%s\".", iter->name, dflt);
return LY_EVALID;
}
}
ch->dflt->flags |= LYS_SET_DFLT;
return LY_SUCCESS;
}
static LY_ERR
lys_compile_deviation_set_choice_dflt(struct lysc_ctx *ctx, const char *dflt, struct lysc_node_choice *ch)
{
struct lys_module *mod;
const char *prefix = NULL, *name;
size_t prefix_len = 0;
struct lysc_node_case *cs;
struct lysc_node *node;
/* could use lys_parse_nodeid(), but it checks syntax which is already done in this case by the parsers */
name = strchr(dflt, ':');
if (name) {
prefix = dflt;
prefix_len = name - prefix;
++name;
} else {
name = dflt;
}
/* this code is for deviation, so we allow as the default case even the cases from other modules than the choice (augments) */
if (prefix) {
if (!(mod = lys_module_find_prefix(ctx->mod, prefix, prefix_len))) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid deviation adding \"default\" property \"%s\" of choice. "
"The prefix does not match any imported module of the deviation module.", dflt);
return LY_EVALID;
}
} else {
mod = ctx->mod;
}
/* get the default case */
cs = (struct lysc_node_case *)lys_find_child((struct lysc_node *)ch, mod, name, 0, LYS_CASE, LYS_GETNEXT_NOSTATECHECK | LYS_GETNEXT_WITHCASE);
if (!cs) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid deviation adding \"default\" property \"%s\" of choice - the specified case does not exists.", dflt);
return LY_EVALID;
}
/* check that there is no mandatory node */
LY_LIST_FOR(cs->child, node) {
if (node->parent != (struct lysc_node *)cs) {
break;
}
if (node->flags & LYS_MAND_TRUE) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid deviation adding \"default\" property \"%s\" of choice - "
"mandatory node \"%s\" under the default case.", dflt, node->name);
return LY_EVALID;
}
}
/* set the default case in choice */
ch->dflt = cs;
cs->flags |= LYS_SET_DFLT;
return LY_SUCCESS;
}
/**
* @brief Compile choice children.
*
* @param[in] ctx Compile context
* @param[in] child_p Parsed choice children nodes.
* @param[in] node Compiled choice node to compile and add children to.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_choice_child(struct lysc_ctx *ctx, struct lysp_node *child_p, struct lysc_node *node)
{
LY_ERR ret = LY_SUCCESS;
struct lysp_node *child_p_next = child_p->next;
struct lysp_node_case *cs_p;
if (child_p->nodetype == LYS_CASE) {
/* standard case under choice */
ret = lys_compile_node(ctx, child_p, node, 0);
} else {
/* we need the implicit case first, so create a fake parsed case */
cs_p = calloc(1, sizeof *cs_p);
cs_p->nodetype = LYS_CASE;
DUP_STRING_GOTO(ctx->ctx, child_p->name, cs_p->name, ret, free_fake_node);
cs_p->child = child_p;
/* make the child the only case child */
child_p->next = NULL;
/* compile it normally */
ret = lys_compile_node(ctx, (struct lysp_node *)cs_p, node, 0);
free_fake_node:
/* free the fake parsed node and correct pointers back */
cs_p->child = NULL;
lysp_node_free(ctx->ctx, (struct lysp_node *)cs_p);
child_p->next = child_p_next;
}
return ret;
}
/**
* @brief Compile parsed choice node information.
*
* @param[in] ctx Compile context
* @param[in] node_p Parsed choice node.
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the choice-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_choice(struct lysc_ctx *ctx, struct lysp_node *node_p, struct lysc_node *node)
{
struct lysp_node_choice *ch_p = (struct lysp_node_choice *)node_p;
struct lysc_node_choice *ch = (struct lysc_node_choice *)node;
struct lysp_node *child_p;
LY_ERR ret = LY_SUCCESS;
assert(node->nodetype == LYS_CHOICE);
LY_LIST_FOR(ch_p->child, child_p) {
LY_CHECK_RET(lys_compile_node_choice_child(ctx, child_p, node));
}
/* default branch */
if (ch_p->dflt) {
LY_CHECK_RET(lys_compile_node_choice_dflt(ctx, ch_p->dflt, ch));
}
return ret;
}
/**
* @brief Compile parsed anydata or anyxml node information.
* @param[in] ctx Compile context
* @param[in] node_p Parsed anydata or anyxml node.
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the any-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_any(struct lysc_ctx *ctx, struct lysp_node *node_p, struct lysc_node *node)
{
struct lysp_node_anydata *any_p = (struct lysp_node_anydata *)node_p;
struct lysc_node_anydata *any = (struct lysc_node_anydata *)node;
LY_ARRAY_COUNT_TYPE u;
LY_ERR ret = LY_SUCCESS;
COMPILE_ARRAY_GOTO(ctx, any_p->musts, any->musts, u, lys_compile_must, ret, done);
if (any_p->musts && !(ctx->options & LYSC_OPT_GROUPING)) {
/* do not check "must" semantics in a grouping */
ret = ly_set_add(&ctx->xpath, any, 0, NULL);
LY_CHECK_GOTO(ret, done);
}
if (any->flags & LYS_CONFIG_W) {
LOGWRN(ctx->ctx, "Use of %s to define configuration data is not recommended. %s",
ly_stmt2str(any->nodetype == LYS_ANYDATA ? LY_STMT_ANYDATA : LY_STMT_ANYXML), ctx->path);
}
done:
return ret;
}
/**
* @brief Connect the node into the siblings list and check its name uniqueness. Also,
* keep specific order of augments targetting the same node.
*
* @param[in] ctx Compile context
* @param[in] parent Parent node holding the children list, in case of node from a choice's case,
* the choice itself is expected instead of a specific case node.
* @param[in] node Schema node to connect into the list.
* @return LY_ERR value - LY_SUCCESS or LY_EEXIST.
* In case of LY_EEXIST, the node is actually kept in the tree, so do not free it directly.
*/
static LY_ERR
lys_compile_node_connect(struct lysc_ctx *ctx, struct lysc_node *parent, struct lysc_node *node)
{
struct lysc_node **children, *start, *end;
const struct lys_module *mod;
node->parent = parent;
if (parent) {
if (parent->nodetype == LYS_CHOICE) {
assert(node->nodetype == LYS_CASE);
children = (struct lysc_node **)&((struct lysc_node_choice *)parent)->cases;
} else {
children = lysc_node_children_p(parent, ctx->options);
}
assert(children);
if (!(*children)) {
/* first child */
*children = node;
} else if (*children != node) {
/* by the condition in previous branch we cover the choice/case children
* - the children list is shared by the choice and the the first case, in addition
* the first child of each case must be referenced from the case node. So the node is
* actually always already inserted in case it is the first children - so here such
* a situation actually corresponds to the first branch */
if (((*children)->prev->module != (*children)->module) && (node->module != (*children)->module)
&& (strcmp((*children)->prev->module->name, node->module->name) > 0)) {
/* some augments are already connected and we are connecting new ones,
* keep module name order and insert the node into the children list */
end = (*children);
do {
end = end->prev;
mod = end->module;
while (end->prev->module == mod) {
end = end->prev;
}
} while ((end->prev->module != (*children)->module) && (end->prev->module != node->module) && (strcmp(mod->name, node->module->name) > 0));
/* we have the last existing node after our node, easily get the first before and connect it */
start = end->prev;
start->next = node;
node->next = end;
end->prev = node;
node->prev = start;
} else {
/* insert at the end of the parent's children list */
(*children)->prev->next = node;
node->prev = (*children)->prev;
(*children)->prev = node;
}
}
/* check the name uniqueness (even for an only child, it may be in case) */
if (lys_compile_node_uniqness(ctx, parent, node->name, node)) {
return LY_EEXIST;
}
} else {
/* top-level element */
if (!ctx->mod->compiled->data) {
ctx->mod->compiled->data = node;
} else {
/* insert at the end of the module's top-level nodes list */
ctx->mod->compiled->data->prev->next = node;
node->prev = ctx->mod->compiled->data->prev;
ctx->mod->compiled->data->prev = node;
}
/* check the name uniqueness on top-level */
if (lys_compile_node_uniqness(ctx, NULL, node->name, node)) {
return LY_EEXIST;
}
}
return LY_SUCCESS;
}
/**
* @brief Prepare the case structure in choice node for the new data node.
*
* It is able to handle implicit as well as explicit cases and the situation when the case has multiple data nodes and the case was already
* created in the choice when the first child was processed.
*
* @param[in] ctx Compile context.
* @param[in] node_p Node image from the parsed tree. If the case is explicit, it is the LYS_CASE node, but in case of implicit case,
* it is the LYS_CHOICE, LYS_AUGMENT or LYS_GROUPING node.
* @param[in] ch The compiled choice structure where the new case structures are created (if needed).
* @param[in] child The new data node being part of a case (no matter if explicit or implicit).
* @return The case structure where the child node belongs to, NULL in case of error. Note that the child is not connected into the siblings list,
* it is linked from the case structure only in case it is its first child.
*/
static LY_ERR
lys_compile_node_case(struct lysc_ctx *ctx, struct lysp_node *node_p, struct lysc_node *node)
{
struct lysp_node *child_p;
struct lysp_node_case *cs_p = (struct lysp_node_case *)node_p;
if (node_p->nodetype & (LYS_CHOICE | LYS_AUGMENT | LYS_GROUPING)) {
/* we have to add an implicit case node into the parent choice */
} else if (node_p->nodetype == LYS_CASE) {
/* explicit parent case */
LY_LIST_FOR(cs_p->child, child_p) {
LY_CHECK_RET(lys_compile_node(ctx, child_p, node, 0));
}
} else {
LOGINT_RET(ctx->ctx);
}
return LY_SUCCESS;
}
/**
* @brief Apply refined or deviated config to the target node.
*
* @param[in] ctx Compile context.
* @param[in] node Target node where the config is supposed to be changed.
* @param[in] config_flag Node's config flag to be applied to the @p node.
* @param[in] inheriting Flag (inverted) to check the refined config compatibility with the node's parent. This is
* done only on the node for which the refine was created. The function applies also recursively to apply the config change
* to the complete subtree (except the subnodes with explicit config set) and the test is not needed for the subnodes.
* @param[in] refine_flag Flag to distinguish if the change is caused by refine (flag set) or deviation (for logging).
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_change_config(struct lysc_ctx *ctx, struct lysc_node *node, uint16_t config_flag,
ly_bool inheriting, ly_bool refine_flag)
{
struct lysc_node *child;
uint16_t config = config_flag & LYS_CONFIG_MASK;
if (config == (node->flags & LYS_CONFIG_MASK)) {
/* nothing to do */
return LY_SUCCESS;
}
if (!inheriting) {
/* explicit change */
if (config == LYS_CONFIG_W && node->parent && (node->parent->flags & LYS_CONFIG_R)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid %s of config - configuration node cannot be child of any state data node.",
refine_flag ? "refine" : "deviation");
return LY_EVALID;
}
node->flags |= LYS_SET_CONFIG;
} else {
if (node->flags & LYS_SET_CONFIG) {
if ((node->flags & LYS_CONFIG_W) && (config == LYS_CONFIG_R)) {
/* setting config flags, but have node with explicit config true */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid %s of config - configuration node cannot be child of any state data node.",
refine_flag ? "refine" : "deviation");
return LY_EVALID;
}
/* do not change config on nodes where the config is explicitely set, this does not apply to
* nodes, which are being changed explicitly (targets of refine or deviation) */
return LY_SUCCESS;
}
}
node->flags &= ~LYS_CONFIG_MASK;
node->flags |= config;
/* inherit the change into the children */
LY_LIST_FOR((struct lysc_node *)lysc_node_children(node, 0), child) {
LY_CHECK_RET(lys_compile_change_config(ctx, child, config_flag, 1, refine_flag));
}
return LY_SUCCESS;
}
/**
* @brief Set LYS_MAND_TRUE flag for the non-presence container parents.
*
* A non-presence container is mandatory in case it has at least one mandatory children. This function propagate
* the flag to such parents from a mandatory children.
*
* @param[in] parent A schema node to be examined if the mandatory child make it also mandatory.
* @param[in] add Flag to distinguish adding the mandatory flag (new mandatory children appeared) or removing the flag
* (mandatory children was removed).
*/
static void
lys_compile_mandatory_parents(struct lysc_node *parent, ly_bool add)
{
struct lysc_node *iter;
if (add) { /* set flag */
for ( ; parent && parent->nodetype == LYS_CONTAINER && !(parent->flags & LYS_MAND_TRUE) && !(parent->flags & LYS_PRESENCE);
parent = parent->parent) {
parent->flags |= LYS_MAND_TRUE;
}
} else { /* unset flag */
for ( ; parent && parent->nodetype == LYS_CONTAINER && (parent->flags & LYS_MAND_TRUE); parent = parent->parent) {
for (iter = (struct lysc_node *)lysc_node_children(parent, 0); iter; iter = iter->next) {
if (iter->flags & LYS_MAND_TRUE) {
/* there is another mandatory node */
return;
}
}
/* unset mandatory flag - there is no mandatory children in the non-presence container */
parent->flags &= ~LYS_MAND_TRUE;
}
}
}
/**
* @brief Internal sorting process for the lys_compile_augment_sort().
* @param[in] aug_p The parsed augment structure to insert into the sorter sized array @p result.
* @param[in,out] result Sized array to store the sorted list of augments. The array is expected
* to be allocated to hold the complete list, its size is just incremented by adding another item.
*/
static void
lys_compile_augment_sort_(struct lysp_augment *aug_p, struct lysp_augment **result)
{
LY_ARRAY_COUNT_TYPE v;
size_t len;
len = strlen(aug_p->nodeid);
LY_ARRAY_FOR(result, v) {
if (strlen(result[v]->nodeid) <= len) {
continue;
}
if (v < LY_ARRAY_COUNT(result)) {
/* move the rest of array */
memmove(&result[v + 1], &result[v], (LY_ARRAY_COUNT(result) - v) * sizeof *result);
break;
}
}
result[v] = aug_p;
LY_ARRAY_INCREMENT(result);
}
/**
* @brief Sort augments to apply /a/b before /a/b/c (where the /a/b/c was added by the first augment).
*
* The sorting is based only on the length of the augment's path since it guarantee the correct order
* (it doesn't matter the /a/x is done before /a/b/c from the example above).
*
* @param[in] ctx Compile context.
* @param[in] mod_p Parsed module with the global augments (also augments from the submodules are taken).
* @param[in] aug_p Parsed sized array of augments to sort (no matter if global or uses's)
* @param[in] inc_p In case of global augments, sized array of module includes (submodules) to get global augments from submodules.
* @param[out] augments Resulting sorted sized array of pointers to the augments.
* @return LY_ERR value.
*/
LY_ERR
lys_compile_augment_sort(struct lysc_ctx *ctx, struct lysp_augment *aug_p, struct lysp_include *inc_p, struct lysp_augment ***augments)
{
struct lysp_augment **result = NULL;
LY_ARRAY_COUNT_TYPE u, v, count = 0;
assert(augments);
/* get count of the augments in module and all its submodules */
if (aug_p) {
count += LY_ARRAY_COUNT(aug_p);
}
LY_ARRAY_FOR(inc_p, u) {
if (inc_p[u].submodule->augments) {
count += LY_ARRAY_COUNT(inc_p[u].submodule->augments);
}
}
if (!count) {
*augments = NULL;
return LY_SUCCESS;
}
LY_ARRAY_CREATE_RET(ctx->ctx, result, count, LY_EMEM);
/* sort by the length of schema-nodeid - we need to solve /x before /x/xy. It is not necessary to group them
* together, so there can be even /z/y betwwen them. */
LY_ARRAY_FOR(aug_p, u) {
lys_compile_augment_sort_(&aug_p[u], result);
}
LY_ARRAY_FOR(inc_p, u) {
LY_ARRAY_FOR(inc_p[u].submodule->augments, v) {
lys_compile_augment_sort_(&inc_p[u].submodule->augments[v], result);
}
}
*augments = result;
return LY_SUCCESS;
}
/**
* @brief Compile the parsed augment connecting it into its target.
*
* It is expected that all the data referenced in path are present - augments are ordered so that augment B
* targeting data from augment A is being compiled after augment A. Also the modules referenced in the path
* are already implemented and compiled.
*
* @param[in] ctx Compile context.
* @param[in] aug_p Parsed augment to compile.
* @param[in] parent Parent node to provide the augment's context. It is NULL for the top level augments and a node holding uses's
* children in case of the augmenting uses data.
* @return LY_SUCCESS on success.
* @return LY_EVALID on failure.
*/
LY_ERR
lys_compile_augment(struct lysc_ctx *ctx, struct lysp_augment *aug_p, const struct lysc_node *parent)
{
LY_ERR ret = LY_SUCCESS, rc;
struct lysp_node *node_p;
struct lysc_node *target; /* target target of the augment */
struct lysc_node *node;
struct lysc_when **when, *when_shared;
struct lys_module **aug_mod;
ly_bool allow_mandatory = 0;
uint16_t flags = 0;
LY_ARRAY_COUNT_TYPE u, v;
uint32_t opt_prev = ctx->options;
lysc_update_path(ctx, NULL, "{augment}");
lysc_update_path(ctx, NULL, aug_p->nodeid);
ret = lysc_resolve_schema_nodeid(ctx, aug_p->nodeid, 0, parent, parent ? parent->module : ctx->mod_def,
LYS_CONTAINER | LYS_LIST | LYS_CHOICE | LYS_CASE | LYS_INOUT | LYS_NOTIF,
1, (const struct lysc_node **)&target, &flags);
if (ret != LY_SUCCESS) {
if (ret == LY_EDENIED) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Augment's %s-schema-nodeid \"%s\" refers to a %s node which is not an allowed augment's target.",
parent ? "descendant" : "absolute", aug_p->nodeid, lys_nodetype2str(target->nodetype));
}
return LY_EVALID;
}
/* check for mandatory nodes
* - new cases augmenting some choice can have mandatory nodes
* - mandatory nodes are allowed only in case the augmentation is made conditional with a when statement
*/
if (aug_p->when || target->nodetype == LYS_CHOICE || ctx->mod == target->module) {
allow_mandatory = 1;
}
when_shared = NULL;
LY_LIST_FOR(aug_p->child, node_p) {
/* check if the subnode can be connected to the found target (e.g. case cannot be inserted into container) */
if (!(target->nodetype == LYS_CHOICE && node_p->nodetype == LYS_CASE)
&& !((target->nodetype & (LYS_CONTAINER | LYS_LIST)) && (node_p->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)))
&& !(target->nodetype != LYS_CHOICE && node_p->nodetype == LYS_USES)
&& !(node_p->nodetype & (LYS_ANYDATA | LYS_CONTAINER | LYS_CHOICE | LYS_LEAF | LYS_LIST | LYS_LEAFLIST))) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid augment of %s node which is not allowed to contain %s node \"%s\".",
lys_nodetype2str(target->nodetype), lys_nodetype2str(node_p->nodetype), node_p->name);
return LY_EVALID;
}
/* compile the children */
ctx->options |= flags;
if (target->nodetype == LYS_CHOICE) {
LY_CHECK_RET(lys_compile_node_choice_child(ctx, node_p, target));
} else {
LY_CHECK_RET(lys_compile_node(ctx, node_p, target, 0));
}
ctx->options = opt_prev;
/* since the augment node is not present in the compiled tree, we need to pass some of its statements to all its children,
* here we gets the last created node as last children of our parent */
if (target->nodetype == LYS_CASE) {
/* the compiled node is the last child of the target (but it is a case, so we have to be careful and stop) */
for (node = (struct lysc_node *)lysc_node_children(target, flags); node->next && node->next->parent == node->parent; node = node->next) {}
} else if (target->nodetype == LYS_CHOICE) {
/* to pass when statement, we need the last case no matter if it is explicit or implicit case */
node = ((struct lysc_node_choice *)target)->cases->prev;
} else {
/* the compiled node is the last child of the target */
node = (struct lysc_node *)lysc_node_children(target, flags);
if (!node) {
/* there is no data children (compiled nodes is e.g. notification or action or nothing) */
break;
}
node = node->prev;
}
if (!allow_mandatory && (node->flags & LYS_CONFIG_W) && (node->flags & LYS_MAND_TRUE)) {
node->flags &= ~LYS_MAND_TRUE;
lys_compile_mandatory_parents(target, 0);
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid augment adding mandatory node \"%s\" without making it conditional via when statement.", node->name);
return LY_EVALID;
}
/* pass augment's when to all the children */
if (aug_p->when) {
LY_ARRAY_NEW_GOTO(ctx->ctx, node->when, when, ret, error);
if (!when_shared) {
ret = lys_compile_when(ctx, aug_p->when, aug_p->flags, target, when);
LY_CHECK_GOTO(ret, error);
if (!(ctx->options & LYSC_OPT_GROUPING)) {
/* do not check "when" semantics in a grouping */
ret = ly_set_add(&ctx->xpath, node, 0, NULL);
LY_CHECK_GOTO(ret, error);
}
when_shared = *when;
} else {
++when_shared->refcount;
(*when) = when_shared;
if (!(ctx->options & LYSC_OPT_GROUPING)) {
/* in this case check "when" again for all children because of dummy node check */
ret = ly_set_add(&ctx->xpath, node, 0, NULL);
LY_CHECK_GOTO(ret, error);
}
}
}
}
ctx->options |= flags;
switch (target->nodetype) {
case LYS_CONTAINER:
COMPILE_ARRAY1_GOTO(ctx, aug_p->actions, ((struct lysc_node_container *)target)->actions, target,
u, lys_compile_action, 0, ret, error);
COMPILE_ARRAY1_GOTO(ctx, aug_p->notifs, ((struct lysc_node_container *)target)->notifs, target,
u, lys_compile_notif, 0, ret, error);
break;
case LYS_LIST:
COMPILE_ARRAY1_GOTO(ctx, aug_p->actions, ((struct lysc_node_list *)target)->actions, target,
u, lys_compile_action, 0, ret, error);
COMPILE_ARRAY1_GOTO(ctx, aug_p->notifs, ((struct lysc_node_list *)target)->notifs, target,
u, lys_compile_notif, 0, ret, error);
break;
default:
ctx->options = opt_prev;
if (aug_p->actions) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid augment of %s node which is not allowed to contain RPC/action node \"%s\".",
lys_nodetype2str(target->nodetype), aug_p->actions[0].name);
return LY_EVALID;
}
if (aug_p->notifs) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid augment of %s node which is not allowed to contain notification node \"%s\".",
lys_nodetype2str(target->nodetype), aug_p->notifs[0].name);
return LY_EVALID;
}
}
/* add this module into the target module augmented_by, if not there already */
rc = LY_SUCCESS;
LY_ARRAY_FOR(target->module->compiled->augmented_by, v) {
if (target->module->compiled->augmented_by[v] == ctx->mod) {
rc = LY_EEXIST;
break;
}
}
if (!rc) {
LY_ARRAY_NEW_GOTO(ctx->ctx, target->module->compiled->augmented_by, aug_mod, ret, error);
*aug_mod = ctx->mod;
}
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
error:
ctx->options = opt_prev;
return ret;
}
/**
* @brief Apply refined or deviated mandatory flag to the target node.
*
* @param[in] ctx Compile context.
* @param[in] node Target node where the mandatory property is supposed to be changed.
* @param[in] mandatory_flag Node's mandatory flag to be applied to the @p node.
* @param[in] refine_flag Flag to distinguish if the change is caused by refine (flag set) or deviation (for logging).
* @param[in] It is also used as a flag for testing for compatibility with default statement. In case of deviations,
* there can be some other deviations of the default properties that we are testing here. To avoid false positive failure,
* the tests are skipped here, but they are supposed to be performed after all the deviations are applied.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_change_mandatory(struct lysc_ctx *ctx, struct lysc_node *node, uint16_t mandatory_flag, ly_bool refine_flag)
{
if (!(node->nodetype & (LYS_LEAF | LYS_ANYDATA | LYS_ANYXML | LYS_CHOICE))) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid %s of mandatory - %s cannot hold mandatory statement.",
refine_flag ? "refine" : "deviation", lys_nodetype2str(node->nodetype));
return LY_EVALID;
}
if (mandatory_flag & LYS_MAND_TRUE) {
/* check if node has default value */
if (node->nodetype & LYS_LEAF) {
if (node->flags & LYS_SET_DFLT) {
if (refine_flag) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid refine of mandatory - leaf already has \"default\" statement.");
return LY_EVALID;
}
}
} else if ((node->nodetype & LYS_CHOICE) && ((struct lysc_node_choice *)node)->dflt) {
if (refine_flag) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid refine of mandatory - choice already has \"default\" statement.");
return LY_EVALID;
}
}
if (refine_flag && node->parent && (node->parent->flags & LYS_SET_DFLT)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS, "Invalid refine of mandatory under the default case.");
return LY_EVALID;
}
node->flags &= ~LYS_MAND_FALSE;
node->flags |= LYS_MAND_TRUE;
lys_compile_mandatory_parents(node->parent, 1);
} else {
/* make mandatory false */
node->flags &= ~LYS_MAND_TRUE;
node->flags |= LYS_MAND_FALSE;
lys_compile_mandatory_parents(node->parent, 0);
}
return LY_SUCCESS;
}
/**
* @brief Find grouping for a uses.
*
* @param[in] ctx Compile context.
* @param[in] uses_p Parsed uses node.
* @param[out] gpr_p Found grouping on success.
* @param[out] grp_mod Module of @p grp_p on success.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_uses_find_grouping(struct lysc_ctx *ctx, struct lysp_node_uses *uses_p, struct lysp_grp **grp_p,
struct lys_module **grp_mod)
{
struct lysp_node *node_p;
struct lysp_grp *grp;
LY_ARRAY_COUNT_TYPE u, v;
ly_bool found = 0;
const char *id, *name, *prefix;
size_t prefix_len, name_len;
struct lys_module *mod;
*grp_p = NULL;
*grp_mod = NULL;
/* search for the grouping definition */
id = uses_p->name;
LY_CHECK_RET(ly_parse_nodeid(&id, &prefix, &prefix_len, &name, &name_len), LY_EVALID);
if (prefix) {
mod = lys_module_find_prefix(ctx->mod_def, prefix, prefix_len);
if (!mod) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid prefix used for grouping reference.", uses_p->name);
return LY_EVALID;
}
} else {
mod = ctx->mod_def;
}
if (mod == ctx->mod_def) {
for (node_p = uses_p->parent; !found && node_p; node_p = node_p->parent) {
grp = (struct lysp_grp *)lysp_node_groupings(node_p);
LY_ARRAY_FOR(grp, u) {
if (!strcmp(grp[u].name, name)) {
grp = &grp[u];
found = 1;
break;
}
}
}
}
if (!found) {
/* search in top-level groupings of the main module ... */
grp = mod->parsed->groupings;
LY_ARRAY_FOR(grp, u) {
if (!strcmp(grp[u].name, name)) {
grp = &grp[u];
found = 1;
break;
}
}
if (!found) {
/* ... and all the submodules */
LY_ARRAY_FOR(mod->parsed->includes, u) {
grp = mod->parsed->includes[u].submodule->groupings;
LY_ARRAY_FOR(grp, v) {
if (!strcmp(grp[v].name, name)) {
grp = &grp[v];
found = 1;
break;
}
}
if (found) {
break;
}
}
}
}
if (!found) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Grouping \"%s\" referenced by a uses statement not found.", uses_p->name);
return LY_EVALID;
}
if (!(ctx->options & LYSC_OPT_GROUPING)) {
/* remember that the grouping is instantiated to avoid its standalone validation */
grp->flags |= LYS_USED_GRP;
}
*grp_p = grp;
*grp_mod = mod;
return LY_SUCCESS;
}
static LY_ERR
lys_compile_refines(struct lysc_ctx *ctx, struct lysp_refine *refines, const struct lysc_node *context_node)
{
struct lysc_node *node;
LY_ARRAY_COUNT_TYPE u;
struct lysp_refine *rfn;
LY_ERR ret = LY_SUCCESS;
uint32_t min, max;
uint16_t flags;
struct ly_set refined = {0};
lysc_update_path(ctx, NULL, "{refine}");
/* apply refine */
LY_ARRAY_FOR(refines, struct lysp_refine, rfn) {
lysc_update_path(ctx, NULL, rfn->nodeid);
ret = lysc_resolve_schema_nodeid(ctx, rfn->nodeid, 0, context_node, ctx->mod,
0, 0, (const struct lysc_node **)&node, &flags);
LY_CHECK_GOTO(ret, cleanup);
ret = ly_set_add(&refined, node, LY_SET_OPT_USEASLIST, NULL);
LY_CHECK_GOTO(ret, cleanup);
/* default value */
if (rfn->dflts) {
if ((node->nodetype != LYS_LEAFLIST) && LY_ARRAY_COUNT(rfn->dflts) > 1) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid refine of default - %s cannot hold %"LY_PRI_ARRAY_COUNT_TYPE " default values.",
lys_nodetype2str(node->nodetype), LY_ARRAY_COUNT(rfn->dflts));
ret = LY_EVALID;
goto cleanup;
}
if (!(node->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_CHOICE))) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid refine of default - %s cannot hold default value(s).",
lys_nodetype2str(node->nodetype));
ret = LY_EVALID;
goto cleanup;
}
if (node->nodetype == LYS_LEAF) {
/* postpone default compilation when the tree is complete */
ret = lysc_incomplete_leaf_dflt_add(ctx, (struct lysc_node_leaf *)node, rfn->dflts[0], ctx->mod_def);
LY_CHECK_GOTO(ret, cleanup);
node->flags |= LYS_SET_DFLT;
} else if (node->nodetype == LYS_LEAFLIST) {
if (ctx->mod->version < 2) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid refine of default in leaf-list - the default statement is allowed only in YANG 1.1 modules.");
ret = LY_EVALID;
goto cleanup;
}
/* postpone default compilation when the tree is complete */
ret = lysc_incomplete_llist_dflts_add(ctx, (struct lysc_node_leaflist *)node, rfn->dflts, ctx->mod_def);
LY_CHECK_GOTO(ret, cleanup);
node->flags |= LYS_SET_DFLT;
} else if (node->nodetype == LYS_CHOICE) {
if (((struct lysc_node_choice *)node)->dflt) {
/* unset LYS_SET_DFLT from the current default case */
((struct lysc_node_choice *)node)->dflt->flags &= ~LYS_SET_DFLT;
}
ret = lys_compile_node_choice_dflt(ctx, rfn->dflts[0], (struct lysc_node_choice *)node);
LY_CHECK_GOTO(ret, cleanup);
}
}
/* description */
if (rfn->dsc) {
FREE_STRING(ctx->ctx, node->dsc);
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, rfn->dsc, 0, &node->dsc), cleanup);
}
/* reference */
if (rfn->ref) {
FREE_STRING(ctx->ctx, node->ref);
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, rfn->ref, 0, &node->ref), cleanup);
}
/* config */
if (rfn->flags & LYS_CONFIG_MASK) {
if (!flags) {
ret = lys_compile_change_config(ctx, node, rfn->flags, 0, 1);
LY_CHECK_GOTO(ret, cleanup);
} else {
LOGWRN(ctx->ctx, "Refining config inside %s has no effect (%s).",
flags & LYSC_OPT_NOTIFICATION ? "notification" : "RPC/action", ctx->path);
}
}
/* mandatory */
if (rfn->flags & LYS_MAND_MASK) {
ret = lys_compile_change_mandatory(ctx, node, rfn->flags, 1);
LY_CHECK_GOTO(ret, cleanup);
}
/* presence */
if (rfn->presence) {
if (node->nodetype != LYS_CONTAINER) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid refine of presence statement - %s cannot hold the presence statement.",
lys_nodetype2str(node->nodetype));
ret = LY_EVALID;
goto cleanup;
}
node->flags |= LYS_PRESENCE;
}
/* must */
if (rfn->musts) {
switch (node->nodetype) {
case LYS_LEAF:
COMPILE_ARRAY_GOTO(ctx, rfn->musts, ((struct lysc_node_leaf *)node)->musts, u, lys_compile_must, ret, cleanup);
break;
case LYS_LEAFLIST:
COMPILE_ARRAY_GOTO(ctx, rfn->musts, ((struct lysc_node_leaflist *)node)->musts, u, lys_compile_must, ret, cleanup);
break;
case LYS_LIST:
COMPILE_ARRAY_GOTO(ctx, rfn->musts, ((struct lysc_node_list *)node)->musts, u, lys_compile_must, ret, cleanup);
break;
case LYS_CONTAINER:
COMPILE_ARRAY_GOTO(ctx, rfn->musts, ((struct lysc_node_container *)node)->musts, u, lys_compile_must, ret, cleanup);
break;
case LYS_ANYXML:
case LYS_ANYDATA:
COMPILE_ARRAY_GOTO(ctx, rfn->musts, ((struct lysc_node_anydata *)node)->musts, u, lys_compile_must, ret, cleanup);
break;
default:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid refine of must statement - %s cannot hold any must statement.",
lys_nodetype2str(node->nodetype));
ret = LY_EVALID;
goto cleanup;
}
ret = ly_set_add(&ctx->xpath, node, 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
/* min/max-elements */
if (rfn->flags & (LYS_SET_MAX | LYS_SET_MIN)) {
switch (node->nodetype) {
case LYS_LEAFLIST:
if (rfn->flags & LYS_SET_MAX) {
((struct lysc_node_leaflist *)node)->max = rfn->max ? rfn->max : (uint32_t)-1;
}
if (rfn->flags & LYS_SET_MIN) {
((struct lysc_node_leaflist *)node)->min = rfn->min;
if (rfn->min) {
node->flags |= LYS_MAND_TRUE;
lys_compile_mandatory_parents(node->parent, 1);
} else {
node->flags &= ~LYS_MAND_TRUE;
lys_compile_mandatory_parents(node->parent, 0);
}
}
break;
case LYS_LIST:
if (rfn->flags & LYS_SET_MAX) {
((struct lysc_node_list *)node)->max = rfn->max ? rfn->max : (uint32_t)-1;
}
if (rfn->flags & LYS_SET_MIN) {
((struct lysc_node_list *)node)->min = rfn->min;
if (rfn->min) {
node->flags |= LYS_MAND_TRUE;
lys_compile_mandatory_parents(node->parent, 1);
} else {
node->flags &= ~LYS_MAND_TRUE;
lys_compile_mandatory_parents(node->parent, 0);
}
}
break;
default:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid refine of %s statement - %s cannot hold this statement.",
(rfn->flags & LYS_SET_MAX) ? "max-elements" : "min-elements", lys_nodetype2str(node->nodetype));
ret = LY_EVALID;
goto cleanup;
}
}
/* if-feature */
if (rfn->iffeatures) {
/* any node in compiled tree can get additional if-feature, so do not check nodetype */
COMPILE_ARRAY_GOTO(ctx, rfn->iffeatures, node->iffeatures, u, lys_compile_iffeature, ret, cleanup);
}
lysc_update_path(ctx, NULL, NULL);
}
/* do some additional checks of the changed nodes when all the refines are applied */
for (uint32_t i = 0; i < refined.count; ++i) {
node = (struct lysc_node *)refined.objs[i];
rfn = &refines[i];
lysc_update_path(ctx, NULL, rfn->nodeid);
/* check possible conflict with default value (default added, mandatory left true) */
if ((node->flags & LYS_MAND_TRUE) &&
(((node->nodetype & LYS_CHOICE) && ((struct lysc_node_choice *)node)->dflt) ||
((node->nodetype & LYS_LEAF) && (node->flags & LYS_SET_DFLT)))) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid refine of default - the node is mandatory.");
ret = LY_EVALID;
goto cleanup;
}
if (rfn->flags & (LYS_SET_MAX | LYS_SET_MIN)) {
if (node->nodetype == LYS_LIST) {
min = ((struct lysc_node_list *)node)->min;
max = ((struct lysc_node_list *)node)->max;
} else {
min = ((struct lysc_node_leaflist *)node)->min;
max = ((struct lysc_node_leaflist *)node)->max;
}
if (min > max) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid refine of %s statement - \"min-elements\" is bigger than \"max-elements\".",
(rfn->flags & LYS_SET_MAX) ? "max-elements" : "min-elements");
ret = LY_EVALID;
goto cleanup;
}
}
lysc_update_path(ctx, NULL, NULL);
}
cleanup:
ly_set_erase(&refined, NULL);
lysc_update_path(ctx, NULL, NULL);
return ret;
}
/**
* @brief Compile parsed uses statement - resolve target grouping and connect its content into parent.
* If present, also apply uses's modificators.
*
* @param[in] ctx Compile context
* @param[in] uses_p Parsed uses schema node.
* @param[in] parent Compiled parent node where the content of the referenced grouping is supposed to be connected. It is
* NULL for top-level nodes, in such a case the module where the node will be connected is taken from
* the compile context.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_uses(struct lysc_ctx *ctx, struct lysp_node_uses *uses_p, struct lysc_node *parent, struct lysc_node **first_p)
{
struct lysp_node *node_p;
struct lysc_node *child = NULL, *iter;
/* context_node_fake allows us to temporarily isolate the nodes inserted from the grouping instead of uses */
struct lysc_node_container context_node_fake =
{.nodetype = LYS_CONTAINER,
.module = ctx->mod,
.flags = parent ? parent->flags : 0,
.child = NULL, .next = NULL,
.prev = (struct lysc_node *)&context_node_fake,
.actions = NULL, .notifs = NULL};
struct lysp_grp *grp = NULL;
LY_ARRAY_COUNT_TYPE u;
uint32_t grp_stack_count;
struct lys_module *grp_mod, *mod_old;
LY_ERR ret = LY_SUCCESS;
struct lysc_when **when, *when_shared;
struct lysp_augment **augments = NULL;
LY_ARRAY_COUNT_TYPE actions_index = 0, notifs_index = 0;
struct lysc_notif **notifs = NULL;
struct lysc_action **actions = NULL;
/* find the referenced grouping */
LY_CHECK_RET(lys_compile_uses_find_grouping(ctx, uses_p, &grp, &grp_mod));
/* grouping must not reference themselves - stack in ctx maintains list of groupings currently being applied */
grp_stack_count = ctx->groupings.count;
LY_CHECK_RET(ly_set_add(&ctx->groupings, (void *)grp, 0, NULL));
if (grp_stack_count == ctx->groupings.count) {
/* the target grouping is already in the stack, so we are already inside it -> circular dependency */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Grouping \"%s\" references itself through a uses statement.", grp->name);
return LY_EVALID;
}
/* switch context's mod_def */
mod_old = ctx->mod_def;
ctx->mod_def = grp_mod;
/* check status */
ret = lysc_check_status(ctx, uses_p->flags, mod_old, uses_p->name, grp->flags, grp_mod, grp->name);
LY_CHECK_GOTO(ret, cleanup);
/* remember the currently last child before processing the uses - it is needed to split the siblings to corretly
* applu refine and augment only to the nodes from the uses */
if (parent) {
child = (struct lysc_node *)lysc_node_children(parent, ctx->options & LYSC_OPT_RPC_MASK);
} else if (ctx->mod->compiled->data) {
child = ctx->mod->compiled->data;
} else {
child = NULL;
}
/* remember the last child */
if (child) {
child = child->prev;
}
/* compile data nodes */
LY_LIST_FOR(grp->data, node_p) {
/* 0x3 in uses_status is a special bits combination to be able to detect status flags from uses */
ret = lys_compile_node(ctx, node_p, parent, (uses_p->flags & LYS_STATUS_MASK) | 0x3);
LY_CHECK_GOTO(ret, cleanup);
}
/* split the children and add the uses's data into the fake context node */
if (child) {
context_node_fake.child = child->next;
} else if (parent) {
context_node_fake.child = (struct lysc_node *)lysc_node_children(parent, ctx->options & LYSC_OPT_RPC_MASK);
} else if (ctx->mod->compiled->data) {
context_node_fake.child = ctx->mod->compiled->data;
}
if (context_node_fake.child) {
/* remember child as the last data node added by grouping to fix the list later */
child = context_node_fake.child->prev;
context_node_fake.child->prev = NULL;
}
when_shared = NULL;
LY_LIST_FOR(context_node_fake.child, iter) {
iter->parent = (struct lysc_node *)&context_node_fake;
/* pass uses's when to all the data children, actions and notifications are ignored */
if (uses_p->when) {
LY_ARRAY_NEW_GOTO(ctx->ctx, iter->when, when, ret, cleanup);
if (!when_shared) {
ret = lys_compile_when(ctx, uses_p->when, uses_p->flags, parent, when);
LY_CHECK_GOTO(ret, cleanup);
if (!(ctx->options & LYSC_OPT_GROUPING)) {
/* do not check "when" semantics in a grouping */
ret = ly_set_add(&ctx->xpath, iter, 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
when_shared = *when;
} else {
++when_shared->refcount;
(*when) = when_shared;
if (!(ctx->options & LYSC_OPT_GROUPING)) {
/* in this case check "when" again for all children because of dummy node check */
ret = ly_set_add(&ctx->xpath, iter, 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
}
}
}
/* compile actions */
actions = parent ? lysc_node_actions_p(parent) : &ctx->mod->compiled->rpcs;
if (actions) {
actions_index = *actions ? LY_ARRAY_COUNT(*actions) : 0;
COMPILE_ARRAY1_GOTO(ctx, grp->actions, *actions, parent, u, lys_compile_action, 0, ret, cleanup);
if (*actions && (uses_p->augments || uses_p->refines)) {
/* but for augment and refine, we need to separate the compiled grouping's actions to avoid modification of others */
LY_ARRAY_CREATE_GOTO(ctx->ctx, context_node_fake.actions, LY_ARRAY_COUNT(*actions) - actions_index, ret, cleanup);
LY_ARRAY_COUNT(context_node_fake.actions) = LY_ARRAY_COUNT(*actions) - actions_index;
memcpy(context_node_fake.actions, &(*actions)[actions_index], LY_ARRAY_COUNT(context_node_fake.actions) * sizeof **actions);
}
}
/* compile notifications */
notifs = parent ? lysc_node_notifs_p(parent) : &ctx->mod->compiled->notifs;
if (notifs) {
notifs_index = *notifs ? LY_ARRAY_COUNT(*notifs) : 0;
COMPILE_ARRAY1_GOTO(ctx, grp->notifs, *notifs, parent, u, lys_compile_notif, 0, ret, cleanup);
if (*notifs && (uses_p->augments || uses_p->refines)) {
/* but for augment and refine, we need to separate the compiled grouping's notification to avoid modification of others */
LY_ARRAY_CREATE_GOTO(ctx->ctx, context_node_fake.notifs, LY_ARRAY_COUNT(*notifs) - notifs_index, ret, cleanup);
LY_ARRAY_COUNT(context_node_fake.notifs) = LY_ARRAY_COUNT(*notifs) - notifs_index;
memcpy(context_node_fake.notifs, &(*notifs)[notifs_index], LY_ARRAY_COUNT(context_node_fake.notifs) * sizeof **notifs);
}
}
/* sort and apply augments */
ret = lys_compile_augment_sort(ctx, uses_p->augments, NULL, &augments);
LY_CHECK_GOTO(ret, cleanup);
LY_ARRAY_FOR(augments, u) {
ret = lys_compile_augment(ctx, augments[u], (struct lysc_node *)&context_node_fake);
LY_CHECK_GOTO(ret, cleanup);
}
/* reload previous context's mod_def */
ctx->mod_def = mod_old;
/* apply all refines */
ret = lys_compile_refines(ctx, uses_p->refines, (struct lysc_node *)&context_node_fake);
LY_CHECK_GOTO(ret, cleanup);
if (first_p) {
*first_p = context_node_fake.child;
}
cleanup:
/* fix connection of the children nodes from fake context node back into the parent */
if (context_node_fake.child) {
context_node_fake.child->prev = child;
}
LY_LIST_FOR(context_node_fake.child, child) {
child->parent = parent;
}
if (uses_p->augments || uses_p->refines) {
/* return back actions and notifications in case they were separated for augment/refine processing */
if (context_node_fake.actions) {
memcpy(&(*actions)[actions_index], context_node_fake.actions, LY_ARRAY_COUNT(context_node_fake.actions) * sizeof **actions);
LY_ARRAY_FREE(context_node_fake.actions);
}
if (context_node_fake.notifs) {
memcpy(&(*notifs)[notifs_index], context_node_fake.notifs, LY_ARRAY_COUNT(context_node_fake.notifs) * sizeof **notifs);
LY_ARRAY_FREE(context_node_fake.notifs);
}
}
/* reload previous context's mod_def */
ctx->mod_def = mod_old;
/* remove the grouping from the stack for circular groupings dependency check */
ly_set_rm_index(&ctx->groupings, ctx->groupings.count - 1, NULL);
assert(ctx->groupings.count == grp_stack_count);
LY_ARRAY_FREE(augments);
return ret;
}
static int
lys_compile_grouping_pathlog(struct lysc_ctx *ctx, struct lysp_node *node, char **path)
{
struct lysp_node *iter;
int len = 0;
*path = NULL;
for (iter = node; iter && len >= 0; iter = iter->parent) {
char *s = *path;
char *id;
switch (iter->nodetype) {
case LYS_USES:
LY_CHECK_RET(asprintf(&id, "{uses='%s'}", iter->name) == -1, -1);
break;
case LYS_GROUPING:
LY_CHECK_RET(asprintf(&id, "{grouping='%s'}", iter->name) == -1, -1);
break;
case LYS_AUGMENT:
LY_CHECK_RET(asprintf(&id, "{augment='%s'}", iter->name) == -1, -1);
break;
default:
id = strdup(iter->name);
break;
}
if (!iter->parent) {
/* print prefix */
len = asprintf(path, "/%s:%s%s", ctx->mod->name, id, s ? s : "");
} else {
/* prefix is the same as in parent */
len = asprintf(path, "/%s%s", id, s ? s : "");
}
free(s);
free(id);
}
if (len < 0) {
free(*path);
*path = NULL;
} else if (len == 0) {
*path = strdup("/");
len = 1;
}
return len;
}
/**
* @brief Validate groupings that were defined but not directly used in the schema itself.
*
* The grouping does not need to be compiled (and it is compiled here, but the result is forgotten immediately),
* but to have the complete result of the schema validity, even such groupings are supposed to be checked.
*/
static LY_ERR
lys_compile_grouping(struct lysc_ctx *ctx, struct lysp_node *node_p, struct lysp_grp *grp)
{
LY_ERR ret;
char *path;
int len;
struct lysp_node_uses fake_uses = {
.parent = node_p,
.nodetype = LYS_USES,
.flags = 0, .next = NULL,
.name = grp->name,
.dsc = NULL, .ref = NULL, .when = NULL, .iffeatures = NULL, .exts = NULL,
.refines = NULL, .augments = NULL
};
struct lysc_node_container fake_container = {
.nodetype = LYS_CONTAINER,
.flags = node_p ? (node_p->flags & LYS_FLAGS_COMPILED_MASK) : 0,
.module = ctx->mod,
.sp = NULL, .parent = NULL, .next = NULL,
.prev = (struct lysc_node *)&fake_container,
.name = "fake",
.dsc = NULL, .ref = NULL, .exts = NULL, .iffeatures = NULL, .when = NULL,
.child = NULL, .musts = NULL, .actions = NULL, .notifs = NULL
};
if (grp->parent) {
LOGWRN(ctx->ctx, "Locally scoped grouping \"%s\" not used.", grp->name);
}
len = lys_compile_grouping_pathlog(ctx, grp->parent, &path);
if (len < 0) {
LOGMEM(ctx->ctx);
return LY_EMEM;
}
strncpy(ctx->path, path, LYSC_CTX_BUFSIZE - 1);
ctx->path_len = (uint32_t)len;
free(path);
lysc_update_path(ctx, NULL, "{grouping}");
lysc_update_path(ctx, NULL, grp->name);
ret = lys_compile_uses(ctx, &fake_uses, (struct lysc_node *)&fake_container, NULL);
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
ctx->path_len = 1;
ctx->path[1] = '\0';
/* cleanup */
lysc_node_container_free(ctx->ctx, &fake_container);
return ret;
}
/**
* @brief Set config flags for a node.
*
* @param[in] ctx Compile context.
* @param[in] node Compiled node config to set.
* @param[in] parent Parent of @p node.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_config(struct lysc_ctx *ctx, struct lysc_node *node, struct lysc_node *parent)
{
if (node->nodetype == LYS_CASE) {
/* case never has any config */
assert(!(node->flags & LYS_CONFIG_MASK));
return LY_SUCCESS;
}
/* adjust parent to always get the ancestor with config */
if (parent && (parent->nodetype == LYS_CASE)) {
parent = parent->parent;
assert(parent);
}
if (ctx->options & (LYSC_OPT_RPC_INPUT | LYSC_OPT_RPC_OUTPUT)) {
/* ignore config statements inside RPC/action data */
node->flags &= ~LYS_CONFIG_MASK;
node->flags |= (ctx->options & LYSC_OPT_RPC_INPUT) ? LYS_CONFIG_W : LYS_CONFIG_R;
} else if (ctx->options & LYSC_OPT_NOTIFICATION) {
/* ignore config statements inside Notification data */
node->flags &= ~LYS_CONFIG_MASK;
node->flags |= LYS_CONFIG_R;
} else if (!(node->flags & LYS_CONFIG_MASK)) {
/* config not explicitely set, inherit it from parent */
if (parent) {
node->flags |= parent->flags & LYS_CONFIG_MASK;
} else {
/* default is config true */
node->flags |= LYS_CONFIG_W;
}
} else {
/* config set explicitely */
node->flags |= LYS_SET_CONFIG;
}
if (parent && (parent->flags & LYS_CONFIG_R) && (node->flags & LYS_CONFIG_W)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Configuration node cannot be child of any state data node.");
return LY_EVALID;
}
return LY_SUCCESS;
}
/**
* @brief Compile parsed schema node information.
* @param[in] ctx Compile context
* @param[in] node_p Parsed schema node.
* @param[in] parent Compiled parent node where the current node is supposed to be connected. It is
* NULL for top-level nodes, in such a case the module where the node will be connected is taken from
* the compile context.
* @param[in] uses_status If the node is being placed instead of uses, here we have the uses's status value (as node's flags).
* Zero means no uses, non-zero value with no status bit set mean the default status.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node(struct lysc_ctx *ctx, struct lysp_node *node_p, struct lysc_node *parent, uint16_t uses_status)
{
LY_ERR ret = LY_SUCCESS;
struct lysc_node *node = NULL;
struct lysc_when **when;
LY_ARRAY_COUNT_TYPE u;
LY_ERR (*node_compile_spec)(struct lysc_ctx *, struct lysp_node *, struct lysc_node *);
if (node_p->nodetype != LYS_USES) {
lysc_update_path(ctx, parent, node_p->name);
} else {
lysc_update_path(ctx, NULL, "{uses}");
lysc_update_path(ctx, NULL, node_p->name);
}
switch (node_p->nodetype) {
case LYS_CONTAINER:
node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_container));
node_compile_spec = lys_compile_node_container;
break;
case LYS_LEAF:
node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_leaf));
node_compile_spec = lys_compile_node_leaf;
break;
case LYS_LIST:
node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_list));
node_compile_spec = lys_compile_node_list;
break;
case LYS_LEAFLIST:
node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_leaflist));
node_compile_spec = lys_compile_node_leaflist;
break;
case LYS_CHOICE:
node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_choice));
node_compile_spec = lys_compile_node_choice;
break;
case LYS_CASE:
node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_case));
node_compile_spec = lys_compile_node_case;
break;
case LYS_ANYXML:
case LYS_ANYDATA:
node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_anydata));
node_compile_spec = lys_compile_node_any;
break;
case LYS_USES:
ret = lys_compile_uses(ctx, (struct lysp_node_uses *)node_p, parent, &node);
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
return ret;
default:
LOGINT(ctx->ctx);
return LY_EINT;
}
LY_CHECK_ERR_RET(!node, LOGMEM(ctx->ctx), LY_EMEM);
node->nodetype = node_p->nodetype;
node->module = ctx->mod;
node->prev = node;
node->flags = node_p->flags & LYS_FLAGS_COMPILED_MASK;
/* config */
ret = lys_compile_config(ctx, node, parent);
LY_CHECK_GOTO(ret, error);
/* list ordering */
if (node->nodetype & (LYS_LIST | LYS_LEAFLIST)) {
if ((node->flags & LYS_CONFIG_R) && (node->flags & LYS_ORDBY_MASK)) {
LOGWRN(ctx->ctx, "The ordered-by statement is ignored in lists representing %s (%s).",
(ctx->options & LYSC_OPT_RPC_OUTPUT) ? "RPC/action output parameters" :
(ctx->options & LYSC_OPT_NOTIFICATION) ? "notification content" : "state data", ctx->path);
node->flags &= ~LYS_ORDBY_MASK;
node->flags |= LYS_ORDBY_SYSTEM;
} else if (!(node->flags & LYS_ORDBY_MASK)) {
/* default ordering is system */
node->flags |= LYS_ORDBY_SYSTEM;
}
}
/* status - it is not inherited by specification, but it does not make sense to have
* current in deprecated or deprecated in obsolete, so we do print warning and inherit status */
LY_CHECK_GOTO(ret = lys_compile_status(ctx, &node->flags, uses_status ? uses_status : (parent ? parent->flags : 0)), error);
if (!(ctx->options & LYSC_OPT_FREE_SP)) {
node->sp = node_p;
}
DUP_STRING_GOTO(ctx->ctx, node_p->name, node->name, ret, error);
DUP_STRING_GOTO(ctx->ctx, node_p->dsc, node->dsc, ret, error);
DUP_STRING_GOTO(ctx->ctx, node_p->ref, node->ref, ret, error);
if (node_p->when) {
LY_ARRAY_NEW_GOTO(ctx->ctx, node->when, when, ret, error);
LY_CHECK_GOTO(ret = lys_compile_when(ctx, node_p->when, node_p->flags, node, when), error);
if (!(ctx->options & LYSC_OPT_GROUPING)) {
/* do not check "when" semantics in a grouping */
ret = ly_set_add(&ctx->xpath, node, 0, NULL);
LY_CHECK_GOTO(ret, error);
}
}
COMPILE_ARRAY_GOTO(ctx, node_p->iffeatures, node->iffeatures, u, lys_compile_iffeature, ret, error);
/* insert into parent's children/compiled module (we can no longer free the node separately on error) */
LY_CHECK_RET(lys_compile_node_connect(ctx, parent, node));
/* nodetype-specific part */
LY_CHECK_RET(node_compile_spec(ctx, node_p, node));
/* final compilation tasks that require the node to be connected */
COMPILE_EXTS_GOTO(ctx, node_p->exts, node->exts, node, LYEXT_PAR_NODE, ret, done);
if (node->flags & LYS_MAND_TRUE) {
/* inherit LYS_MAND_TRUE in parent containers */
lys_compile_mandatory_parents(parent, 1);
}
lysc_update_path(ctx, NULL, NULL);
return LY_SUCCESS;
error:
lysc_node_free(ctx->ctx, node);
done:
return ret;
}
static void
lysc_node_unlink(struct lysc_node *node)
{
struct lysc_node *parent, *child;
struct lysc_module *modc = node->module->compiled;
parent = node->parent;
/* parent's first child */
if (parent && lysc_node_children(parent, node->flags) == node) {
*lysc_node_children_p(parent, node->flags) = node->next;
} else if (modc->data == node) {
modc->data = node->next;
}
/* special choice case unlinking */
if (parent && parent->nodetype == LYS_CHOICE) {
if (((struct lysc_node_choice *)parent)->dflt == (struct lysc_node_case *)node) {
/* default case removed */
((struct lysc_node_choice *)parent)->dflt = NULL;
}
}
/* siblings */
if (node->prev->next) {
node->prev->next = node->next;
}
if (node->next) {
node->next->prev = node->prev;
} else {
/* last child */
if (parent) {
child = (struct lysc_node *)lysc_node_children(parent, node->flags);
} else {
child = modc->data;
}
if (child) {
child->prev = node->prev;
}
}
}
struct lysc_deviation {
const char *nodeid;
struct lysc_node *target; /* target node of the deviation */
struct lysp_deviate **deviates;/* sized array of pointers to parsed deviate statements to apply on target */
uint16_t flags; /* target's flags from lysc_resolve_schema_nodeid() */
ly_bool not_supported; /* flag if deviates contains not-supported deviate */
};
/* MACROS for deviates checking */
#define DEV_CHECK_NODETYPE(NODETYPES, DEVTYPE, PROPERTY) \
if (!(target->nodetype & (NODETYPES))) { \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NODETYPE, lys_nodetype2str(target->nodetype), DEVTYPE, PROPERTY);\
goto cleanup; \
}
#define DEV_CHECK_CARDINALITY(ARRAY, MAX, PROPERTY) \
if (LY_ARRAY_COUNT(ARRAY) > MAX) { \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS, "Invalid deviation of %s with too many (%"LY_PRI_ARRAY_COUNT_TYPE") %s properties.", \
lys_nodetype2str(target->nodetype), LY_ARRAY_COUNT(ARRAY), PROPERTY); \
goto cleanup; \
}
#define DEV_CHECK_PRESENCE(TYPE, COND, MEMBER, DEVTYPE, PROPERTY, VALUE) \
if (!((TYPE)target)->MEMBER || COND) { \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NOT_PRESENT, DEVTYPE, PROPERTY, VALUE); \
goto cleanup; \
}
/**
* @brief Apply deviate add.
*
* @param[in] ctx Compile context.
* @param[in] target Deviation target.
* @param[in] dev_flags Internal deviation flags.
* @param[in] d Deviate add to apply.
* @return LY_ERR value.
*/
static LY_ERR
lys_apply_deviate_add(struct lysc_ctx *ctx, struct lysc_node *target, uint32_t dev_flags, struct lysp_deviate_add *d)
{
LY_ERR ret = LY_EVALID, rc = LY_SUCCESS;
struct lysc_node_leaf *leaf = (struct lysc_node_leaf *)target;
struct lysc_node_leaflist *llist = (struct lysc_node_leaflist *)target;
LY_ARRAY_COUNT_TYPE x;
#define DEV_CHECK_NONPRESENCE_UINT(TYPE, COND, MEMBER, PROPERTY) \
if (((TYPE)target)->MEMBER COND) { \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, \
"Invalid deviation adding \"%s\" property which already exists (with value \"%u\").", \
PROPERTY, ((TYPE)target)->MEMBER); \
goto cleanup; \
}
#define DEV_CHECK_NONPRESENCE_VALUE(TYPE, COND, MEMBER, PROPERTY, VALUEMEMBER) \
if (((TYPE)target)->MEMBER && (COND)) { \
ly_bool dynamic_ = 0; const char *val_; \
val_ = ((TYPE)target)->VALUEMEMBER->realtype->plugin->print(((TYPE)target)->VALUEMEMBER, LY_PREF_SCHEMA, \
ctx->mod_def, &dynamic_); \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, \
"Invalid deviation adding \"%s\" property which already exists (with value \"%s\").", PROPERTY, val_); \
if (dynamic_) {free((void*)val_);} \
goto cleanup; \
}
#define DEV_CHECK_NONPRESENCE(TYPE, COND, MEMBER, PROPERTY, VALUEMEMBER) \
if (((TYPE)target)->MEMBER && (COND)) { \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, \
"Invalid deviation adding \"%s\" property which already exists (with value \"%s\").", \
PROPERTY, ((TYPE)target)->VALUEMEMBER); \
goto cleanup; \
}
/* [units-stmt] */
if (d->units) {
DEV_CHECK_NODETYPE(LYS_LEAF | LYS_LEAFLIST, "add", "units");
DEV_CHECK_NONPRESENCE(struct lysc_node_leaf *, (target->flags & LYS_SET_UNITS), units, "units", units);
FREE_STRING(ctx->ctx, ((struct lysc_node_leaf *)target)->units);
DUP_STRING(ctx->ctx, d->units, ((struct lysc_node_leaf *)target)->units, rc);
LY_CHECK_ERR_GOTO(rc, ret = rc, cleanup);
}
/* *must-stmt */
if (d->musts) {
switch (target->nodetype) {
case LYS_CONTAINER:
case LYS_LIST:
COMPILE_ARRAY_GOTO(ctx, d->musts, ((struct lysc_node_container *)target)->musts,
x, lys_compile_must, ret, cleanup);
break;
case LYS_LEAF:
case LYS_LEAFLIST:
case LYS_ANYDATA:
COMPILE_ARRAY_GOTO(ctx, d->musts, ((struct lysc_node_leaf *)target)->musts,
x, lys_compile_must, ret, cleanup);
break;
case LYS_NOTIF:
COMPILE_ARRAY_GOTO(ctx, d->musts, ((struct lysc_notif *)target)->musts,
x, lys_compile_must, ret, cleanup);
break;
case LYS_RPC:
case LYS_ACTION:
if (dev_flags & LYSC_OPT_RPC_INPUT) {
COMPILE_ARRAY_GOTO(ctx, d->musts, ((struct lysc_action *)target)->input.musts,
x, lys_compile_must, ret, cleanup);
break;
} else if (dev_flags & LYSC_OPT_RPC_OUTPUT) {
COMPILE_ARRAY_GOTO(ctx, d->musts, ((struct lysc_action *)target)->output.musts,
x, lys_compile_must, ret, cleanup);
break;
}
/* fall through */
default:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NODETYPE,
lys_nodetype2str(target->nodetype), "add", "must");
goto cleanup;
}
ret = ly_set_add(&ctx->xpath, target, 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
/* *unique-stmt */
if (d->uniques) {
DEV_CHECK_NODETYPE(LYS_LIST, "add", "unique");
LY_CHECK_GOTO(lys_compile_node_list_unique(ctx, ctx->mod, d->uniques, (struct lysc_node_list *)target), cleanup);
}
/* *default-stmt */
if (d->dflts) {
switch (target->nodetype) {
case LYS_LEAF:
DEV_CHECK_CARDINALITY(d->dflts, 1, "default");
DEV_CHECK_NONPRESENCE_VALUE(struct lysc_node_leaf *, (target->flags & LYS_SET_DFLT), dflt, "default", dflt);
if (leaf->dflt) {
/* first, remove the default value taken from the type */
leaf->dflt->realtype->plugin->free(ctx->ctx, leaf->dflt);
lysc_type_free(ctx->ctx, leaf->dflt->realtype);
free(leaf->dflt);
leaf->dflt = NULL;
}
/* store the default value in unres */
LY_CHECK_GOTO(lysc_incomplete_leaf_dflt_add(ctx, leaf, d->dflts[0], ctx->mod_def), cleanup);
target->flags |= LYS_SET_DFLT;
break;
case LYS_LEAFLIST:
if (llist->dflts && !(target->flags & LYS_SET_DFLT)) {
/* first, remove the default value taken from the type */
LY_ARRAY_FOR(llist->dflts, x) {
llist->dflts[x]->realtype->plugin->free(ctx->ctx, llist->dflts[x]);
lysc_type_free(ctx->ctx, llist->dflts[x]->realtype);
free(llist->dflts[x]);
}
LY_ARRAY_FREE(llist->dflts);
llist->dflts = NULL;
}
/* store the default values in unres */
LY_CHECK_GOTO(lysc_incomplete_llist_dflts_add(ctx, llist, d->dflts, ctx->mod_def), cleanup);
target->flags |= LYS_SET_DFLT;
break;
case LYS_CHOICE:
DEV_CHECK_CARDINALITY(d->dflts, 1, "default");
DEV_CHECK_NONPRESENCE(struct lysc_node_choice *, 1, dflt, "default", dflt->name);
/* in contrast to delete, here we strictly resolve the prefix in the module of the deviation
* to allow making the default case even the augmented case from the deviating module */
if (lys_compile_deviation_set_choice_dflt(ctx, d->dflts[0], (struct lysc_node_choice *)target)) {
goto cleanup;
}
break;
default:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NODETYPE,
lys_nodetype2str(target->nodetype), "add", "default");
goto cleanup;
}
}
/* [config-stmt] */
if (d->flags & LYS_CONFIG_MASK) {
if (target->nodetype & (LYS_CASE | LYS_INOUT | LYS_RPC | LYS_ACTION | LYS_NOTIF)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NODETYPE,
lys_nodetype2str(target->nodetype), "add", "config");
goto cleanup;
}
if (dev_flags) {
LOGWRN(ctx->ctx, "Deviating config inside %s has no effect.",
dev_flags & LYSC_OPT_NOTIFICATION ? "notification" : "RPC/action");
}
if (target->flags & LYS_SET_CONFIG) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid deviation adding \"config\" property which already exists (with value \"config %s\").",
target->flags & LYS_CONFIG_W ? "true" : "false");
goto cleanup;
}
LY_CHECK_GOTO(lys_compile_change_config(ctx, target, d->flags, 0, 0), cleanup);
}
/* [mandatory-stmt] */
if (d->flags & LYS_MAND_MASK) {
if (target->flags & LYS_MAND_MASK) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid deviation adding \"mandatory\" property which already exists (with value \"mandatory %s\").",
target->flags & LYS_MAND_TRUE ? "true" : "false");
goto cleanup;
}
LY_CHECK_GOTO(lys_compile_change_mandatory(ctx, target, d->flags, 0), cleanup);
}
/* [min-elements-stmt] */
if (d->flags & LYS_SET_MIN) {
if (target->nodetype == LYS_LEAFLIST) {
DEV_CHECK_NONPRESENCE_UINT(struct lysc_node_leaflist *, > 0, min, "min-elements");
/* change value */
((struct lysc_node_leaflist *)target)->min = d->min;
} else if (target->nodetype == LYS_LIST) {
DEV_CHECK_NONPRESENCE_UINT(struct lysc_node_list *, > 0, min, "min-elements");
/* change value */
((struct lysc_node_list *)target)->min = d->min;
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NODETYPE,
lys_nodetype2str(target->nodetype), "add", "min-elements");
goto cleanup;
}
if (d->min) {
target->flags |= LYS_MAND_TRUE;
}
}
/* [max-elements-stmt] */
if (d->flags & LYS_SET_MAX) {
if (target->nodetype == LYS_LEAFLIST) {
DEV_CHECK_NONPRESENCE_UINT(struct lysc_node_leaflist *, < (uint32_t)-1, max, "max-elements");
/* change value */
((struct lysc_node_leaflist *)target)->max = d->max ? d->max : (uint32_t)-1;
} else if (target->nodetype == LYS_LIST) {
DEV_CHECK_NONPRESENCE_UINT(struct lysc_node_list *, < (uint32_t)-1, max, "max-elements");
/* change value */
((struct lysc_node_list *)target)->max = d->max ? d->max : (uint32_t)-1;
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NODETYPE,
lys_nodetype2str(target->nodetype), "add", "max-elements");
goto cleanup;
}
}
ret = LY_SUCCESS;
cleanup:
return ret;
}
static LY_ERR
lys_apply_deviate_delete_leaf_dflt(struct lysc_ctx *ctx, struct lysc_node *target, const char *dflt)
{
struct lysc_node_leaf *leaf = (struct lysc_node_leaf *)target;
ly_bool dyn = 0;
const char *orig_dflt;
uint32_t i;
if (target->module != ctx->mod) {
/* foreign deviation */
DEV_CHECK_PRESENCE(struct lysc_node_leaf *, !(target->flags & LYS_SET_DFLT), dflt, "deleting", "default", dflt);
/* check that the value matches */
orig_dflt = leaf->dflt->realtype->plugin->print(leaf->dflt, LY_PREF_SCHEMA, ctx->mod_def, &dyn);
if (strcmp(orig_dflt, dflt)) {
goto error;
}
if (dyn) {
free((char *)orig_dflt);
}
/* remove the default specification */
leaf->dflt->realtype->plugin->free(ctx->ctx, leaf->dflt);
lysc_type_free(ctx->ctx, leaf->dflt->realtype);
free(leaf->dflt);
leaf->dflt = NULL;
} else {
/* local deviation */
DEV_CHECK_PRESENCE(struct lysc_node_leaf *, !(target->flags & LYS_SET_DFLT), name, "deleting", "default", dflt);
/* find the incomplete default */
orig_dflt = NULL;
for (i = 0; i < ctx->dflts.count; ++i) {
if (((struct lysc_incomplete_dflt *)ctx->dflts.objs[i])->leaf == leaf) {
orig_dflt = ((struct lysc_incomplete_dflt *)ctx->dflts.objs[i])->dflt;
break;
}
}
LY_CHECK_ERR_RET(!orig_dflt, LOGINT(ctx->ctx), LY_EINT);
/* check that the value matches */
if (strcmp(orig_dflt, dflt)) {
goto error;
}
/* update the list of incomplete default values */
lysc_incomplete_dflt_remove(ctx, target);
}
target->flags &= ~LYS_SET_DFLT;
return LY_SUCCESS;
error:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid deviation deleting \"default\" property \"%s\" which does not match the target's property value \"%s\".",
dflt, orig_dflt);
if (dyn) {
free((char *)orig_dflt);
}
cleanup:
return LY_EVALID;
}
static LY_ERR
lys_apply_deviate_delete_llist_dflts(struct lysc_ctx *ctx, struct lysc_node *target, const char **dflts)
{
struct lysc_node_leaflist *llist = (struct lysc_node_leaflist *)target;
ly_bool dyn = 0, found;
const char *orig_dflt, **orig_dflts;
uint32_t i;
LY_ARRAY_COUNT_TYPE x, y;
if (target->module != ctx->mod) {
/* foreign deviation */
DEV_CHECK_PRESENCE(struct lysc_node_leaflist *, 0, dflts, "deleting", "default", dflts[0]);
LY_ARRAY_FOR(dflts, x) {
found = 0;
LY_ARRAY_FOR(llist->dflts, y) {
orig_dflt = llist->type->plugin->print(llist->dflts[y], LY_PREF_SCHEMA, ctx->mod_def, &dyn);
if (!strcmp(orig_dflt, dflts[x])) {
if (dyn) {
free((char *)orig_dflt);
}
found = 1;
break;
}
if (dyn) {
free((char *)orig_dflt);
}
}
if (!found) {
goto error;
}
/* update compiled default values */
LY_ARRAY_DECREMENT(llist->dflts);
llist->dflts[y]->realtype->plugin->free(ctx->ctx, llist->dflts[y]);
lysc_type_free(ctx->ctx, llist->dflts[y]->realtype);
free(llist->dflts[y]);
memmove(&llist->dflts[y], &llist->dflts[y + 1], (LY_ARRAY_COUNT(llist->dflts) - y) * (sizeof *llist->dflts));
}
if (!LY_ARRAY_COUNT(llist->dflts)) {
LY_ARRAY_FREE(llist->dflts);
llist->dflts = NULL;
llist->flags &= ~LYS_SET_DFLT;
}
} else {
/* local deviation */
orig_dflt = NULL;
orig_dflts = NULL;
for (i = 0; i < ctx->dflts.count; ++i) {
if (((struct lysc_incomplete_dflt *)ctx->dflts.objs[i])->llist == llist) {
orig_dflt = ((struct lysc_incomplete_dflt *)ctx->dflts.objs[i])->dflt;
orig_dflts = ((struct lysc_incomplete_dflt *)ctx->dflts.objs[i])->dflts;
break;
}
}
LY_CHECK_ERR_RET(!orig_dflt && !orig_dflts, LOGINT(ctx->ctx), LY_EINT);
if (orig_dflts && (LY_ARRAY_COUNT(orig_dflts) > 1)) {
/* TODO it is not currently possible to remove just one default value from incomplete defaults array */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Local deviation deleting leaf-list defaults is not supported.");
return LY_EVALID;
}
LY_ARRAY_FOR(dflts, x) {
found = 0;
if (orig_dflts) {
LY_ARRAY_FOR(orig_dflts, y) {
if (!strcmp(orig_dflts[y], dflts[x])) {
found = 1;
break;
}
}
} else if (!strcmp(orig_dflt, dflts[x])) {
found = 1;
}
if (!found) {
goto error;
}
/* update the list of incomplete default values */
lysc_incomplete_dflt_remove(ctx, target);
}
llist->flags &= ~LYS_SET_DFLT;
}
return LY_SUCCESS;
error:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, "Invalid deviation deleting \"default\" property \"%s\" "
"which does not match any of the target's property values.", dflts[x]);
cleanup:
return LY_EVALID;
}
/**
* @brief Apply deviate delete.
*
* @param[in] ctx Compile context.
* @param[in] target Deviation target.
* @param[in] dev_flags Internal deviation flags.
* @param[in] d Deviate delete to apply.
* @return LY_ERR value.
*/
static LY_ERR
lys_apply_deviate_delete(struct lysc_ctx *ctx, struct lysc_node *target, uint32_t dev_flags, struct lysp_deviate_del *d)
{
LY_ERR ret = LY_EVALID;
struct lysc_node_list *list = (struct lysc_node_list *)target;
LY_ARRAY_COUNT_TYPE x, y, z;
size_t prefix_len, name_len;
const char *prefix, *name, *nodeid;
struct lys_module *mod;
#define DEV_DEL_ARRAY(TYPE, ARRAY_TRG, ARRAY_DEV, VALMEMBER, VALMEMBER_CMP, DELFUNC_DEREF, DELFUNC, PROPERTY) \
DEV_CHECK_PRESENCE(TYPE, 0, ARRAY_TRG, "deleting", PROPERTY, d->ARRAY_DEV[0]VALMEMBER); \
LY_ARRAY_FOR(d->ARRAY_DEV, x) { \
LY_ARRAY_FOR(((TYPE)target)->ARRAY_TRG, y) { \
if (!strcmp(((TYPE)target)->ARRAY_TRG[y]VALMEMBER_CMP, d->ARRAY_DEV[x]VALMEMBER)) { break; } \
} \
if (y == LY_ARRAY_COUNT(((TYPE)target)->ARRAY_TRG)) { \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, \
"Invalid deviation deleting \"%s\" property \"%s\" which does not match any of the target's property values.", \
PROPERTY, d->ARRAY_DEV[x]VALMEMBER); \
goto cleanup; \
} \
LY_ARRAY_DECREMENT(((TYPE)target)->ARRAY_TRG); \
DELFUNC(ctx->ctx, DELFUNC_DEREF((TYPE)target)->ARRAY_TRG[y]); \
memmove(&((TYPE)target)->ARRAY_TRG[y], \
&((TYPE)target)->ARRAY_TRG[y + 1], \
(LY_ARRAY_COUNT(((TYPE)target)->ARRAY_TRG) - y) * (sizeof *((TYPE)target)->ARRAY_TRG)); \
} \
if (!LY_ARRAY_COUNT(((TYPE)target)->ARRAY_TRG)) { \
LY_ARRAY_FREE(((TYPE)target)->ARRAY_TRG); \
((TYPE)target)->ARRAY_TRG = NULL; \
}
/* [units-stmt] */
if (d->units) {
DEV_CHECK_NODETYPE(LYS_LEAF | LYS_LEAFLIST, "delete", "units");
DEV_CHECK_PRESENCE(struct lysc_node_leaf *, 0, units, "deleting", "units", d->units);
if (strcmp(((struct lysc_node_leaf *)target)->units, d->units)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid deviation deleting \"units\" property \"%s\" which does not match the target's property value \"%s\".",
d->units, ((struct lysc_node_leaf *)target)->units);
goto cleanup;
}
lydict_remove(ctx->ctx, ((struct lysc_node_leaf *)target)->units);
((struct lysc_node_leaf *)target)->units = NULL;
}
/* *must-stmt */
if (d->musts) {
switch (target->nodetype) {
case LYS_CONTAINER:
case LYS_LIST:
DEV_DEL_ARRAY(struct lysc_node_container *, musts, musts, .arg, .cond->expr, &, lysc_must_free, "must");
break;
case LYS_LEAF:
case LYS_LEAFLIST:
case LYS_ANYDATA:
DEV_DEL_ARRAY(struct lysc_node_leaf *, musts, musts, .arg, .cond->expr, &, lysc_must_free, "must");
break;
case LYS_NOTIF:
DEV_DEL_ARRAY(struct lysc_notif *, musts, musts, .arg, .cond->expr, &, lysc_must_free, "must");
break;
case LYS_RPC:
case LYS_ACTION:
if (dev_flags & LYSC_OPT_RPC_INPUT) {
DEV_DEL_ARRAY(struct lysc_action *, input.musts, musts, .arg, .cond->expr, &, lysc_must_free, "must");
break;
} else if (dev_flags & LYSC_OPT_RPC_OUTPUT) {
DEV_DEL_ARRAY(struct lysc_action *, output.musts, musts, .arg, .cond->expr, &, lysc_must_free, "must");
break;
}
/* fall through */
default:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NODETYPE,
lys_nodetype2str(target->nodetype), "delete", "must");
goto cleanup;
}
}
/* *unique-stmt */
if (d->uniques) {
DEV_CHECK_NODETYPE(LYS_LIST, "delete", "unique");
LY_ARRAY_FOR(d->uniques, x) {
LY_ARRAY_FOR(list->uniques, z) {
for (name = d->uniques[x], y = 0; name; name = nodeid, ++y) {
nodeid = strpbrk(name, " \t\n");
if (nodeid) {
if (ly_strncmp(list->uniques[z][y]->name, name, nodeid - name)) {
break;
}
while (isspace(*nodeid)) {
++nodeid;
}
} else {
if (strcmp(name, list->uniques[z][y]->name)) {
break;
}
}
}
if (!name) {
/* complete match - remove the unique */
LY_ARRAY_DECREMENT(list->uniques);
LY_ARRAY_FREE(list->uniques[z]);
memmove(&list->uniques[z], &list->uniques[z + 1], (LY_ARRAY_COUNT(list->uniques) - z) * (sizeof *list->uniques));
--z;
break;
}
}
if (!list->uniques || z == LY_ARRAY_COUNT(list->uniques)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid deviation deleting \"unique\" property \"%s\" which does not match any of the target's property values.",
d->uniques[x]);
goto cleanup;
}
}
if (!LY_ARRAY_COUNT(list->uniques)) {
LY_ARRAY_FREE(list->uniques);
list->uniques = NULL;
}
}
/* *default-stmt */
if (d->dflts) {
switch (target->nodetype) {
case LYS_LEAF:
DEV_CHECK_CARDINALITY(d->dflts, 1, "default");
LY_CHECK_GOTO(lys_apply_deviate_delete_leaf_dflt(ctx, target, d->dflts[0]), cleanup);
break;
case LYS_LEAFLIST:
LY_CHECK_GOTO(lys_apply_deviate_delete_llist_dflts(ctx, target, d->dflts), cleanup);
break;
case LYS_CHOICE:
DEV_CHECK_CARDINALITY(d->dflts, 1, "default");
DEV_CHECK_PRESENCE(struct lysc_node_choice *, 0, dflt, "deleting", "default", d->dflts[0]);
nodeid = d->dflts[0];
LY_CHECK_GOTO(ly_parse_nodeid(&nodeid, &prefix, &prefix_len, &name, &name_len), cleanup);
if (prefix) {
/* use module prefixes from the deviation module to match the module of the default case */
if (!(mod = lys_module_find_prefix(ctx->mod, prefix, prefix_len))) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid deviation deleting \"default\" property \"%s\" of choice. "
"The prefix does not match any imported module of the deviation module.", d->dflts[0]);
goto cleanup;
}
if (mod != ((struct lysc_node_choice *)target)->dflt->module) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid deviation deleting \"default\" property \"%s\" of choice. "
"The prefix does not match the default case's module.", d->dflts[0]);
goto cleanup;
}
}
/* else {
* strictly, the default prefix would point to the deviation module, but the value should actually
* match the default string in the original module (usually unprefixed), so in this case we do not check
* the module of the default case, just matching its name */
if (strcmp(name, ((struct lysc_node_choice *)target)->dflt->name)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid deviation deleting \"default\" property \"%s\" of choice does not match the default case name \"%s\".",
d->dflts[0], ((struct lysc_node_choice *)target)->dflt->name);
goto cleanup;
}
((struct lysc_node_choice *)target)->dflt->flags &= ~LYS_SET_DFLT;
((struct lysc_node_choice *)target)->dflt = NULL;
break;
default:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NODETYPE,
lys_nodetype2str(target->nodetype), "delete", "default");
goto cleanup;
}
}
ret = LY_SUCCESS;
cleanup:
return ret;
}
static LY_ERR
lys_apply_deviate_replace_dflt_recompile(struct lysc_ctx *ctx, struct lysc_node *target)
{
LY_ERR ret;
struct lysc_node_leaf *leaf = (struct lysc_node_leaf *)target;
struct lysc_node_leaflist *llist = (struct lysc_node_leaflist *)target;
struct ly_err_item *err = NULL;
LY_ARRAY_COUNT_TYPE x;
const char *dflt;
ly_bool dyn;
if (target->module != ctx->mod) {
/* foreign deviation */
if (target->nodetype == LYS_LEAF) {
dflt = leaf->dflt->realtype->plugin->print(leaf->dflt, LY_PREF_JSON, NULL, &dyn);
leaf->dflt->realtype->plugin->free(ctx->ctx, leaf->dflt);
lysc_type_free(ctx->ctx, leaf->dflt->realtype);
ret = leaf->type->plugin->store(ctx->ctx, leaf->type, dflt, strlen(dflt), LY_TYPE_OPTS_SCHEMA,
LY_PREF_JSON, NULL, target, NULL, leaf->dflt, &err);
if (dyn) {
free((char *)dflt);
}
if (err) {
ly_err_print(err);
ctx->path[0] = '\0';
lysc_path(target, LYSC_PATH_LOG, ctx->path, LYSC_CTX_BUFSIZE);
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid default - value does not fit the type (%s).", err->msg);
ly_err_free(err);
}
LY_CHECK_RET(ret);
++leaf->dflt->realtype->refcount;
} else { /* LY_LEAFLIST */
LY_ARRAY_FOR(llist->dflts, x) {
dflt = llist->dflts[x]->realtype->plugin->print(llist->dflts[x], LY_PREF_JSON, NULL, &dyn);
llist->dflts[x]->realtype->plugin->free(ctx->ctx, llist->dflts[x]);
lysc_type_free(ctx->ctx, llist->dflts[x]->realtype);
ret = llist->type->plugin->store(ctx->ctx, llist->type, dflt, strlen(dflt), LY_TYPE_OPTS_SCHEMA,
LY_PREF_JSON, NULL, target, NULL, llist->dflts[x], &err);
if (dyn) {
free((char *)dflt);
}
if (err) {
ly_err_print(err);
ctx->path[0] = '\0';
lysc_path(target, LYSC_PATH_LOG, ctx->path, LYSC_CTX_BUFSIZE);
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid default - value does not fit the type (%s).", err->msg);
ly_err_free(err);
}
LY_CHECK_RET(ret);
++llist->dflts[x]->realtype->refcount;
}
}
} else {
/* local deviation */
/* these default were not compiled yet, so they will use the new type automatically */
}
return LY_SUCCESS;
}
/**
* @brief Apply deviate replace.
*
* @param[in] ctx Compile context.
* @param[in] target Deviation target.
* @param[in] d Deviate replace to apply.
* @return LY_ERR value.
*/
static LY_ERR
lys_apply_deviate_replace(struct lysc_ctx *ctx, struct lysc_node *target, struct lysp_deviate_rpl *d)
{
LY_ERR ret = LY_EVALID, rc = LY_SUCCESS;
struct lysc_node_leaf *leaf = (struct lysc_node_leaf *)target;
struct lysc_node_leaflist *llist = (struct lysc_node_leaflist *)target;
LY_ARRAY_COUNT_TYPE x;
#define DEV_CHECK_PRESENCE_UINT(TYPE, COND, MEMBER, PROPERTY) \
if (!(((TYPE)target)->MEMBER COND)) { \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, \
"Invalid deviation replacing with \"%s\" property \"%u\" which is not present.", PROPERTY, d->MEMBER); \
goto cleanup; \
}
/* [type-stmt] */
if (d->type) {
DEV_CHECK_NODETYPE(LYS_LEAF | LYS_LEAFLIST, "replace", "type");
/* type is mandatory, so checking for its presence is not necessary */
lysc_type_free(ctx->ctx, ((struct lysc_node_leaf *)target)->type);
/* remove only default value inherited from the type */
if (!(target->flags & LYS_SET_DFLT)) {
if (target->module != ctx->mod) {
/* foreign deviation - the target has default from the previous type, remove it */
if (target->nodetype == LYS_LEAF) {
leaf->dflt->realtype->plugin->free(ctx->ctx, leaf->dflt);
lysc_type_free(ctx->ctx, leaf->dflt->realtype);
free(leaf->dflt);
leaf->dflt = NULL;
} else { /* LYS_LEAFLIST */
LY_ARRAY_FOR(llist->dflts, x) {
llist->dflts[x]->realtype->plugin->free(ctx->ctx, llist->dflts[x]);
lysc_type_free(ctx->ctx, llist->dflts[x]->realtype);
free(llist->dflts[x]);
}
LY_ARRAY_FREE(llist->dflts);
llist->dflts = NULL;
}
} else {
/* local deviation */
lysc_incomplete_dflt_remove(ctx, target);
}
}
LY_CHECK_RET(lys_compile_node_type(ctx, NULL, d->type, leaf));
if (target->flags & LYS_SET_DFLT) {
/* the term default value(s) needs to be recompiled */
LY_CHECK_RET(lys_apply_deviate_replace_dflt_recompile(ctx, target));
}
}
/* [units-stmt] */
if (d->units) {
DEV_CHECK_NODETYPE(LYS_LEAF | LYS_LEAFLIST, "replace", "units");
DEV_CHECK_PRESENCE(struct lysc_node_leaf *, !(target->flags & LYS_SET_UNITS),
units, "replacing", "units", d->units);
lydict_remove(ctx->ctx, leaf->units);
DUP_STRING(ctx->ctx, d->units, leaf->units, rc);
LY_CHECK_ERR_GOTO(rc, ret = rc, cleanup);
}
/* [default-stmt] */
if (d->dflt) {
switch (target->nodetype) {
case LYS_LEAF:
if (target->module != ctx->mod) {
/* foreign deviation */
DEV_CHECK_PRESENCE(struct lysc_node_leaf *, !(target->flags & LYS_SET_DFLT), dflt, "replacing",
"default", d->dflt);
/* remove the default specification */
leaf->dflt->realtype->plugin->free(ctx->ctx, leaf->dflt);
lysc_type_free(ctx->ctx, leaf->dflt->realtype);
free(leaf->dflt);
leaf->dflt = NULL;
} else {
/* local deviation */
DEV_CHECK_PRESENCE(struct lysc_node_leaf *, !(target->flags & LYS_SET_DFLT), name, "replacing",
"default", d->dflt);
assert(!leaf->dflt);
}
/* store the new default value */
LY_CHECK_RET(lysc_incomplete_leaf_dflt_add(ctx, leaf, d->dflt, ctx->mod_def));
break;
case LYS_CHOICE:
DEV_CHECK_PRESENCE(struct lysc_node_choice *, 0, dflt, "replacing", "default", d->dflt);
if (lys_compile_deviation_set_choice_dflt(ctx, d->dflt, (struct lysc_node_choice *)target)) {
goto cleanup;
}
break;
default:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NODETYPE,
lys_nodetype2str(target->nodetype), "replace", "default");
goto cleanup;
}
}
/* [config-stmt] */
if (d->flags & LYS_CONFIG_MASK) {
if (target->nodetype & (LYS_CASE | LYS_INOUT | LYS_RPC | LYS_ACTION | LYS_NOTIF)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NODETYPE,
lys_nodetype2str(target->nodetype), "replace", "config");
goto cleanup;
}
if (!(target->flags & LYS_SET_CONFIG)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NOT_PRESENT,
"replacing", "config", d->flags & LYS_CONFIG_W ? "config true" : "config false");
goto cleanup;
}
LY_CHECK_GOTO(lys_compile_change_config(ctx, target, d->flags, 0, 0), cleanup);
}
/* [mandatory-stmt] */
if (d->flags & LYS_MAND_MASK) {
if (!(target->flags & LYS_MAND_MASK)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NOT_PRESENT,
"replacing", "mandatory", d->flags & LYS_MAND_TRUE ? "mandatory true" : "mandatory false");
goto cleanup;
}
LY_CHECK_GOTO(lys_compile_change_mandatory(ctx, target, d->flags, 0), cleanup);
}
/* [min-elements-stmt] */
if (d->flags & LYS_SET_MIN) {
if (target->nodetype == LYS_LEAFLIST) {
DEV_CHECK_PRESENCE_UINT(struct lysc_node_leaflist *, > 0, min, "min-elements");
/* change value */
((struct lysc_node_leaflist *)target)->min = d->min;
} else if (target->nodetype == LYS_LIST) {
DEV_CHECK_PRESENCE_UINT(struct lysc_node_list *, > 0, min, "min-elements");
/* change value */
((struct lysc_node_list *)target)->min = d->min;
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NODETYPE,
lys_nodetype2str(target->nodetype), "replace", "min-elements");
goto cleanup;
}
if (d->min) {
target->flags |= LYS_MAND_TRUE;
}
}
/* [max-elements-stmt] */
if (d->flags & LYS_SET_MAX) {
if (target->nodetype == LYS_LEAFLIST) {
DEV_CHECK_PRESENCE_UINT(struct lysc_node_leaflist *, < (uint32_t)-1, max, "max-elements");
/* change value */
((struct lysc_node_leaflist *)target)->max = d->max ? d->max : (uint32_t)-1;
} else if (target->nodetype == LYS_LIST) {
DEV_CHECK_PRESENCE_UINT(struct lysc_node_list *, < (uint32_t)-1, max, "max-elements");
/* change value */
((struct lysc_node_list *)target)->max = d->max ? d->max : (uint32_t)-1;
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NODETYPE,
lys_nodetype2str(target->nodetype), "replace", "max-elements");
goto cleanup;
}
}
ret = LY_SUCCESS;
cleanup:
return ret;
}
/**
* @brief Apply all deviations of one target node.
*
* @param[in] ctx Compile context.
* @param[in] dev Deviation structure to apply.
* @return LY_ERR value.
*/
static LY_ERR
lys_apply_deviation(struct lysc_ctx *ctx, struct lysc_deviation *dev)
{
LY_ERR ret = LY_EVALID;
struct lysc_node *target = dev->target;
struct lysc_action *rpcs;
struct lysc_notif *notifs;
struct lysp_deviate *d;
LY_ARRAY_COUNT_TYPE v, x;
uint32_t min, max;
lysc_update_path(ctx, NULL, dev->nodeid);
/* not-supported */
if (dev->not_supported) {
if (LY_ARRAY_COUNT(dev->deviates) > 1) {
LOGWRN(ctx->ctx, "Useless multiple (%"LY_PRI_ARRAY_COUNT_TYPE ") deviates on node \"%s\" since the node is not-supported.",
LY_ARRAY_COUNT(dev->deviates), dev->nodeid);
}
#define REMOVE_NONDATA(ARRAY, TYPE, GETFUNC, FREEFUNC) \
if (target->parent) { \
ARRAY = (TYPE*)GETFUNC(target->parent); \
} else { \
ARRAY = target->module->compiled->ARRAY; \
} \
LY_ARRAY_FOR(ARRAY, x) { \
if (&ARRAY[x] == (TYPE*)target) { break; } \
} \
if (x < LY_ARRAY_COUNT(ARRAY)) { \
FREEFUNC(ctx->ctx, &ARRAY[x]); \
memmove(&ARRAY[x], &ARRAY[x + 1], (LY_ARRAY_COUNT(ARRAY) - (x + 1)) * sizeof *ARRAY); \
LY_ARRAY_DECREMENT(ARRAY); \
}
if (target->nodetype & (LYS_RPC | LYS_ACTION)) {
if (dev->flags & LYSC_OPT_RPC_INPUT) {
/* remove RPC's/action's input */
lysc_action_inout_free(ctx->ctx, &((struct lysc_action *)target)->input);
memset(&((struct lysc_action *)target)->input, 0, sizeof ((struct lysc_action *)target)->input);
FREE_ARRAY(ctx->ctx, ((struct lysc_action *)target)->input_exts, lysc_ext_instance_free);
((struct lysc_action *)target)->input_exts = NULL;
} else if (dev->flags & LYSC_OPT_RPC_OUTPUT) {
/* remove RPC's/action's output */
lysc_action_inout_free(ctx->ctx, &((struct lysc_action *)target)->output);
memset(&((struct lysc_action *)target)->output, 0, sizeof ((struct lysc_action *)target)->output);
FREE_ARRAY(ctx->ctx, ((struct lysc_action *)target)->output_exts, lysc_ext_instance_free);
((struct lysc_action *)target)->output_exts = NULL;
} else {
/* remove RPC/action */
REMOVE_NONDATA(rpcs, struct lysc_action, lysc_node_actions, lysc_action_free);
}
} else if (target->nodetype == LYS_NOTIF) {
/* remove Notification */
REMOVE_NONDATA(notifs, struct lysc_notif, lysc_node_notifs, lysc_notif_free);
} else {
if (target->parent && (target->parent->nodetype == LYS_CASE) && (target->prev == target)) {
/* remove the target node with its parent case node because it is the only node of the case */
lysc_node_unlink(target->parent);
lysc_node_free(ctx->ctx, target->parent);
} else {
/* remove the target node */
lysc_node_unlink(target);
lysc_node_free(ctx->ctx, target);
}
}
/* mark the context for later re-compilation of objects that could reference the curently removed node */
ctx->ctx->flags |= LY_CTX_CHANGED_TREE;
return LY_SUCCESS;
}
/* list of deviates (not-supported is not present in the list) */
LY_ARRAY_FOR(dev->deviates, v) {
d = dev->deviates[v];
switch (d->mod) {
case LYS_DEV_ADD:
LY_CHECK_GOTO(lys_apply_deviate_add(ctx, target, dev->flags, (struct lysp_deviate_add *)d), cleanup);
break;
case LYS_DEV_DELETE:
LY_CHECK_GOTO(lys_apply_deviate_delete(ctx, target, dev->flags, (struct lysp_deviate_del *)d), cleanup);
break;
case LYS_DEV_REPLACE:
LY_CHECK_GOTO(lys_apply_deviate_replace(ctx, target, (struct lysp_deviate_rpl *)d), cleanup);
break;
default:
LOGINT(ctx->ctx);
goto cleanup;
}
}
/* final check when all deviations of a single target node are applied */
/* check min-max compatibility */
if (target->nodetype == LYS_LEAFLIST) {
min = ((struct lysc_node_leaflist *)target)->min;
max = ((struct lysc_node_leaflist *)target)->max;
} else if (target->nodetype == LYS_LIST) {
min = ((struct lysc_node_list *)target)->min;
max = ((struct lysc_node_list *)target)->max;
} else {
min = max = 0;
}
if (min > max) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS, "Invalid combination of min-elements and max-elements "
"after deviation: min value %u is bigger than max value %u.", min, max);
goto cleanup;
}
/* check mandatory - default compatibility */
if ((target->nodetype & (LYS_LEAF | LYS_LEAFLIST)) && (target->flags & LYS_SET_DFLT)
&& (target->flags & LYS_MAND_TRUE)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid deviation combining default value and mandatory %s.", lys_nodetype2str(target->nodetype));
goto cleanup;
} else if ((target->nodetype & LYS_CHOICE) && ((struct lysc_node_choice *)target)->dflt
&& (target->flags & LYS_MAND_TRUE)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS, "Invalid deviation combining default case and mandatory choice.");
goto cleanup;
}
if (target->parent && (target->parent->flags & LYS_SET_DFLT) && (target->flags & LYS_MAND_TRUE)) {
/* mandatory node under a default case */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid deviation combining mandatory %s \"%s\" in a default choice's case \"%s\".",
lys_nodetype2str(target->nodetype), target->name, target->parent->name);
goto cleanup;
}
/* success */
ret = LY_SUCCESS;
cleanup:
lysc_update_path(ctx, NULL, NULL);
return ret;
}
LY_ERR
lys_compile_deviations(struct lysc_ctx *ctx, struct lysp_module *mod_p)
{
LY_ERR ret = LY_EVALID;
struct ly_set devs_p = {0};
struct ly_set targets = {0};
struct lysc_node *target; /* target target of the deviation */
struct lysp_deviation *dev;
struct lysp_deviate *d, **dp_new;
LY_ARRAY_COUNT_TYPE u, v;
struct lysc_deviation **devs = NULL;
struct lys_module *target_mod, **dev_mod;
uint16_t flags;
/* get all deviations from the module and all its submodules ... */
LY_ARRAY_FOR(mod_p->deviations, u) {
LY_CHECK_RET(ly_set_add(&devs_p, &mod_p->deviations[u], LY_SET_OPT_USEASLIST, NULL));
}
LY_ARRAY_FOR(mod_p->includes, v) {
LY_ARRAY_FOR(mod_p->includes[v].submodule->deviations, u) {
LY_CHECK_RET(ly_set_add(&devs_p, &mod_p->includes[v].submodule->deviations[u], LY_SET_OPT_USEASLIST, NULL));
}
}
if (!devs_p.count) {
/* nothing to do */
return LY_SUCCESS;
}
lysc_update_path(ctx, NULL, "{deviation}");
/* ... and group them by the target node */
devs = calloc(devs_p.count, sizeof *devs);
for (u = 0; u < devs_p.count; ++u) {
uint32_t index;
dev = devs_p.objs[u];
lysc_update_path(ctx, NULL, dev->nodeid);
/* resolve the target */
LY_CHECK_GOTO(lysc_resolve_schema_nodeid(ctx, dev->nodeid, 0, NULL, ctx->mod, 0, 1,
(const struct lysc_node **)&target, &flags), cleanup);
if (target->nodetype & (LYS_RPC | LYS_ACTION)) {
/* move the target pointer to input/output to make them different from the action and
* between them. Before the devs[] item is being processed, the target pointer must be fixed
* back to the RPC/action node due to a better compatibility and decision code in this function.
* The LYSC_OPT_INTERNAL is used as a flag to this change. */
if (flags & LYSC_OPT_RPC_INPUT) {
target = (struct lysc_node *)&((struct lysc_action *)target)->input;
flags |= LYSC_OPT_INTERNAL;
} else if (flags & LYSC_OPT_RPC_OUTPUT) {
target = (struct lysc_node *)&((struct lysc_action *)target)->output;
flags |= LYSC_OPT_INTERNAL;
}
}
/* insert into the set of targets with duplicity detection */
ret = ly_set_add(&targets, target, 0, &index);
LY_CHECK_GOTO(ret, cleanup);
if (!devs[index]) {
/* new record */
devs[index] = calloc(1, sizeof **devs);
devs[index]->target = target;
devs[index]->nodeid = dev->nodeid;
devs[index]->flags = flags;
}
/* add deviates into the deviation's list of deviates */
LY_LIST_FOR(dev->deviates, d) {
LY_ARRAY_NEW_GOTO(ctx->ctx, devs[index]->deviates, dp_new, ret, cleanup);
*dp_new = d;
if (d->mod == LYS_DEV_NOT_SUPPORTED) {
devs[index]->not_supported = 1;
}
}
lysc_update_path(ctx, NULL, NULL);
}
/* apply deviations */
for (u = 0; u < devs_p.count && devs[u]; ++u) {
ly_bool match = 0;
if (devs[u]->flags & LYSC_OPT_INTERNAL) {
/* fix the target pointer in case of RPC's/action's input/output */
if (devs[u]->flags & LYSC_OPT_RPC_INPUT) {
devs[u]->target = (struct lysc_node *)((char *)devs[u]->target - offsetof(struct lysc_action, input));
} else if (devs[u]->flags & LYSC_OPT_RPC_OUTPUT) {
devs[u]->target = (struct lysc_node *)((char *)devs[u]->target - offsetof(struct lysc_action, output));
}
}
/* remember target module (the target node may be removed) */
target_mod = devs[u]->target->module;
/* apply the deviation */
LY_CHECK_GOTO(ret = lys_apply_deviation(ctx, devs[u]), cleanup);
/* add this module into the target module deviated_by, if not there already */
LY_ARRAY_FOR(target_mod->compiled->deviated_by, v) {
if (target_mod->compiled->deviated_by[v] == mod_p->mod) {
match = 1;
break;
}
}
if (!match) {
LY_ARRAY_NEW_GOTO(ctx->ctx, target_mod->compiled->deviated_by, dev_mod, ret, cleanup);
*dev_mod = mod_p->mod;
}
}
lysc_update_path(ctx, NULL, NULL);
ret = LY_SUCCESS;
cleanup:
for (u = 0; u < devs_p.count && devs[u]; ++u) {
LY_ARRAY_FREE(devs[u]->deviates);
free(devs[u]);
}
free(devs);
ly_set_erase(&targets, NULL);
ly_set_erase(&devs_p, NULL);
return ret;
}
/**
* @brief Compile the given YANG submodule into the main module.
* @param[in] ctx Compile context
* @param[in] inc Include structure from the main module defining the submodule.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
LY_ERR
lys_compile_submodule(struct lysc_ctx *ctx, struct lysp_include *inc)
{
LY_ARRAY_COUNT_TYPE u;
LY_ERR ret = LY_SUCCESS;
/* shortcuts */
struct lysp_submodule *submod = inc->submodule;
struct lysc_module *mainmod = ctx->mod->compiled;
struct lysp_node *node_p;
/* features are compiled directly into the compiled module structure,
* but it must be done in two steps to allow forward references (via if-feature) between the features themselves.
* The features compilation is finished in the main module (lys_compile()). */
ret = lys_feature_precompile(ctx, NULL, NULL, submod->features, &mainmod->mod->features);
LY_CHECK_GOTO(ret, error);
ret = lys_identity_precompile(ctx, NULL, NULL, submod->identities, &mainmod->mod->identities);
LY_CHECK_GOTO(ret, error);
/* data nodes */
LY_LIST_FOR(submod->data, node_p) {
ret = lys_compile_node(ctx, node_p, NULL, 0);
LY_CHECK_GOTO(ret, error);
}
COMPILE_ARRAY1_GOTO(ctx, submod->rpcs, mainmod->rpcs, NULL, u, lys_compile_action, 0, ret, error);
COMPILE_ARRAY1_GOTO(ctx, submod->notifs, mainmod->notifs, NULL, u, lys_compile_notif, 0, ret, error);
error:
return ret;
}
static void *
lys_compile_extension_instance_storage(enum ly_stmt stmt, struct lysc_ext_substmt *substmts)
{
for (LY_ARRAY_COUNT_TYPE u = 0; substmts[u].stmt; ++u) {
if (substmts[u].stmt == stmt) {
return substmts[u].storage;
}
}
return NULL;
}
LY_ERR
lys_compile_extension_instance(struct lysc_ctx *ctx, const struct lysp_ext_instance *ext, struct lysc_ext_substmt *substmts)
{
LY_ERR ret = LY_EVALID, r;
LY_ARRAY_COUNT_TYPE u;
struct lysp_stmt *stmt;
void *parsed = NULL, **compiled = NULL;
/* check for invalid substatements */
for (stmt = ext->child; stmt; stmt = stmt->next) {
if (stmt->flags & (LYS_YIN_ATTR | LYS_YIN_ARGUMENT)) {
continue;
}
for (u = 0; substmts[u].stmt; ++u) {
if (substmts[u].stmt == stmt->kw) {
break;
}
}
if (!substmts[u].stmt) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "Invalid keyword \"%s\" as a child of \"%s%s%s\" extension instance.",
stmt->stmt, ext->name, ext->argument ? " " : "", ext->argument ? ext->argument : "");
goto cleanup;
}
}
/* TODO store inherited data, e.g. status first, but mark them somehow to allow to overwrite them and not detect duplicity */
/* keep order of the processing the same as the order in the defined substmts,
* the order is important for some of the statements depending on others (e.g. type needs status and units) */
for (u = 0; substmts[u].stmt; ++u) {
ly_bool stmt_present = 0;
for (stmt = ext->child; stmt; stmt = stmt->next) {
if (substmts[u].stmt != stmt->kw) {
continue;
}
stmt_present = 1;
if (substmts[u].storage) {
switch (stmt->kw) {
case LY_STMT_STATUS:
assert(substmts[u].cardinality < LY_STMT_CARD_SOME);
LY_CHECK_ERR_GOTO(r = lysp_stmt_parse(ctx, stmt, stmt->kw, &substmts[u].storage, /* TODO */ NULL), ret = r, cleanup);
break;
case LY_STMT_UNITS: {
const char **units;
if (substmts[u].cardinality < LY_STMT_CARD_SOME) {
/* single item */
if (*((const char **)substmts[u].storage)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DUPSTMT, stmt->stmt);
goto cleanup;
}
units = (const char **)substmts[u].storage;
} else {
/* sized array */
const char ***units_array = (const char ***)substmts[u].storage;
LY_ARRAY_NEW_GOTO(ctx->ctx, *units_array, units, ret, cleanup);
}
r = lydict_insert(ctx->ctx, stmt->arg, 0, units);
LY_CHECK_ERR_GOTO(r, ret = r, cleanup);
break;
}
case LY_STMT_TYPE: {
uint16_t *flags = lys_compile_extension_instance_storage(LY_STMT_STATUS, substmts);
const char **units = lys_compile_extension_instance_storage(LY_STMT_UNITS, substmts);
if (substmts[u].cardinality < LY_STMT_CARD_SOME) {
/* single item */
if (*(struct lysc_type **)substmts[u].storage) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DUPSTMT, stmt->stmt);
goto cleanup;
}
compiled = substmts[u].storage;
} else {
/* sized array */
struct lysc_type ***types = (struct lysc_type ***)substmts[u].storage, **type = NULL;
LY_ARRAY_NEW_GOTO(ctx->ctx, *types, type, ret, cleanup);
compiled = (void *)type;
}
LY_CHECK_ERR_GOTO(r = lysp_stmt_parse(ctx, stmt, stmt->kw, &parsed, NULL), ret = r, cleanup);
LY_CHECK_ERR_GOTO(r = lys_compile_type(ctx, ext->parent_type == LYEXT_PAR_NODE ? ((struct lysc_node *)ext->parent)->sp : NULL,
flags ? *flags : 0, ctx->mod_def->parsed, ext->name, parsed, (struct lysc_type **)compiled,
units && !*units ? units : NULL, NULL, NULL), lysp_type_free(ctx->ctx, parsed); free(parsed); ret = r, cleanup);
lysp_type_free(ctx->ctx, parsed);
free(parsed);
break;
}
case LY_STMT_IF_FEATURE: {
struct lysc_iffeature *iff = NULL;
if (substmts[u].cardinality < LY_STMT_CARD_SOME) {
/* single item */
if (((struct lysc_iffeature *)substmts[u].storage)->features) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DUPSTMT, stmt->stmt);
goto cleanup;
}
iff = (struct lysc_iffeature *)substmts[u].storage;
} else {
/* sized array */
struct lysc_iffeature **iffs = (struct lysc_iffeature **)substmts[u].storage;
LY_ARRAY_NEW_GOTO(ctx->ctx, *iffs, iff, ret, cleanup);
}
LY_CHECK_ERR_GOTO(r = lys_compile_iffeature(ctx, &stmt->arg, iff), ret = r, cleanup);
break;
}
/* TODO support other substatements (parse stmt to lysp and then compile lysp to lysc),
* also note that in many statements their extensions are not taken into account */
default:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "Statement \"%s\" is not supported as an extension (found in \"%s%s%s\") substatement.",
stmt->stmt, ext->name, ext->argument ? " " : "", ext->argument ? ext->argument : "");
goto cleanup;
}
}
}
if ((substmts[u].cardinality == LY_STMT_CARD_MAND || substmts[u].cardinality == LY_STMT_CARD_SOME) && !stmt_present) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "Missing mandatory keyword \"%s\" as a child of \"%s%s%s\".",
ly_stmt2str(substmts[u].stmt), ext->name, ext->argument ? " " : "", ext->argument ? ext->argument : "");
goto cleanup;
}
}
ret = LY_SUCCESS;
cleanup:
return ret;
}
/**
* @brief Check when for cyclic dependencies.
* @param[in] set Set with all the referenced nodes.
* @param[in] node Node whose "when" referenced nodes are in @p set.
* @return LY_ERR value
*/
static LY_ERR
lys_compile_unres_when_cyclic(struct lyxp_set *set, const struct lysc_node *node)
{
struct lyxp_set tmp_set;
struct lyxp_set_scnode *xp_scnode;
uint32_t i, j;
LY_ARRAY_COUNT_TYPE u;
struct lysc_when *when;
LY_ERR ret = LY_SUCCESS;
memset(&tmp_set, 0, sizeof tmp_set);
/* prepare in_ctx of the set */
for (i = 0; i < set->used; ++i) {
xp_scnode = &set->val.scnodes[i];
if (xp_scnode->in_ctx != -1) {
/* check node when, skip the context node (it was just checked) */
xp_scnode->in_ctx = 1;
}
}
for (i = 0; i < set->used; ++i) {
xp_scnode = &set->val.scnodes[i];
if (xp_scnode->in_ctx != 1) {
/* already checked */
continue;
}
if ((xp_scnode->type != LYXP_NODE_ELEM) || (xp_scnode->scnode->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF))
|| !xp_scnode->scnode->when) {
/* no when to check */
xp_scnode->in_ctx = 0;
continue;
}
node = xp_scnode->scnode;
do {
LY_ARRAY_FOR(node->when, u) {
when = node->when[u];
ret = lyxp_atomize(when->cond, LY_PREF_SCHEMA, when->module, when->context,
when->context ? LYXP_NODE_ELEM : LYXP_NODE_ROOT_CONFIG, &tmp_set, LYXP_SCNODE_SCHEMA);
if (ret != LY_SUCCESS) {
LOGVAL(set->ctx, LY_VLOG_LYSC, node, LYVE_SEMANTICS, "Invalid when condition \"%s\".", when->cond->expr);
goto cleanup;
}
for (j = 0; j < tmp_set.used; ++j) {
/* skip roots'n'stuff */
if (tmp_set.val.scnodes[j].type == LYXP_NODE_ELEM) {
/* try to find this node in our set */
uint32_t idx;
if (lyxp_set_scnode_contains(set, tmp_set.val.scnodes[j].scnode, LYXP_NODE_ELEM, -1, &idx) && (set->val.scnodes[idx].in_ctx == -1)) {
LOGVAL(set->ctx, LY_VLOG_LYSC, node, LY_VCODE_CIRC_WHEN, node->name, set->val.scnodes[idx].scnode->name);
ret = LY_EVALID;
goto cleanup;
}
/* needs to be checked, if in both sets, will be ignored */
tmp_set.val.scnodes[j].in_ctx = 1;
} else {
/* no when, nothing to check */
tmp_set.val.scnodes[j].in_ctx = 0;
}
}
/* merge this set into the global when set */
lyxp_set_scnode_merge(set, &tmp_set);
}
/* check when of non-data parents as well */
node = node->parent;
} while (node && (node->nodetype & (LYS_CASE | LYS_CHOICE)));
/* this node when was checked (xp_scnode could have been reallocd) */
set->val.scnodes[i].in_ctx = -1;
}
cleanup:
lyxp_set_free_content(&tmp_set);
return ret;
}
/**
* @brief Check when/must expressions of a node on a compiled schema tree.
* @param[in] ctx Compile context.
* @param[in] node Node to check.
* @return LY_ERR value
*/
static LY_ERR
lys_compile_unres_xpath(struct lysc_ctx *ctx, const struct lysc_node *node)
{
struct lyxp_set tmp_set;
uint32_t i;
LY_ARRAY_COUNT_TYPE u;
uint32_t opts;
ly_bool input_done = 0;
struct lysc_when **when = NULL;
struct lysc_must *musts = NULL;
LY_ERR ret = LY_SUCCESS;
const struct lysc_node *op;
memset(&tmp_set, 0, sizeof tmp_set);
opts = LYXP_SCNODE_SCHEMA;
if (node->flags & LYS_CONFIG_R) {
for (op = node->parent; op && !(op->nodetype & (LYS_RPC | LYS_ACTION)); op = op->parent);
if (op) {
/* we are actually in output */
opts = LYXP_SCNODE_OUTPUT;
}
}
switch (node->nodetype) {
case LYS_CONTAINER:
when = ((struct lysc_node_container *)node)->when;
musts = ((struct lysc_node_container *)node)->musts;
break;
case LYS_CHOICE:
when = ((struct lysc_node_choice *)node)->when;
break;
case LYS_LEAF:
when = ((struct lysc_node_leaf *)node)->when;
musts = ((struct lysc_node_leaf *)node)->musts;
break;
case LYS_LEAFLIST:
when = ((struct lysc_node_leaflist *)node)->when;
musts = ((struct lysc_node_leaflist *)node)->musts;
break;
case LYS_LIST:
when = ((struct lysc_node_list *)node)->when;
musts = ((struct lysc_node_list *)node)->musts;
break;
case LYS_ANYXML:
case LYS_ANYDATA:
when = ((struct lysc_node_anydata *)node)->when;
musts = ((struct lysc_node_anydata *)node)->musts;
break;
case LYS_CASE:
when = ((struct lysc_node_case *)node)->when;
break;
case LYS_NOTIF:
musts = ((struct lysc_notif *)node)->musts;
break;
case LYS_RPC:
case LYS_ACTION:
/* first process input musts */
musts = ((struct lysc_action *)node)->input.musts;
break;
default:
/* nothing to check */
break;
}
/* check "when" */
LY_ARRAY_FOR(when, u) {
ret = lyxp_atomize(when[u]->cond, LY_PREF_SCHEMA, when[u]->module, when[u]->context ? when[u]->context : node,
when[u]->context ? LYXP_NODE_ELEM : LYXP_NODE_ROOT_CONFIG, &tmp_set, opts);
if (ret != LY_SUCCESS) {
LOGVAL(ctx->ctx, LY_VLOG_LYSC, node, LYVE_SEMANTICS, "Invalid when condition \"%s\".", when[u]->cond->expr);
goto cleanup;
}
ctx->path[0] = '\0';
lysc_path((struct lysc_node *)node, LYSC_PATH_LOG, ctx->path, LYSC_CTX_BUFSIZE);
for (i = 0; i < tmp_set.used; ++i) {
/* skip roots'n'stuff */
if ((tmp_set.val.scnodes[i].type == LYXP_NODE_ELEM) && (tmp_set.val.scnodes[i].in_ctx != -1)) {
struct lysc_node *schema = tmp_set.val.scnodes[i].scnode;
/* XPath expression cannot reference "lower" status than the node that has the definition */
ret = lysc_check_status(ctx, when[u]->flags, when[u]->module, node->name, schema->flags, schema->module,
schema->name);
LY_CHECK_GOTO(ret, cleanup);
/* check dummy node accessing */
if (schema == node) {
LOGVAL(ctx->ctx, LY_VLOG_LYSC, node, LY_VCODE_DUMMY_WHEN, node->name);
ret = LY_EVALID;
goto cleanup;
}
}
}
/* check cyclic dependencies */
ret = lys_compile_unres_when_cyclic(&tmp_set, node);
LY_CHECK_GOTO(ret, cleanup);
lyxp_set_free_content(&tmp_set);
}
check_musts:
/* check "must" */
LY_ARRAY_FOR(musts, u) {
ret = lyxp_atomize(musts[u].cond, LY_PREF_SCHEMA, musts[u].module, node, LYXP_NODE_ELEM, &tmp_set, opts);
if (ret != LY_SUCCESS) {
LOGVAL(ctx->ctx, LY_VLOG_LYSC, node, LYVE_SEMANTICS, "Invalid must restriction \"%s\".", musts[u].cond->expr);
goto cleanup;
}
ctx->path[0] = '\0';
lysc_path((struct lysc_node *)node, LYSC_PATH_LOG, ctx->path, LYSC_CTX_BUFSIZE);
for (i = 0; i < tmp_set.used; ++i) {
/* skip roots'n'stuff */
if (tmp_set.val.scnodes[i].type == LYXP_NODE_ELEM) {
/* XPath expression cannot reference "lower" status than the node that has the definition */
ret = lysc_check_status(ctx, node->flags, musts[u].module, node->name, tmp_set.val.scnodes[i].scnode->flags,
tmp_set.val.scnodes[i].scnode->module, tmp_set.val.scnodes[i].scnode->name);
LY_CHECK_GOTO(ret, cleanup);
}
}
lyxp_set_free_content(&tmp_set);
}
if ((node->nodetype & (LYS_RPC | LYS_ACTION)) && !input_done) {
/* now check output musts */
input_done = 1;
musts = ((struct lysc_action *)node)->output.musts;
opts = LYXP_SCNODE_OUTPUT;
goto check_musts;
}
cleanup:
lyxp_set_free_content(&tmp_set);
return ret;
}
static LY_ERR
lys_compile_unres_leafref(struct lysc_ctx *ctx, const struct lysc_node *node, struct lysc_type_leafref *lref)
{
const struct lysc_node *target = NULL, *siter;
struct ly_path *p;
struct lysc_type *type;
assert(node->nodetype & (LYS_LEAF | LYS_LEAFLIST));
/* try to find the target */
LY_CHECK_RET(ly_path_compile(ctx->ctx, node->module, node, lref->path, LY_PATH_LREF_TRUE,
lysc_is_output(node) ? LY_PATH_OPER_OUTPUT : LY_PATH_OPER_INPUT, LY_PATH_TARGET_MANY,
LY_PREF_SCHEMA, lref->path_context, &p));
/* get the target node */
target = p[LY_ARRAY_COUNT(p) - 1].node;
ly_path_free(node->module->ctx, p);
if (!(target->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGVAL(ctx->ctx, LY_VLOG_LYSC, node, LYVE_REFERENCE,
"Invalid leafref path \"%s\" - target node is %s instead of leaf or leaf-list.",
lref->path->expr, lys_nodetype2str(target->nodetype));
return LY_EVALID;
}
/* check status */
ctx->path[0] = '\0';
lysc_path(node, LYSC_PATH_LOG, ctx->path, LYSC_CTX_BUFSIZE);
ctx->path_len = strlen(ctx->path);
if (lysc_check_status(ctx, node->flags, node->module, node->name, target->flags, target->module, target->name)) {
return LY_EVALID;
}
ctx->path_len = 1;
ctx->path[1] = '\0';
/* check config */
if (lref->require_instance) {
for (siter = node->parent; siter && !(siter->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)); siter = siter->parent) {}
if (!siter && (node->flags & LYS_CONFIG_W) && (target->flags & LYS_CONFIG_R)) {
LOGVAL(ctx->ctx, LY_VLOG_LYSC, node, LYVE_REFERENCE, "Invalid leafref path \"%s\" - target is supposed"
" to represent configuration data (as the leafref does), but it does not.", lref->path->expr);
return LY_EVALID;
}
}
/* store the target's type and check for circular chain of leafrefs */
lref->realtype = ((struct lysc_node_leaf *)target)->type;
for (type = lref->realtype; type && type->basetype == LY_TYPE_LEAFREF; type = ((struct lysc_type_leafref *)type)->realtype) {
if (type == (struct lysc_type *)lref) {
/* circular chain detected */
LOGVAL(ctx->ctx, LY_VLOG_LYSC, node, LYVE_REFERENCE,
"Invalid leafref path \"%s\" - circular chain of leafrefs detected.", lref->path->expr);
return LY_EVALID;
}
}
/* check if leafref and its target are under common if-features */
if (lys_compile_leafref_features_validate(node, target)) {
LOGVAL(ctx->ctx, LY_VLOG_LYSC, node, LYVE_REFERENCE,
"Invalid leafref path \"%s\" - set of features applicable to the leafref target is not a subset of"
" features applicable to the leafref itself.", lref->path->expr);
return LY_EVALID;
}
return LY_SUCCESS;
}
static LY_ERR
lys_compile_ietf_netconf_wd_annotation(struct lysc_ctx *ctx, struct lys_module *mod)
{
struct lysc_ext_instance *ext;
struct lysp_ext_instance *ext_p = NULL;
struct lysp_stmt *stmt;
const struct lys_module *ext_mod;
LY_ERR ret = LY_SUCCESS;
/* create the parsed extension instance manually */
ext_p = calloc(1, sizeof *ext_p);
LY_CHECK_ERR_GOTO(!ext_p, LOGMEM(ctx->ctx); ret = LY_EMEM, cleanup);
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, "md:annotation", 0, &ext_p->name), cleanup);
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, "default", 0, &ext_p->argument), cleanup);
ext_p->insubstmt = LYEXT_SUBSTMT_SELF;
ext_p->insubstmt_index = 0;
ext_p->child = stmt = calloc(1, sizeof *ext_p->child);
LY_CHECK_ERR_GOTO(!stmt, LOGMEM(ctx->ctx); ret = LY_EMEM, cleanup);
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, "type", 0, &stmt->stmt), cleanup);
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, "boolean", 0, &stmt->arg), cleanup);
stmt->kw = LY_STMT_TYPE;
/* allocate new extension instance */
LY_ARRAY_NEW_GOTO(mod->ctx, mod->compiled->exts, ext, ret, cleanup);
/* manually get extension definition module */
ext_mod = ly_ctx_get_module_latest(ctx->ctx, "ietf-yang-metadata");
/* compile the extension instance */
LY_CHECK_GOTO(ret = lys_compile_ext(ctx, ext_p, ext, mod->compiled, LYEXT_PAR_MODULE, ext_mod), cleanup);
cleanup:
lysp_ext_instance_free(ctx->ctx, ext_p);
free(ext_p);
return ret;
}
static LY_ERR
lys_compile_unres_dflt(struct lysc_ctx *ctx, struct lysc_node *node, struct lysc_type *type, const char *dflt,
const struct lys_module *dflt_mod, struct lyd_value *storage)
{
LY_ERR ret;
struct ly_err_item *err = NULL;
ret = type->plugin->store(ctx->ctx, type, dflt, strlen(dflt), LY_TYPE_OPTS_SCHEMA,
LY_PREF_SCHEMA, (void *)dflt_mod, node, NULL, storage, &err);
if (err) {
ly_err_print(err);
ctx->path[0] = '\0';
lysc_path(node, LYSC_PATH_LOG, ctx->path, LYSC_CTX_BUFSIZE);
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid default - value does not fit the type (%s).", err->msg);
ly_err_free(err);
}
if (!ret) {
++storage->realtype->refcount;
return LY_SUCCESS;
}
return ret;
}
static LY_ERR
lys_compile_unres_leaf_dlft(struct lysc_ctx *ctx, struct lysc_node_leaf *leaf, const char *dflt,
const struct lys_module *dflt_mod)
{
LY_ERR ret;
assert(!leaf->dflt);
if (leaf->flags & (LYS_MAND_TRUE | LYS_KEY)) {
/* ignore default values for keys and mandatory leaves */
return LY_SUCCESS;
}
/* allocate the default value */
leaf->dflt = calloc(1, sizeof *leaf->dflt);
LY_CHECK_ERR_RET(!leaf->dflt, LOGMEM(ctx->ctx), LY_EMEM);
/* store the default value */
ret = lys_compile_unres_dflt(ctx, (struct lysc_node *)leaf, leaf->type, dflt, dflt_mod, leaf->dflt);
if (ret) {
free(leaf->dflt);
leaf->dflt = NULL;
}
return ret;
}
static LY_ERR
lys_compile_unres_llist_dflts(struct lysc_ctx *ctx, struct lysc_node_leaflist *llist, const char *dflt, const char **dflts,
const struct lys_module *dflt_mod)
{
LY_ERR ret;
LY_ARRAY_COUNT_TYPE orig_count, u, v;
assert(dflt || dflts);
if (llist->dflts) {
/* there were already some defaults and we are adding new by deviations */
assert(dflts);
orig_count = LY_ARRAY_COUNT(llist->dflts);
} else {
orig_count = 0;
}
/* allocate new items */
if (dflts) {
LY_ARRAY_CREATE_RET(ctx->ctx, llist->dflts, orig_count + LY_ARRAY_COUNT(dflts), LY_EMEM);
} else {
LY_ARRAY_CREATE_RET(ctx->ctx, llist->dflts, orig_count + 1, LY_EMEM);
}
/* fill each new default value */
if (dflts) {
LY_ARRAY_FOR(dflts, u) {
llist->dflts[orig_count + u] = calloc(1, sizeof **llist->dflts);
ret = lys_compile_unres_dflt(ctx, (struct lysc_node *)llist, llist->type, dflts[u], dflt_mod,
llist->dflts[orig_count + u]);
LY_CHECK_ERR_RET(ret, free(llist->dflts[orig_count + u]), ret);
LY_ARRAY_INCREMENT(llist->dflts);
}
} else {
llist->dflts[orig_count] = calloc(1, sizeof **llist->dflts);
ret = lys_compile_unres_dflt(ctx, (struct lysc_node *)llist, llist->type, dflt, dflt_mod, llist->dflts[orig_count]);
LY_CHECK_ERR_RET(ret, free(llist->dflts[orig_count]), ret);
LY_ARRAY_INCREMENT(llist->dflts);
}
/* check default value uniqueness */
if (llist->flags & LYS_CONFIG_W) {
/* configuration data values must be unique - so check the default values */
for (u = orig_count; u < LY_ARRAY_COUNT(llist->dflts); ++u) {
for (v = 0; v < u; ++v) {
if (!llist->dflts[u]->realtype->plugin->compare(llist->dflts[u], llist->dflts[v])) {
ly_bool dynamic = 0;
const char *val = llist->type->plugin->print(llist->dflts[u], LY_PREF_SCHEMA, (void *)dflt_mod, &dynamic);
lysc_update_path(ctx, llist->parent, llist->name);
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Configuration leaf-list has multiple defaults of the same value \"%s\".", val);
lysc_update_path(ctx, NULL, NULL);
if (dynamic) {
free((char *)val);
}
return LY_EVALID;
}
}
}
}
return LY_SUCCESS;
}
static LY_ERR
lys_compile_unres(struct lysc_ctx *ctx)
{
struct lysc_node *node;
struct lysc_type *type, *typeiter;
struct lysc_type_leafref *lref;
LY_ARRAY_COUNT_TYPE v;
uint32_t i;
/* for leafref, we need 2 rounds - first detects circular chain by storing the first referred type (which
* can be also leafref, in case it is already resolved, go through the chain and check that it does not
* point to the starting leafref type). The second round stores the first non-leafref type for later data validation. */
for (i = 0; i < ctx->leafrefs.count; ++i) {
node = ctx->leafrefs.objs[i];
assert(node->nodetype & (LYS_LEAF | LYS_LEAFLIST));
type = ((struct lysc_node_leaf *)node)->type;
if (type->basetype == LY_TYPE_LEAFREF) {
LY_CHECK_RET(lys_compile_unres_leafref(ctx, node, (struct lysc_type_leafref *)type));
} else if (type->basetype == LY_TYPE_UNION) {
LY_ARRAY_FOR(((struct lysc_type_union *)type)->types, v) {
if (((struct lysc_type_union *)type)->types[v]->basetype == LY_TYPE_LEAFREF) {
lref = (struct lysc_type_leafref *)((struct lysc_type_union *)type)->types[v];
LY_CHECK_RET(lys_compile_unres_leafref(ctx, node, lref));
}
}
}
}
for (i = 0; i < ctx->leafrefs.count; ++i) {
/* store pointer to the real type */
type = ((struct lysc_node_leaf *)ctx->leafrefs.objs[i])->type;
if (type->basetype == LY_TYPE_LEAFREF) {
for (typeiter = ((struct lysc_type_leafref *)type)->realtype;
typeiter->basetype == LY_TYPE_LEAFREF;
typeiter = ((struct lysc_type_leafref *)typeiter)->realtype) {}
((struct lysc_type_leafref *)type)->realtype = typeiter;
} else if (type->basetype == LY_TYPE_UNION) {
LY_ARRAY_FOR(((struct lysc_type_union *)type)->types, v) {
if (((struct lysc_type_union *)type)->types[v]->basetype == LY_TYPE_LEAFREF) {
for (typeiter = ((struct lysc_type_leafref *)((struct lysc_type_union *)type)->types[v])->realtype;
typeiter->basetype == LY_TYPE_LEAFREF;
typeiter = ((struct lysc_type_leafref *)typeiter)->realtype) {}
((struct lysc_type_leafref *)((struct lysc_type_union *)type)->types[v])->realtype = typeiter;
}
}
}
}
/* check xpath */
for (i = 0; i < ctx->xpath.count; ++i) {
LY_CHECK_RET(lys_compile_unres_xpath(ctx, ctx->xpath.objs[i]));
}
/* finish incomplete default values compilation */
for (i = 0; i < ctx->dflts.count; ++i) {
struct lysc_incomplete_dflt *r = ctx->dflts.objs[i];
if (r->leaf->nodetype == LYS_LEAF) {
LY_CHECK_RET(lys_compile_unres_leaf_dlft(ctx, r->leaf, r->dflt, r->dflt_mod));
} else {
LY_CHECK_RET(lys_compile_unres_llist_dflts(ctx, r->llist, r->dflt, r->dflts, r->dflt_mod));
}
}
return LY_SUCCESS;
}
LY_ERR
lys_compile(struct lys_module *mod, uint32_t options)
{
struct lysc_ctx ctx = {0};
struct lysc_module *mod_c;
struct lysp_module *sp;
struct lysp_node *node_p;
struct lysp_augment **augments = NULL;
struct lysp_grp *grps;
struct lys_module *m;
LY_ARRAY_COUNT_TYPE u, v;
uint32_t i;
uint16_t compile_id;
LY_ERR ret = LY_SUCCESS;
LY_CHECK_ARG_RET(NULL, mod, mod->parsed, !mod->compiled, mod->ctx, LY_EINVAL);
if (!mod->implemented) {
/* just imported modules are not compiled */
return LY_SUCCESS;
}
compile_id = ++mod->ctx->module_set_id;
sp = mod->parsed;
ctx.ctx = mod->ctx;
ctx.mod = mod;
ctx.mod_def = mod;
ctx.options = options;
ctx.path_len = 1;
ctx.path[0] = '/';
mod->compiled = mod_c = calloc(1, sizeof *mod_c);
LY_CHECK_ERR_RET(!mod_c, LOGMEM(mod->ctx), LY_EMEM);
mod_c->mod = mod;
LY_ARRAY_FOR(sp->imports, u) {
LY_CHECK_GOTO(ret = lys_compile_import(&ctx, &sp->imports[u]), error);
}
/* features precompilation */
if (!mod->features && sp->features) {
/* features are compiled directly into the compiled module structure,
* but it must be done in two steps to allow forward references (via if-feature) between the features themselves */
ret = lys_feature_precompile(&ctx, NULL, NULL, sp->features, &mod->features);
LY_CHECK_GOTO(ret, error);
} /* else the features are already precompiled */
/* similarly, identities precompilation */
if (!mod->identities && sp->identities) {
ret = lys_identity_precompile(&ctx, NULL, NULL, sp->identities, &mod->identities);
LY_CHECK_GOTO(ret, error);
}
/* compile submodules
* - must be between features/identities precompilation and finishing their compilation to cover features/identities from
* submodules */
LY_ARRAY_FOR(sp->includes, u) {
LY_CHECK_GOTO(ret = lys_compile_submodule(&ctx, &sp->includes[u]), error);
}
/* finish feature compilation, not only for the main module, but also for the submodules.
* Due to possible forward references, it must be done when all the features (including submodules)
* are present. */
LY_ARRAY_FOR(sp->features, u) {
ret = lys_feature_precompile_finish(&ctx, &sp->features[u], mod->features);
LY_CHECK_GOTO(ret != LY_SUCCESS, error);
}
lysc_update_path(&ctx, NULL, "{submodule}");
LY_ARRAY_FOR(sp->includes, v) {
lysc_update_path(&ctx, NULL, sp->includes[v].name);
LY_ARRAY_FOR(sp->includes[v].submodule->features, u) {
ret = lys_feature_precompile_finish(&ctx, &sp->includes[v].submodule->features[u], mod->features);
LY_CHECK_GOTO(ret != LY_SUCCESS, error);
}
lysc_update_path(&ctx, NULL, NULL);
}
lysc_update_path(&ctx, NULL, NULL);
/* identities, work similarly to features with the precompilation */
if (sp->identities) {
LY_CHECK_GOTO(ret = lys_compile_identities_derived(&ctx, sp->identities, mod->identities), error);
}
lysc_update_path(&ctx, NULL, "{submodule}");
LY_ARRAY_FOR(sp->includes, v) {
if (sp->includes[v].submodule->identities) {
lysc_update_path(&ctx, NULL, sp->includes[v].name);
ret = lys_compile_identities_derived(&ctx, sp->includes[v].submodule->identities, mod->identities);
LY_CHECK_GOTO(ret, error);
lysc_update_path(&ctx, NULL, NULL);
}
}
lysc_update_path(&ctx, NULL, NULL);
/* data nodes */
LY_LIST_FOR(sp->data, node_p) {
LY_CHECK_GOTO(ret = lys_compile_node(&ctx, node_p, NULL, 0), error);
}
COMPILE_ARRAY1_GOTO(&ctx, sp->rpcs, mod_c->rpcs, NULL, u, lys_compile_action, 0, ret, error);
COMPILE_ARRAY1_GOTO(&ctx, sp->notifs, mod_c->notifs, NULL, u, lys_compile_notif, 0, ret, error);
/* augments - sort first to cover augments augmenting other augments */
LY_CHECK_GOTO(ret = lys_compile_augment_sort(&ctx, sp->augments, sp->includes, &augments), error);
LY_ARRAY_FOR(augments, u) {
LY_CHECK_GOTO(ret = lys_compile_augment(&ctx, augments[u], NULL), error);
}
/* deviations TODO cover deviations from submodules */
LY_CHECK_GOTO(ret = lys_compile_deviations(&ctx, sp), error);
/* extension instances TODO cover extension instances from submodules */
COMPILE_EXTS_GOTO(&ctx, sp->exts, mod_c->exts, mod_c, LYEXT_PAR_MODULE, ret, error);
/* finish compilation for all unresolved items in the context */
LY_CHECK_GOTO(ret = lys_compile_unres(&ctx), error);
/* validate non-instantiated groupings from the parsed schema,
* without it we would accept even the schemas with invalid grouping specification */
ctx.options |= LYSC_OPT_GROUPING;
LY_ARRAY_FOR(sp->groupings, u) {
if (!(sp->groupings[u].flags & LYS_USED_GRP)) {
LY_CHECK_GOTO(ret = lys_compile_grouping(&ctx, node_p, &sp->groupings[u]), error);
}
}
LY_LIST_FOR(sp->data, node_p) {
grps = (struct lysp_grp *)lysp_node_groupings(node_p);
LY_ARRAY_FOR(grps, u) {
if (!(grps[u].flags & LYS_USED_GRP)) {
LY_CHECK_GOTO(ret = lys_compile_grouping(&ctx, node_p, &grps[u]), error);
}
}
}
if (ctx.ctx->flags & LY_CTX_CHANGED_TREE) {
/* TODO Deviation has changed tree of a module(s) in the context (by deviate-not-supported), it is necessary to recompile
leafref paths, default values and must/when expressions in all schemas of the context to check that they are still valid */
}
#if 0
/* hack for NETCONF's edit-config's operation attribute. It is not defined in the schema, but since libyang
* implements YANG metadata (annotations), we need its definition. Because the ietf-netconf schema is not the
* internal part of libyang, we cannot add the annotation into the schema source, but we do it here to have
* the anotation definitions available in the internal schema structure. */
if (ly_strequal(mod->name, "ietf-netconf", 0)) {
if (lyp_add_ietf_netconf_annotations(mod)) {
lys_free(mod, NULL, 1, 1);
return NULL;
}
}
#endif
/* add ietf-netconf-with-defaults "default" metadata to the compiled module */
if (!strcmp(mod->name, "ietf-netconf-with-defaults")) {
LY_CHECK_GOTO(ret = lys_compile_ietf_netconf_wd_annotation(&ctx, mod), error);
}
ly_set_erase(&ctx.dflts, free);
ly_set_erase(&ctx.xpath, NULL);
ly_set_erase(&ctx.leafrefs, NULL);
ly_set_erase(&ctx.groupings, NULL);
ly_set_erase(&ctx.tpdf_chain, NULL);
LY_ARRAY_FREE(augments);
if (ctx.options & LYSC_OPT_FREE_SP) {
lysp_module_free(mod->parsed);
mod->parsed = NULL;
}
if (!(ctx.options & LYSC_OPT_INTERNAL)) {
/* remove flag of the modules implemented by dependency */
for (i = 0; i < ctx.ctx->list.count; ++i) {
m = ctx.ctx->list.objs[i];
if (m->implemented > 1) {
m->implemented = 1;
}
}
}
return LY_SUCCESS;
error:
lys_feature_precompile_revert(&ctx, mod);
ly_set_erase(&ctx.dflts, free);
ly_set_erase(&ctx.xpath, NULL);
ly_set_erase(&ctx.leafrefs, NULL);
ly_set_erase(&ctx.groupings, NULL);
ly_set_erase(&ctx.tpdf_chain, NULL);
LY_ARRAY_FREE(augments);
lysc_module_free(mod_c, NULL);
mod->compiled = NULL;
/* revert compilation of modules implemented by dependency, but only by (directly or indirectly) by dependency
* of this module, since this module can be also compiled from dependency, there can be some other modules being
* processed and we are going to get back to them via stack, so freeing them is not a good idea. */
for (i = 0; i < ctx.ctx->list.count; ++i) {
m = ctx.ctx->list.objs[i];
if ((m->implemented >= compile_id) && m->compiled) {
/* revert features list to the precompiled state */
lys_feature_precompile_revert(&ctx, m);
/* mark module as imported-only / not-implemented */
m->implemented = 0;
/* free the compiled version of the module */
lysc_module_free(m->compiled, NULL);
m->compiled = NULL;
}
}
return ret;
}