blob: 29d2112bef594f4bea48204c280f1a3113a5339d [file] [log] [blame]
/**
* @file tree_data.c
* @author Radek Krejci <rkrejci@cesnet.cz>
* @brief Data tree functions
*
* Copyright (c) 2015 - 2020 CESNET, z.s.p.o.
*
* This source code is licensed under BSD 3-Clause License (the "License").
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*/
#define _GNU_SOURCE
#include "tree_data.h"
#include <assert.h>
#include <ctype.h>
#include <inttypes.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "common.h"
#include "compat.h"
#include "context.h"
#include "dict.h"
#include "diff.h"
#include "hash_table.h"
#include "in.h"
#include "in_internal.h"
#include "log.h"
#include "parser_data.h"
#include "parser_internal.h"
#include "path.h"
#include "plugins.h"
#include "plugins_exts/metadata.h"
#include "plugins_internal.h"
#include "plugins_types.h"
#include "set.h"
#include "tree.h"
#include "tree_data_internal.h"
#include "tree_edit.h"
#include "tree_schema.h"
#include "tree_schema_internal.h"
#include "validation.h"
#include "xml.h"
#include "xpath.h"
static LY_ERR lyd_find_sibling_schema(const struct lyd_node *siblings, const struct lysc_node *schema,
struct lyd_node **match);
LY_ERR
lyd_value_store(const struct ly_ctx *ctx, struct lyd_value *val, const struct lysc_type *type, const void *value,
size_t value_len, ly_bool *dynamic, LY_VALUE_FORMAT format, void *prefix_data, uint32_t hints,
const struct lysc_node *ctx_node, ly_bool *incomplete)
{
LY_ERR ret;
struct ly_err_item *err = NULL;
uint32_t options = (dynamic && *dynamic ? LYPLG_TYPE_STORE_DYNAMIC : 0);
if (!value) {
value = "";
}
if (incomplete) {
*incomplete = 0;
}
ret = type->plugin->store(ctx, type, value, value_len, options, format, prefix_data, hints, ctx_node, val, NULL, &err);
if (dynamic) {
*dynamic = 0;
}
if (ret == LY_EINCOMPLETE) {
if (incomplete) {
*incomplete = 1;
}
} else if (ret) {
if (err) {
LOGVAL_ERRITEM(ctx, err);
ly_err_free(err);
} else {
LOGVAL(ctx, LYVE_OTHER, "Storing value \"%.*s\" failed.", (int)value_len, value);
}
return ret;
}
return LY_SUCCESS;
}
LY_ERR
lyd_value_validate_incomplete(const struct ly_ctx *ctx, const struct lysc_type *type, struct lyd_value *val,
const struct lyd_node *ctx_node, const struct lyd_node *tree)
{
LY_ERR ret;
struct ly_err_item *err = NULL;
assert(type->plugin->validate);
ret = type->plugin->validate(ctx, type, ctx_node, tree, val, &err);
if (ret) {
if (err) {
LOGVAL_ERRITEM(ctx, err);
ly_err_free(err);
} else {
LOGVAL(ctx, LYVE_OTHER, "Resolving value \"%s\" failed.", type->plugin->print(ctx, val, LY_VALUE_CANON,
NULL, NULL, NULL));
}
return ret;
}
return LY_SUCCESS;
}
LY_ERR
lys_value_validate(const struct ly_ctx *ctx, const struct lysc_node *node, const char *value, size_t value_len,
LY_VALUE_FORMAT format, void *prefix_data)
{
LY_ERR rc = LY_SUCCESS;
struct ly_err_item *err = NULL;
struct lyd_value storage;
struct lysc_type *type;
LY_CHECK_ARG_RET(ctx, node, value, LY_EINVAL);
if (!(node->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGARG(ctx, node);
return LY_EINVAL;
}
type = ((struct lysc_node_leaf *)node)->type;
rc = type->plugin->store(ctx ? ctx : node->module->ctx, type, value, value_len, 0, format, prefix_data,
LYD_HINT_SCHEMA, node, &storage, NULL, &err);
if (rc == LY_EINCOMPLETE) {
/* actually success since we do not provide the context tree and call validation with
* LY_TYPE_OPTS_INCOMPLETE_DATA */
rc = LY_SUCCESS;
} else if (rc && err) {
if (ctx) {
/* log only in case the ctx was provided as input parameter */
LOG_LOCSET(NULL, NULL, err->path, NULL);
LOGVAL_ERRITEM(ctx, err);
LOG_LOCBACK(0, 0, 1, 0);
}
ly_err_free(err);
}
if (!rc) {
type->plugin->free(ctx ? ctx : node->module->ctx, &storage);
}
return rc;
}
API LY_ERR
lyd_value_validate(const struct ly_ctx *ctx, const struct lysc_node *schema, const char *value, size_t value_len,
const struct lyd_node *ctx_node, const struct lysc_type **realtype, const char **canonical)
{
LY_ERR rc;
struct ly_err_item *err = NULL;
struct lysc_type *type;
struct lyd_value val = {0};
ly_bool stored = 0, log = 1;
LY_CHECK_ARG_RET(ctx, schema, value, LY_EINVAL);
if (!ctx) {
ctx = schema->module->ctx;
log = 0;
}
type = ((struct lysc_node_leaf *)schema)->type;
/* store */
rc = type->plugin->store(ctx, type, value, value_len, 0, LY_VALUE_JSON, NULL,
LYD_HINT_DATA, schema, &val, NULL, &err);
if (!rc || (rc == LY_EINCOMPLETE)) {
stored = 1;
}
if (ctx_node && (rc == LY_EINCOMPLETE)) {
/* resolve */
rc = type->plugin->validate(ctx, type, ctx_node, ctx_node, &val, &err);
}
if (rc && (rc != LY_EINCOMPLETE) && err) {
if (log) {
/* log error */
if (err->path) {
LOG_LOCSET(NULL, NULL, err->path, NULL);
} else if (ctx_node) {
LOG_LOCSET(NULL, ctx_node, NULL, NULL);
} else {
LOG_LOCSET(schema, NULL, NULL, NULL);
}
LOGVAL_ERRITEM(ctx, err);
if (err->path) {
LOG_LOCBACK(0, 0, 1, 0);
} else if (ctx_node) {
LOG_LOCBACK(0, 1, 0, 0);
} else {
LOG_LOCBACK(1, 0, 0, 0);
}
}
ly_err_free(err);
}
if (!rc || (rc == LY_EINCOMPLETE)) {
if (realtype) {
/* return realtype */
if (val.realtype->basetype == LY_TYPE_UNION) {
*realtype = val.subvalue->value.realtype;
} else {
*realtype = val.realtype;
}
}
if (canonical) {
/* return canonical value */
lydict_insert(ctx, val.realtype->plugin->print(ctx, &val, LY_VALUE_CANON, NULL, NULL, NULL), 0, canonical);
}
}
if (stored) {
/* free value */
type->plugin->free(ctx ? ctx : schema->module->ctx, &val);
}
return rc;
}
API LY_ERR
lyd_value_compare(const struct lyd_node_term *node, const char *value, size_t value_len)
{
LY_ERR ret = LY_SUCCESS;
struct ly_ctx *ctx;
struct lysc_type *type;
struct lyd_value val = {0};
LY_CHECK_ARG_RET(node ? node->schema->module->ctx : NULL, node, value, LY_EINVAL);
ctx = node->schema->module->ctx;
type = ((struct lysc_node_leaf *)node->schema)->type;
/* store the value */
LOG_LOCSET(node->schema, &node->node, NULL, NULL);
ret = lyd_value_store(ctx, &val, type, value, value_len, NULL, LY_VALUE_JSON, NULL, LYD_HINT_DATA, node->schema, NULL);
LOG_LOCBACK(1, 1, 0, 0);
LY_CHECK_RET(ret);
/* compare values */
ret = type->plugin->compare(&node->value, &val);
type->plugin->free(ctx, &val);
return ret;
}
API ly_bool
lyd_is_default(const struct lyd_node *node)
{
const struct lysc_node_leaf *leaf;
const struct lysc_node_leaflist *llist;
const struct lyd_node_term *term;
LY_ARRAY_COUNT_TYPE u;
assert(node->schema->nodetype & LYD_NODE_TERM);
term = (const struct lyd_node_term *)node;
if (node->schema->nodetype == LYS_LEAF) {
leaf = (const struct lysc_node_leaf *)node->schema;
if (!leaf->dflt) {
return 0;
}
/* compare with the default value */
if (leaf->type->plugin->compare(&term->value, leaf->dflt)) {
return 0;
}
} else {
llist = (const struct lysc_node_leaflist *)node->schema;
if (!llist->dflts) {
return 0;
}
LY_ARRAY_FOR(llist->dflts, u) {
/* compare with each possible default value */
if (llist->type->plugin->compare(&term->value, llist->dflts[u])) {
return 0;
}
}
}
return 1;
}
static LYD_FORMAT
lyd_parse_get_format(const struct ly_in *in, LYD_FORMAT format)
{
if (!format && (in->type == LY_IN_FILEPATH)) {
/* unknown format - try to detect it from filename's suffix */
const char *path = in->method.fpath.filepath;
size_t len = strlen(path);
/* ignore trailing whitespaces */
for ( ; len > 0 && isspace(path[len - 1]); len--) {}
if ((len >= LY_XML_SUFFIX_LEN + 1) &&
!strncmp(&path[len - LY_XML_SUFFIX_LEN], LY_XML_SUFFIX, LY_XML_SUFFIX_LEN)) {
format = LYD_XML;
} else if ((len >= LY_JSON_SUFFIX_LEN + 1) &&
!strncmp(&path[len - LY_JSON_SUFFIX_LEN], LY_JSON_SUFFIX, LY_JSON_SUFFIX_LEN)) {
format = LYD_JSON;
} else if ((len >= LY_LYB_SUFFIX_LEN + 1) &&
!strncmp(&path[len - LY_LYB_SUFFIX_LEN], LY_LYB_SUFFIX, LY_LYB_SUFFIX_LEN)) {
format = LYD_LYB;
} /* else still unknown */
}
return format;
}
/**
* @brief Parse YANG data into a data tree.
*
* @param[in] ctx libyang context.
* @param[in] ext Optional extenion instance to parse data following the schema tree specified in the extension instance
* @param[in] parent Parent to connect the parsed nodes to, if any.
* @param[in,out] first_p Pointer to the first top-level parsed node, used only if @p parent is NULL.
* @param[in] in Input handle to read the input from.
* @param[in] format Expected format of the data in @p in.
* @param[in] parse_opts Options for parser.
* @param[in] val_opts Options for validation.
* @param[out] op Optional pointer to the parsed operation, if any.
* @return LY_ERR value.
*/
static LY_ERR
lyd_parse(const struct ly_ctx *ctx, const struct lysc_ext_instance *ext, struct lyd_node *parent, struct lyd_node **first_p,
struct ly_in *in, LYD_FORMAT format, uint32_t parse_opts, uint32_t val_opts, struct lyd_node **op)
{
LY_ERR rc = LY_SUCCESS;
struct lyd_ctx *lydctx = NULL;
struct ly_set parsed = {0};
struct lyd_node *first;
uint32_t i;
assert(ctx && (parent || first_p));
format = lyd_parse_get_format(in, format);
if (first_p) {
*first_p = NULL;
}
/* remember input position */
in->func_start = in->current;
/* parse the data */
switch (format) {
case LYD_XML:
rc = lyd_parse_xml(ctx, ext, parent, first_p, in, parse_opts, val_opts, LYD_TYPE_DATA_YANG, NULL, &parsed, &lydctx);
break;
case LYD_JSON:
rc = lyd_parse_json(ctx, ext, parent, first_p, in, parse_opts, val_opts, LYD_TYPE_DATA_YANG, &parsed, &lydctx);
break;
case LYD_LYB:
rc = lyd_parse_lyb(ctx, ext, parent, first_p, in, parse_opts, val_opts, LYD_TYPE_DATA_YANG, &parsed, &lydctx);
break;
case LYD_UNKNOWN:
LOGARG(ctx, format);
rc = LY_EINVAL;
break;
}
LY_CHECK_GOTO(rc, cleanup);
if (parent) {
/* get first top-level sibling */
for (first = parent; first->parent; first = lyd_parent(first)) {}
first = lyd_first_sibling(first);
first_p = &first;
}
if (!(parse_opts & LYD_PARSE_ONLY)) {
/* validate data */
rc = lyd_validate(first_p, NULL, ctx, val_opts, 0, &lydctx->node_when, &lydctx->node_exts, &lydctx->node_types,
&lydctx->meta_types, NULL);
LY_CHECK_GOTO(rc, cleanup);
}
/* set the operation node */
if (op) {
*op = lydctx->op_node;
}
cleanup:
if (lydctx) {
lydctx->free(lydctx);
}
if (rc) {
if (parent) {
/* free all the parsed subtrees */
for (i = 0; i < parsed.count; ++i) {
lyd_free_tree(parsed.dnodes[i]);
}
} else {
/* free everything */
lyd_free_all(*first_p);
*first_p = NULL;
}
}
ly_set_erase(&parsed, NULL);
return rc;
}
API LY_ERR
lyd_parse_ext_data(const struct lysc_ext_instance *ext, struct lyd_node *parent, struct ly_in *in, LYD_FORMAT format,
uint32_t parse_options, uint32_t validate_options, struct lyd_node **tree)
{
const struct ly_ctx *ctx = ext ? ext->module->ctx : NULL;
LY_CHECK_ARG_RET(ctx, ext, in, parent || tree, LY_EINVAL);
LY_CHECK_ARG_RET(ctx, !(parse_options & ~LYD_PARSE_OPTS_MASK), LY_EINVAL);
LY_CHECK_ARG_RET(ctx, !(validate_options & ~LYD_VALIDATE_OPTS_MASK), LY_EINVAL);
return lyd_parse(ctx, ext, parent, tree, in, format, parse_options, validate_options, NULL);
}
API LY_ERR
lyd_parse_data(const struct ly_ctx *ctx, struct lyd_node *parent, struct ly_in *in, LYD_FORMAT format,
uint32_t parse_options, uint32_t validate_options, struct lyd_node **tree)
{
LY_CHECK_ARG_RET(ctx, ctx, in, parent || tree, LY_EINVAL);
LY_CHECK_ARG_RET(ctx, !(parse_options & ~LYD_PARSE_OPTS_MASK), LY_EINVAL);
LY_CHECK_ARG_RET(ctx, !(validate_options & ~LYD_VALIDATE_OPTS_MASK), LY_EINVAL);
return lyd_parse(ctx, NULL, parent, tree, in, format, parse_options, validate_options, NULL);
}
API LY_ERR
lyd_parse_data_mem(const struct ly_ctx *ctx, const char *data, LYD_FORMAT format, uint32_t parse_options,
uint32_t validate_options, struct lyd_node **tree)
{
LY_ERR ret;
struct ly_in *in;
LY_CHECK_RET(ly_in_new_memory(data, &in));
ret = lyd_parse_data(ctx, NULL, in, format, parse_options, validate_options, tree);
ly_in_free(in, 0);
return ret;
}
API LY_ERR
lyd_parse_data_fd(const struct ly_ctx *ctx, int fd, LYD_FORMAT format, uint32_t parse_options, uint32_t validate_options,
struct lyd_node **tree)
{
LY_ERR ret;
struct ly_in *in;
LY_CHECK_RET(ly_in_new_fd(fd, &in));
ret = lyd_parse_data(ctx, NULL, in, format, parse_options, validate_options, tree);
ly_in_free(in, 0);
return ret;
}
API LY_ERR
lyd_parse_data_path(const struct ly_ctx *ctx, const char *path, LYD_FORMAT format, uint32_t parse_options,
uint32_t validate_options, struct lyd_node **tree)
{
LY_ERR ret;
struct ly_in *in;
LY_CHECK_RET(ly_in_new_filepath(path, 0, &in));
ret = lyd_parse_data(ctx, NULL, in, format, parse_options, validate_options, tree);
ly_in_free(in, 0);
return ret;
}
/**
* @brief Parse YANG data into an operation data tree, in case the extension instance is specified, keep the searching
* for schema nodes locked inside the extension instance.
*
* At least one of @p parent, @p tree, or @p op must always be set.
*
* Specific @p data_type values have different parameter meaning as follows:
* - ::LYD_TYPE_RPC_NETCONF:
* - @p parent - must be NULL, the whole RPC is expected;
* - @p format - must be ::LYD_XML, NETCONF supports only this format;
* - @p tree - must be provided, all the NETCONF-specific XML envelopes will be returned here as
* a separate opaque data tree, even if the function fails, this may be returned;
* - @p op - must be provided, the RPC/action data tree itself will be returned here, pointing to the operation;
*
* - ::LYD_TYPE_NOTIF_NETCONF:
* - @p parent - must be NULL, the whole notification is expected;
* - @p format - must be ::LYD_XML, NETCONF supports only this format;
* - @p tree - must be provided, all the NETCONF-specific XML envelopes will be returned here as
* a separate opaque data tree, even if the function fails, this may be returned;
* - @p op - must be provided, the notification data tree itself will be returned here, pointing to the operation;
*
* - ::LYD_TYPE_REPLY_NETCONF:
* - @p parent - must be set, pointing to the invoked RPC operation (RPC or action) node;
* - @p format - must be ::LYD_XML, NETCONF supports only this format;
* - @p tree - must be provided, all the NETCONF-specific XML envelopes will be returned here as
* a separate opaque data tree, even if the function fails, this may be returned;
* - @p op - must be NULL, the reply is appended to the RPC;
* Note that there are 3 kinds of NETCONF replies - ok, error, and data. Only data reply appends any nodes to the RPC.
*
* @param[in] ctx libyang context.
* @param[in] ext Extension instance providing the specific schema tree to match with the data being parsed.
* @param[in] parent Optional parent to connect the parsed nodes to.
* @param[in] in Input handle to read the input from.
* @param[in] format Expected format of the data in @p in.
* @param[in] data_type Expected operation to parse (@ref datatype).
* @param[out] tree Optional full parsed data tree. If @p parent is set, set to NULL.
* @param[out] op Optional parsed operation node.
* @return LY_ERR value.
* @return LY_ENOT if @p data_type is a NETCONF message and the root XML element is not the expected one.
*/
static LY_ERR
lyd_parse_op_(const struct ly_ctx *ctx, const struct lysc_ext_instance *ext, struct lyd_node *parent,
struct ly_in *in, LYD_FORMAT format, enum lyd_type data_type, struct lyd_node **tree, struct lyd_node **op)
{
LY_ERR rc = LY_SUCCESS;
struct lyd_ctx *lydctx = NULL;
struct ly_set parsed = {0};
struct lyd_node *first = NULL, *envp = NULL;
uint32_t i, parse_opts, val_opts;
if (!ctx) {
ctx = LYD_CTX(parent);
}
if (tree) {
*tree = NULL;
}
if (op) {
*op = NULL;
}
format = lyd_parse_get_format(in, format);
/* remember input position */
in->func_start = in->current;
/* check params based on the data type */
if ((data_type == LYD_TYPE_RPC_NETCONF) || (data_type == LYD_TYPE_NOTIF_NETCONF)) {
LY_CHECK_ARG_RET(ctx, format == LYD_XML, !parent, tree, op, LY_EINVAL);
} else if (data_type == LYD_TYPE_REPLY_NETCONF) {
LY_CHECK_ARG_RET(ctx, format == LYD_XML, parent, parent->schema->nodetype & (LYS_RPC | LYS_ACTION), tree, !op,
LY_EINVAL);
}
parse_opts = LYD_PARSE_ONLY | LYD_PARSE_OPAQ;
val_opts = 0;
/* parse the data */
switch (format) {
case LYD_XML:
rc = lyd_parse_xml(ctx, ext, parent, &first, in, parse_opts, val_opts, data_type, &envp, &parsed, &lydctx);
if (rc && envp) {
/* special situation when the envelopes were parsed successfully */
if (tree) {
*tree = envp;
}
ly_set_erase(&parsed, NULL);
return rc;
}
break;
case LYD_JSON:
rc = lyd_parse_json(ctx, ext, parent, &first, in, parse_opts, val_opts, data_type, &parsed, &lydctx);
break;
case LYD_LYB:
rc = lyd_parse_lyb(ctx, ext, parent, &first, in, parse_opts, val_opts, data_type, &parsed, &lydctx);
break;
case LYD_UNKNOWN:
LOGARG(ctx, format);
rc = LY_EINVAL;
break;
}
LY_CHECK_GOTO(rc, cleanup);
/* set out params correctly */
if (tree) {
if (envp) {
/* special out param meaning */
*tree = envp;
} else {
*tree = parent ? NULL : first;
}
}
if (op) {
*op = lydctx->op_node;
}
cleanup:
if (lydctx) {
lydctx->free(lydctx);
}
if (rc) {
if (parent) {
/* free all the parsed subtrees */
for (i = 0; i < parsed.count; ++i) {
lyd_free_tree(parsed.dnodes[i]);
}
} else {
/* free everything (cannot occur in the current code, a safety) */
lyd_free_all(first);
if (tree) {
*tree = NULL;
}
if (op) {
*op = NULL;
}
}
}
ly_set_erase(&parsed, NULL);
return rc;
}
API LY_ERR
lyd_parse_op(const struct ly_ctx *ctx, struct lyd_node *parent, struct ly_in *in, LYD_FORMAT format,
enum lyd_type data_type, struct lyd_node **tree, struct lyd_node **op)
{
LY_CHECK_ARG_RET(ctx, ctx || parent, in, data_type, parent || tree || op, LY_EINVAL);
return lyd_parse_op_(ctx, NULL, parent, in, format, data_type, tree, op);
}
API LY_ERR
lyd_parse_ext_op(const struct lysc_ext_instance *ext, struct lyd_node *parent, struct ly_in *in, LYD_FORMAT format,
enum lyd_type data_type, struct lyd_node **tree, struct lyd_node **op)
{
const struct ly_ctx *ctx = ext ? ext->module->ctx : NULL;
LY_CHECK_ARG_RET(ctx, ext, in, data_type, parent || tree || op, LY_EINVAL);
return lyd_parse_op_(ctx, ext, parent, in, format, data_type, tree, op);
}
LY_ERR
lyd_create_term(const struct lysc_node *schema, const char *value, size_t value_len, ly_bool *dynamic,
LY_VALUE_FORMAT format, void *prefix_data, uint32_t hints, ly_bool *incomplete, struct lyd_node **node)
{
LY_ERR ret;
struct lyd_node_term *term;
assert(schema->nodetype & LYD_NODE_TERM);
term = calloc(1, sizeof *term);
LY_CHECK_ERR_RET(!term, LOGMEM(schema->module->ctx), LY_EMEM);
term->schema = schema;
term->prev = &term->node;
term->flags = LYD_NEW;
LOG_LOCSET(schema, NULL, NULL, NULL);
ret = lyd_value_store(schema->module->ctx, &term->value, ((struct lysc_node_leaf *)term->schema)->type, value,
value_len, dynamic, format, prefix_data, hints, schema, incomplete);
LOG_LOCBACK(1, 0, 0, 0);
LY_CHECK_ERR_RET(ret, free(term), ret);
lyd_hash(&term->node);
*node = &term->node;
return ret;
}
LY_ERR
lyd_create_term2(const struct lysc_node *schema, const struct lyd_value *val, struct lyd_node **node)
{
LY_ERR ret;
struct lyd_node_term *term;
struct lysc_type *type;
assert(schema->nodetype & LYD_NODE_TERM);
assert(val && val->realtype);
term = calloc(1, sizeof *term);
LY_CHECK_ERR_RET(!term, LOGMEM(schema->module->ctx), LY_EMEM);
term->schema = schema;
term->prev = &term->node;
term->flags = LYD_NEW;
type = ((struct lysc_node_leaf *)schema)->type;
ret = type->plugin->duplicate(schema->module->ctx, val, &term->value);
if (ret) {
LOGERR(schema->module->ctx, ret, "Value duplication failed.");
free(term);
return ret;
}
lyd_hash(&term->node);
*node = &term->node;
return ret;
}
LY_ERR
lyd_create_inner(const struct lysc_node *schema, struct lyd_node **node)
{
struct lyd_node_inner *in;
assert(schema->nodetype & LYD_NODE_INNER);
in = calloc(1, sizeof *in);
LY_CHECK_ERR_RET(!in, LOGMEM(schema->module->ctx), LY_EMEM);
in->schema = schema;
in->prev = &in->node;
in->flags = LYD_NEW;
if ((schema->nodetype == LYS_CONTAINER) && !(schema->flags & LYS_PRESENCE)) {
in->flags |= LYD_DEFAULT;
}
/* do not hash list with keys, we need them for the hash */
if ((schema->nodetype != LYS_LIST) || (schema->flags & LYS_KEYLESS)) {
lyd_hash(&in->node);
}
*node = &in->node;
return LY_SUCCESS;
}
LY_ERR
lyd_create_list(const struct lysc_node *schema, const struct ly_path_predicate *predicates, struct lyd_node **node)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_node *list = NULL, *key;
LY_ARRAY_COUNT_TYPE u;
assert((schema->nodetype == LYS_LIST) && !(schema->flags & LYS_KEYLESS));
/* create list */
LY_CHECK_GOTO(ret = lyd_create_inner(schema, &list), cleanup);
LOG_LOCSET(NULL, list, NULL, NULL);
/* create and insert all the keys */
LY_ARRAY_FOR(predicates, u) {
LY_CHECK_GOTO(ret = lyd_create_term2(predicates[u].key, &predicates[u].value, &key), cleanup);
lyd_insert_node(list, NULL, key, 0);
}
/* hash having all the keys */
lyd_hash(list);
/* success */
*node = list;
list = NULL;
cleanup:
LOG_LOCBACK(0, 1, 0, 0);
lyd_free_tree(list);
return ret;
}
static LY_ERR
lyd_create_list2(const struct lysc_node *schema, const char *keys, size_t keys_len, struct lyd_node **node)
{
LY_ERR ret = LY_SUCCESS;
struct lyxp_expr *expr = NULL;
uint16_t exp_idx = 0;
enum ly_path_pred_type pred_type = 0;
struct ly_path_predicate *predicates = NULL;
LOG_LOCSET(schema, NULL, NULL, NULL);
/* parse keys */
LY_CHECK_GOTO(ret = ly_path_parse_predicate(schema->module->ctx, NULL, keys, keys_len, LY_PATH_PREFIX_OPTIONAL,
LY_PATH_PRED_KEYS, &expr), cleanup);
/* compile them */
LY_CHECK_GOTO(ret = ly_path_compile_predicate(schema->module->ctx, NULL, NULL, schema, expr, &exp_idx, LY_VALUE_JSON,
NULL, &predicates, &pred_type), cleanup);
/* create the list node */
LY_CHECK_GOTO(ret = lyd_create_list(schema, predicates, node), cleanup);
cleanup:
LOG_LOCBACK(1, 0, 0, 0);
lyxp_expr_free(schema->module->ctx, expr);
ly_path_predicates_free(schema->module->ctx, pred_type, predicates);
return ret;
}
LY_ERR
lyd_create_any(const struct lysc_node *schema, const void *value, LYD_ANYDATA_VALUETYPE value_type, ly_bool use_value,
struct lyd_node **node)
{
LY_ERR ret;
struct lyd_node_any *any;
union lyd_any_value any_val;
assert(schema->nodetype & LYD_NODE_ANY);
any = calloc(1, sizeof *any);
LY_CHECK_ERR_RET(!any, LOGMEM(schema->module->ctx), LY_EMEM);
any->schema = schema;
any->prev = &any->node;
any->flags = LYD_NEW;
/* TODO: convert XML/JSON strings into a opaq data tree */
if (use_value) {
any->value.str = value;
any->value_type = value_type;
} else {
any_val.str = value;
ret = lyd_any_copy_value(&any->node, &any_val, value_type);
LY_CHECK_ERR_RET(ret, free(any), ret);
}
lyd_hash(&any->node);
*node = &any->node;
return LY_SUCCESS;
}
LY_ERR
lyd_create_opaq(const struct ly_ctx *ctx, const char *name, size_t name_len, const char *prefix, size_t pref_len,
const char *module_key, size_t module_key_len, const char *value, size_t value_len, ly_bool *dynamic,
LY_VALUE_FORMAT format, void *val_prefix_data, uint32_t hints, struct lyd_node **node)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_node_opaq *opaq;
assert(ctx && name && name_len && format);
if (!value_len && (!dynamic || !*dynamic)) {
value = "";
}
opaq = calloc(1, sizeof *opaq);
LY_CHECK_ERR_GOTO(!opaq, LOGMEM(ctx); ret = LY_EMEM, finish);
opaq->prev = &opaq->node;
LY_CHECK_GOTO(ret = lydict_insert(ctx, name, name_len, &opaq->name.name), finish);
if (pref_len) {
LY_CHECK_GOTO(ret = lydict_insert(ctx, prefix, pref_len, &opaq->name.prefix), finish);
}
if (module_key_len) {
LY_CHECK_GOTO(ret = lydict_insert(ctx, module_key, module_key_len, &opaq->name.module_ns), finish);
}
if (dynamic && *dynamic) {
LY_CHECK_GOTO(ret = lydict_insert_zc(ctx, (char *)value, &opaq->value), finish);
*dynamic = 0;
} else {
LY_CHECK_GOTO(ret = lydict_insert(ctx, value, value_len, &opaq->value), finish);
}
opaq->format = format;
opaq->val_prefix_data = val_prefix_data;
opaq->hints = hints;
opaq->ctx = ctx;
finish:
if (ret) {
lyd_free_tree(&opaq->node);
ly_free_prefix_data(format, val_prefix_data);
} else {
*node = &opaq->node;
}
return ret;
}
API LY_ERR
lyd_new_inner(struct lyd_node *parent, const struct lys_module *module, const char *name, ly_bool output,
struct lyd_node **node)
{
struct lyd_node *ret = NULL;
const struct lysc_node *schema;
struct ly_ctx *ctx = parent ? parent->schema->module->ctx : (module ? module->ctx : NULL);
LY_CHECK_ARG_RET(ctx, parent || module, parent || node, name, LY_EINVAL);
if (!module) {
module = parent->schema->module;
}
schema = lys_find_child(parent ? parent->schema : NULL, module, name, 0,
LYS_CONTAINER | LYS_NOTIF | LYS_RPC | LYS_ACTION, output ? LYS_GETNEXT_OUTPUT : 0);
LY_CHECK_ERR_RET(!schema, LOGERR(ctx, LY_EINVAL, "Inner node (not a list) \"%s\" not found.", name), LY_ENOTFOUND);
LY_CHECK_RET(lyd_create_inner(schema, &ret));
if (parent) {
lyd_insert_node(parent, NULL, ret, 0);
}
if (node) {
*node = ret;
}
return LY_SUCCESS;
}
API LY_ERR
lyd_new_ext_inner(const struct lysc_ext_instance *ext, const char *name, struct lyd_node **node)
{
struct lyd_node *ret = NULL;
const struct lysc_node *schema;
struct ly_ctx *ctx = ext ? ext->module->ctx : NULL;
LY_CHECK_ARG_RET(ctx, ext, node, name, LY_EINVAL);
schema = lysc_ext_find_node(ext, NULL, name, 0, LYS_CONTAINER | LYS_NOTIF | LYS_RPC | LYS_ACTION, 0);
if (!schema) {
if (ext->argument) {
LOGERR(ctx, LY_EINVAL, "Inner node (not a list) \"%s\" not found in instance \"%s\" of extension %s.",
name, ext->argument, ext->def->name);
} else {
LOGERR(ctx, LY_EINVAL, "Inner node (not a list) \"%s\" not found in instance of extension %s.",
name, ext->def->name);
}
return LY_ENOTFOUND;
}
LY_CHECK_RET(lyd_create_inner(schema, &ret));
*node = ret;
return LY_SUCCESS;
}
/**
* @brief Create a new list node in the data tree.
*
* @param[in] parent Parent node for the node being created. NULL in case of creating a top level element.
* @param[in] module Module of the node being created. If NULL, @p parent module will be used.
* @param[in] name Schema node name of the new data node. The node must be #LYS_LIST.
* @param[in] format Format of key values.
* @param[in] output Flag in case the @p parent is RPC/Action. If value is 0, the input's data nodes of the RPC/Action are
* taken into consideration. Otherwise, the output's data node is going to be created.
* @param[out] node Optional created node.
* @param[in] ap Ordered key values of the new list instance, all must be set. For ::LY_VALUE_LYB, every value must
* be followed by the value length.
* @return LY_ERR value.
*/
static LY_ERR
_lyd_new_list(struct lyd_node *parent, const struct lys_module *module, const char *name, LY_VALUE_FORMAT format,
ly_bool output, struct lyd_node **node, va_list ap)
{
struct lyd_node *ret = NULL, *key;
const struct lysc_node *schema, *key_s;
struct ly_ctx *ctx = parent ? parent->schema->module->ctx : (module ? module->ctx : NULL);
const void *key_val;
uint32_t key_len;
LY_ERR rc = LY_SUCCESS;
LY_CHECK_ARG_RET(ctx, parent || module, parent || node, name, LY_EINVAL);
if (!module) {
module = parent->schema->module;
}
schema = lys_find_child(parent ? parent->schema : NULL, module, name, 0, LYS_LIST, output ? LYS_GETNEXT_OUTPUT : 0);
LY_CHECK_ERR_RET(!schema, LOGERR(ctx, LY_EINVAL, "List node \"%s\" not found.", name), LY_ENOTFOUND);
/* create list inner node */
LY_CHECK_RET(lyd_create_inner(schema, &ret));
/* create and insert all the keys */
for (key_s = lysc_node_child(schema); key_s && (key_s->flags & LYS_KEY); key_s = key_s->next) {
if (format == LY_VALUE_LYB) {
key_val = va_arg(ap, const void *);
key_len = va_arg(ap, uint32_t);
} else {
key_val = va_arg(ap, const char *);
key_len = key_val ? strlen((char *)key_val) : 0;
}
rc = lyd_create_term(key_s, key_val, key_len, NULL, format, NULL, LYD_HINT_DATA, NULL, &key);
LY_CHECK_GOTO(rc, cleanup);
lyd_insert_node(ret, NULL, key, 1);
}
if (parent) {
lyd_insert_node(parent, NULL, ret, 0);
}
cleanup:
if (rc) {
lyd_free_tree(ret);
ret = NULL;
} else if (node) {
*node = ret;
}
return rc;
}
API LY_ERR
lyd_new_list(struct lyd_node *parent, const struct lys_module *module, const char *name, ly_bool output,
struct lyd_node **node, ...)
{
LY_ERR rc;
va_list ap;
va_start(ap, node);
rc = _lyd_new_list(parent, module, name, LY_VALUE_JSON, output, node, ap);
va_end(ap);
return rc;
}
API LY_ERR
lyd_new_list_bin(struct lyd_node *parent, const struct lys_module *module, const char *name, ly_bool output,
struct lyd_node **node, ...)
{
LY_ERR rc;
va_list ap;
va_start(ap, node);
rc = _lyd_new_list(parent, module, name, LY_VALUE_LYB, output, node, ap);
va_end(ap);
return rc;
}
API LY_ERR
lyd_new_list_canon(struct lyd_node *parent, const struct lys_module *module, const char *name, ly_bool output,
struct lyd_node **node, ...)
{
LY_ERR rc;
va_list ap;
va_start(ap, node);
rc = _lyd_new_list(parent, module, name, LY_VALUE_CANON, output, node, ap);
va_end(ap);
return rc;
}
API LY_ERR
lyd_new_ext_list(const struct lysc_ext_instance *ext, const char *name, struct lyd_node **node, ...)
{
struct lyd_node *ret = NULL, *key;
const struct lysc_node *schema, *key_s;
struct ly_ctx *ctx = ext ? ext->module->ctx : NULL;
va_list ap;
const char *key_val;
LY_ERR rc = LY_SUCCESS;
LY_CHECK_ARG_RET(ctx, ext, node, name, LY_EINVAL);
schema = lysc_ext_find_node(ext, NULL, name, 0, LYS_LIST, 0);
if (!schema) {
if (ext->argument) {
LOGERR(ctx, LY_EINVAL, "List node \"%s\" not found in instance \"%s\" of extension %s.",
name, ext->argument, ext->def->name);
} else {
LOGERR(ctx, LY_EINVAL, "List node \"%s\" not found in instance of extension %s.", name, ext->def->name);
}
return LY_ENOTFOUND;
}
/* create list inner node */
LY_CHECK_RET(lyd_create_inner(schema, &ret));
va_start(ap, node);
/* create and insert all the keys */
for (key_s = lysc_node_child(schema); key_s && (key_s->flags & LYS_KEY); key_s = key_s->next) {
key_val = va_arg(ap, const char *);
rc = lyd_create_term(key_s, key_val, key_val ? strlen(key_val) : 0, NULL, LY_VALUE_JSON, NULL, LYD_HINT_DATA,
NULL, &key);
LY_CHECK_GOTO(rc, cleanup);
lyd_insert_node(ret, NULL, key, 1);
}
cleanup:
va_end(ap);
if (rc) {
lyd_free_tree(ret);
ret = NULL;
}
*node = ret;
return rc;
}
API LY_ERR
lyd_new_list2(struct lyd_node *parent, const struct lys_module *module, const char *name, const char *keys,
ly_bool output, struct lyd_node **node)
{
struct lyd_node *ret = NULL;
const struct lysc_node *schema;
struct ly_ctx *ctx = parent ? parent->schema->module->ctx : (module ? module->ctx : NULL);
LY_CHECK_ARG_RET(ctx, parent || module, parent || node, name, LY_EINVAL);
if (!module) {
module = parent->schema->module;
}
if (!keys) {
keys = "";
}
/* find schema node */
schema = lys_find_child(parent ? parent->schema : NULL, module, name, 0, LYS_LIST, output ? LYS_GETNEXT_OUTPUT : 0);
LY_CHECK_ERR_RET(!schema, LOGERR(ctx, LY_EINVAL, "List node \"%s\" not found.", name), LY_ENOTFOUND);
if ((schema->flags & LYS_KEYLESS) && !keys[0]) {
/* key-less list */
LY_CHECK_RET(lyd_create_inner(schema, &ret));
} else {
/* create the list node */
LY_CHECK_RET(lyd_create_list2(schema, keys, strlen(keys), &ret));
}
if (parent) {
lyd_insert_node(parent, NULL, ret, 0);
}
if (node) {
*node = ret;
}
return LY_SUCCESS;
}
/**
* @brief Create a new term node in the data tree.
*
* @param[in] parent Parent node for the node being created. NULL in case of creating a top level element.
* @param[in] module Module of the node being created. If NULL, @p parent module will be used.
* @param[in] name Schema node name of the new data node. The node can be ::LYS_LEAF or ::LYS_LEAFLIST.
* @param[in] value Value of the node being created.
* @param[in] value_len Length of @p value.
* @param[in] format Format of @p value.
* @param[in] output Flag in case the @p parent is RPC/Action. If value is 0, the input's data nodes of the RPC/Action are
* taken into consideration. Otherwise, the output's data node is going to be created.
* @param[out] node Optional created node.
* @return LY_ERR value.
*/
static LY_ERR
_lyd_new_term(struct lyd_node *parent, const struct lys_module *module, const char *name, const void *value,
size_t value_len, LY_VALUE_FORMAT format, ly_bool output, struct lyd_node **node)
{
LY_ERR rc;
struct lyd_node *ret = NULL;
const struct lysc_node *schema;
const struct ly_ctx *ctx = parent ? LYD_CTX(parent) : (module ? module->ctx : NULL);
LY_CHECK_ARG_RET(ctx, parent || module, parent || node, name, LY_EINVAL);
if (!module) {
module = parent->schema->module;
}
schema = lys_find_child(parent ? parent->schema : NULL, module, name, 0, LYD_NODE_TERM, output ? LYS_GETNEXT_OUTPUT : 0);
LY_CHECK_ERR_RET(!schema, LOGERR(ctx, LY_EINVAL, "Term node \"%s\" not found.", name), LY_ENOTFOUND);
rc = lyd_create_term(schema, value, value_len, NULL, format, NULL, LYD_HINT_DATA, NULL, &ret);
LY_CHECK_RET(rc);
if (parent) {
lyd_insert_node(parent, NULL, ret, 0);
}
if (node) {
*node = ret;
}
return LY_SUCCESS;
}
API LY_ERR
lyd_new_term(struct lyd_node *parent, const struct lys_module *module, const char *name, const char *val_str,
ly_bool output, struct lyd_node **node)
{
return _lyd_new_term(parent, module, name, val_str, val_str ? strlen(val_str) : 0, LY_VALUE_JSON, output, node);
}
API LY_ERR
lyd_new_term_bin(struct lyd_node *parent, const struct lys_module *module, const char *name, const void *value,
size_t value_len, ly_bool output, struct lyd_node **node)
{
return _lyd_new_term(parent, module, name, value, value_len, LY_VALUE_LYB, output, node);
}
API LY_ERR
lyd_new_term_canon(struct lyd_node *parent, const struct lys_module *module, const char *name, const char *val_str,
ly_bool output, struct lyd_node **node)
{
return _lyd_new_term(parent, module, name, val_str, val_str ? strlen(val_str) : 0, LY_VALUE_CANON, output, node);
}
API LY_ERR
lyd_new_ext_term(const struct lysc_ext_instance *ext, const char *name, const char *val_str, struct lyd_node **node)
{
LY_ERR rc;
struct lyd_node *ret = NULL;
const struct lysc_node *schema;
struct ly_ctx *ctx = ext ? ext->module->ctx : NULL;
LY_CHECK_ARG_RET(ctx, ext, node, name, LY_EINVAL);
schema = lysc_ext_find_node(ext, NULL, name, 0, LYD_NODE_TERM, 0);
if (!schema) {
if (ext->argument) {
LOGERR(ctx, LY_EINVAL, "Term node \"%s\" not found in instance \"%s\" of extension %s.",
name, ext->argument, ext->def->name);
} else {
LOGERR(ctx, LY_EINVAL, "Term node \"%s\" not found in instance of extension %s.", name, ext->def->name);
}
return LY_ENOTFOUND;
}
rc = lyd_create_term(schema, val_str, val_str ? strlen(val_str) : 0, NULL, LY_VALUE_JSON, NULL, LYD_HINT_DATA, NULL, &ret);
LY_CHECK_RET(rc);
*node = ret;
return LY_SUCCESS;
}
API LY_ERR
lyd_new_any(struct lyd_node *parent, const struct lys_module *module, const char *name, const void *value,
ly_bool use_value, LYD_ANYDATA_VALUETYPE value_type, ly_bool output, struct lyd_node **node)
{
struct lyd_node *ret = NULL;
const struct lysc_node *schema;
struct ly_ctx *ctx = parent ? parent->schema->module->ctx : (module ? module->ctx : NULL);
LY_CHECK_ARG_RET(ctx, parent || module, parent || node, name, LY_EINVAL);
if (!module) {
module = parent->schema->module;
}
schema = lys_find_child(parent ? parent->schema : NULL, module, name, 0, LYD_NODE_ANY, output ? LYS_GETNEXT_OUTPUT : 0);
LY_CHECK_ERR_RET(!schema, LOGERR(ctx, LY_EINVAL, "Any node \"%s\" not found.", name), LY_ENOTFOUND);
LY_CHECK_RET(lyd_create_any(schema, value, value_type, use_value, &ret));
if (parent) {
lyd_insert_node(parent, NULL, ret, 0);
}
if (node) {
*node = ret;
}
return LY_SUCCESS;
}
API LY_ERR
lyd_new_ext_any(const struct lysc_ext_instance *ext, const char *name, const void *value, ly_bool use_value,
LYD_ANYDATA_VALUETYPE value_type, struct lyd_node **node)
{
struct lyd_node *ret = NULL;
const struct lysc_node *schema;
struct ly_ctx *ctx = ext ? ext->module->ctx : NULL;
LY_CHECK_ARG_RET(ctx, ext, node, name, LY_EINVAL);
schema = lysc_ext_find_node(ext, NULL, name, 0, LYD_NODE_ANY, 0);
if (!schema) {
if (ext->argument) {
LOGERR(ctx, LY_EINVAL, "Any node \"%s\" not found in instance \"%s\" of extension %s.",
name, ext->argument, ext->def->name);
} else {
LOGERR(ctx, LY_EINVAL, "Any node \"%s\" not found in instance of extension %s.", name, ext->def->name);
}
return LY_ENOTFOUND;
}
LY_CHECK_RET(lyd_create_any(schema, value, value_type, use_value, &ret));
*node = ret;
return LY_SUCCESS;
}
API LY_ERR
lyd_new_meta(const struct ly_ctx *ctx, struct lyd_node *parent, const struct lys_module *module, const char *name,
const char *val_str, ly_bool clear_dflt, struct lyd_meta **meta)
{
const char *prefix, *tmp;
size_t pref_len, name_len;
LY_CHECK_ARG_RET(ctx, ctx || parent, name, module || strchr(name, ':'), parent || meta, LY_EINVAL);
if (!ctx) {
ctx = LYD_CTX(parent);
}
if (parent && !parent->schema) {
LOGERR(ctx, LY_EINVAL, "Cannot add metadata \"%s\" to an opaque node \"%s\".", name, LYD_NAME(parent));
return LY_EINVAL;
}
if (meta) {
*meta = NULL;
}
/* parse the name */
tmp = name;
if (ly_parse_nodeid(&tmp, &prefix, &pref_len, &name, &name_len) || tmp[0]) {
LOGERR(ctx, LY_EINVAL, "Metadata name \"%s\" is not valid.", name);
return LY_EINVAL;
}
/* find the module */
if (prefix) {
module = ly_ctx_get_module_implemented2(ctx, prefix, pref_len);
LY_CHECK_ERR_RET(!module, LOGERR(ctx, LY_EINVAL, "Module \"%.*s\" not found.", (int)pref_len, prefix), LY_ENOTFOUND);
}
/* set value if none */
if (!val_str) {
val_str = "";
}
return lyd_create_meta(parent, meta, module, name, name_len, val_str, strlen(val_str), NULL, LY_VALUE_JSON,
NULL, LYD_HINT_DATA, clear_dflt, NULL);
}
API LY_ERR
lyd_new_meta2(const struct ly_ctx *ctx, struct lyd_node *parent, ly_bool clear_dflt, const struct lyd_attr *attr,
struct lyd_meta **meta)
{
const struct lys_module *mod;
LY_CHECK_ARG_RET(NULL, ctx, attr, parent || meta, LY_EINVAL);
if (parent && !parent->schema) {
LOGERR(ctx, LY_EINVAL, "Cannot add metadata to an opaque node \"%s\".", ((struct lyd_node_opaq *)parent)->name);
return LY_EINVAL;
}
if (meta) {
*meta = NULL;
}
switch (attr->format) {
case LY_VALUE_XML:
mod = ly_ctx_get_module_implemented_ns(ctx, attr->name.module_ns);
if (!mod) {
LOGERR(ctx, LY_EINVAL, "Module with namespace \"%s\" not found.", attr->name.module_ns);
return LY_ENOTFOUND;
}
break;
case LY_VALUE_JSON:
mod = ly_ctx_get_module_implemented(ctx, attr->name.module_name);
if (!mod) {
LOGERR(ctx, LY_EINVAL, "Module \"%s\" not found.", attr->name.module_name);
return LY_ENOTFOUND;
}
break;
default:
LOGINT_RET(ctx);
}
return lyd_create_meta(parent, meta, mod, attr->name.name, strlen(attr->name.name), attr->value, strlen(attr->value),
NULL, attr->format, attr->val_prefix_data, attr->hints, clear_dflt, NULL);
}
API LY_ERR
lyd_new_opaq(struct lyd_node *parent, const struct ly_ctx *ctx, const char *name, const char *value,
const char *prefix, const char *module_name, struct lyd_node **node)
{
struct lyd_node *ret = NULL;
LY_CHECK_ARG_RET(ctx, parent || ctx, parent || node, name, module_name, !prefix || !strcmp(prefix, module_name), LY_EINVAL);
if (!ctx) {
ctx = LYD_CTX(parent);
}
if (!value) {
value = "";
}
LY_CHECK_RET(lyd_create_opaq(ctx, name, strlen(name), prefix, prefix ? strlen(prefix) : 0, module_name,
strlen(module_name), value, strlen(value), NULL, LY_VALUE_JSON, NULL, 0, &ret));
if (parent) {
lyd_insert_node(parent, NULL, ret, 1);
}
if (node) {
*node = ret;
}
return LY_SUCCESS;
}
API LY_ERR
lyd_new_opaq2(struct lyd_node *parent, const struct ly_ctx *ctx, const char *name, const char *value,
const char *prefix, const char *module_ns, struct lyd_node **node)
{
struct lyd_node *ret = NULL;
LY_CHECK_ARG_RET(ctx, parent || ctx, parent || node, name, module_ns, LY_EINVAL);
if (!ctx) {
ctx = LYD_CTX(parent);
}
if (!value) {
value = "";
}
LY_CHECK_RET(lyd_create_opaq(ctx, name, strlen(name), prefix, prefix ? strlen(prefix) : 0, module_ns,
strlen(module_ns), value, strlen(value), NULL, LY_VALUE_XML, NULL, 0, &ret));
if (parent) {
lyd_insert_node(parent, NULL, ret, 1);
}
if (node) {
*node = ret;
}
return LY_SUCCESS;
}
API LY_ERR
lyd_new_attr(struct lyd_node *parent, const char *module_name, const char *name, const char *value,
struct lyd_attr **attr)
{
struct lyd_attr *ret = NULL;
const struct ly_ctx *ctx;
const char *prefix, *tmp;
size_t pref_len, name_len, mod_len;
LY_CHECK_ARG_RET(NULL, parent, !parent->schema, name, LY_EINVAL);
ctx = LYD_CTX(parent);
/* parse the name */
tmp = name;
if (ly_parse_nodeid(&tmp, &prefix, &pref_len, &name, &name_len) || tmp[0]) {
LOGERR(ctx, LY_EINVAL, "Attribute name \"%s\" is not valid.", name);
return LY_EVALID;
}
if ((pref_len == 3) && !strncmp(prefix, "xml", 3)) {
/* not a prefix but special name */
name = prefix;
name_len += 1 + pref_len;
prefix = NULL;
pref_len = 0;
}
/* get the module */
if (module_name) {
mod_len = strlen(module_name);
} else {
module_name = prefix;
mod_len = pref_len;
}
/* set value if none */
if (!value) {
value = "";
}
LY_CHECK_RET(lyd_create_attr(parent, &ret, ctx, name, name_len, prefix, pref_len, module_name, mod_len, value,
strlen(value), NULL, LY_VALUE_JSON, NULL, LYD_HINT_DATA));
if (attr) {
*attr = ret;
}
return LY_SUCCESS;
}
API LY_ERR
lyd_new_attr2(struct lyd_node *parent, const char *module_ns, const char *name, const char *value,
struct lyd_attr **attr)
{
struct lyd_attr *ret = NULL;
const struct ly_ctx *ctx;
const char *prefix, *tmp;
size_t pref_len, name_len;
LY_CHECK_ARG_RET(NULL, parent, !parent->schema, name, LY_EINVAL);
ctx = LYD_CTX(parent);
/* parse the name */
tmp = name;
if (ly_parse_nodeid(&tmp, &prefix, &pref_len, &name, &name_len) || tmp[0]) {
LOGERR(ctx, LY_EINVAL, "Attribute name \"%s\" is not valid.", name);
return LY_EVALID;
}
if ((pref_len == 3) && !strncmp(prefix, "xml", 3)) {
/* not a prefix but special name */
name = prefix;
name_len += 1 + pref_len;
prefix = NULL;
pref_len = 0;
}
/* set value if none */
if (!value) {
value = "";
}
LY_CHECK_RET(lyd_create_attr(parent, &ret, ctx, name, name_len, prefix, pref_len, module_ns,
module_ns ? strlen(module_ns) : 0, value, strlen(value), NULL, LY_VALUE_XML, NULL, LYD_HINT_DATA));
if (attr) {
*attr = ret;
}
return LY_SUCCESS;
}
/**
* @brief Change the value of a term (leaf or leaf-list) node.
*
* Node changed this way is always considered explicitly set, meaning its default flag
* is always cleared.
*
* @param[in] term Term node to change.
* @param[in] value New value to set.
* @param[in] value_len Length of @p value.
* @param[in] format Format of @p value.
* @return LY_SUCCESS if value was changed,
* @return LY_EEXIST if value was the same and only the default flag was cleared,
* @return LY_ENOT if the values were equal and no change occured,
* @return LY_ERR value on other errors.
*/
static LY_ERR
_lyd_change_term(struct lyd_node *term, const void *value, size_t value_len, LY_VALUE_FORMAT format)
{
LY_ERR ret = LY_SUCCESS;
struct lysc_type *type;
struct lyd_node_term *t;
struct lyd_node *parent;
struct lyd_value val = {0};
ly_bool dflt_change, val_change;
assert(term && term->schema && (term->schema->nodetype & LYD_NODE_TERM));
t = (struct lyd_node_term *)term;
type = ((struct lysc_node_leaf *)term->schema)->type;
/* parse the new value */
LOG_LOCSET(term->schema, term, NULL, NULL);
ret = lyd_value_store(LYD_CTX(term), &val, type, value, value_len, NULL, format, NULL, LYD_HINT_DATA, term->schema, NULL);
LOG_LOCBACK(term->schema ? 1 : 0, 1, 0, 0);
LY_CHECK_GOTO(ret, cleanup);
/* compare original and new value */
if (type->plugin->compare(&t->value, &val)) {
/* values differ, switch them */
type->plugin->free(LYD_CTX(term), &t->value);
t->value = val;
memset(&val, 0, sizeof val);
val_change = 1;
} else {
val_change = 0;
}
/* always clear the default flag */
if (term->flags & LYD_DEFAULT) {
for (parent = term; parent; parent = lyd_parent(parent)) {
parent->flags &= ~LYD_DEFAULT;
}
dflt_change = 1;
} else {
dflt_change = 0;
}
if (val_change || dflt_change) {
/* make the node non-validated */
term->flags &= LYD_NEW;
}
if (val_change) {
if (term->schema->nodetype == LYS_LEAFLIST) {
/* leaf-list needs to be hashed again and re-inserted into parent */
lyd_unlink_hash(term);
lyd_hash(term);
LY_CHECK_GOTO(ret = lyd_insert_hash(term), cleanup);
} else if ((term->schema->flags & LYS_KEY) && term->parent) {
/* list needs to be updated if its key was changed */
assert(term->parent->schema->nodetype == LYS_LIST);
lyd_unlink_hash(lyd_parent(term));
lyd_hash(lyd_parent(term));
LY_CHECK_GOTO(ret = lyd_insert_hash(lyd_parent(term)), cleanup);
} /* else leaf that is not a key, its value is not used for its hash so it does not change */
}
/* retrun value */
if (!val_change) {
if (dflt_change) {
/* only default flag change */
ret = LY_EEXIST;
} else {
/* no change */
ret = LY_ENOT;
}
} /* else value changed, LY_SUCCESS */
cleanup:
if (val.realtype) {
type->plugin->free(LYD_CTX(term), &val);
}
return ret;
}
API LY_ERR
lyd_change_term(struct lyd_node *term, const char *val_str)
{
LY_CHECK_ARG_RET(NULL, term, term->schema, term->schema->nodetype & LYD_NODE_TERM, LY_EINVAL);
return _lyd_change_term(term, val_str, val_str ? strlen(val_str) : 0, LY_VALUE_JSON);
}
API LY_ERR
lyd_change_term_bin(struct lyd_node *term, const void *value, size_t value_len)
{
LY_CHECK_ARG_RET(NULL, term, term->schema, term->schema->nodetype & LYD_NODE_TERM, LY_EINVAL);
return _lyd_change_term(term, value, value_len, LY_VALUE_LYB);
}
API LY_ERR
lyd_change_term_canon(struct lyd_node *term, const char *val_str)
{
LY_CHECK_ARG_RET(NULL, term, term->schema, term->schema->nodetype & LYD_NODE_TERM, LY_EINVAL);
return _lyd_change_term(term, val_str, val_str ? strlen(val_str) : 0, LY_VALUE_CANON);
}
API LY_ERR
lyd_change_meta(struct lyd_meta *meta, const char *val_str)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_meta *m2 = NULL;
struct lyd_value val;
ly_bool val_change;
LY_CHECK_ARG_RET(NULL, meta, LY_EINVAL);
if (!val_str) {
val_str = "";
}
/* parse the new value into a new meta structure */
LY_CHECK_GOTO(ret = lyd_create_meta(NULL, &m2, meta->annotation->module, meta->name, strlen(meta->name), val_str,
strlen(val_str), NULL, LY_VALUE_JSON, NULL, LYD_HINT_DATA, 0, NULL), cleanup);
/* compare original and new value */
if (lyd_compare_meta(meta, m2)) {
/* values differ, switch them */
val = meta->value;
meta->value = m2->value;
m2->value = val;
val_change = 1;
} else {
val_change = 0;
}
/* retrun value */
if (!val_change) {
/* no change */
ret = LY_ENOT;
} /* else value changed, LY_SUCCESS */
cleanup:
lyd_free_meta_single(m2);
return ret;
}
/**
* @brief Update node value.
*
* @param[in] node Node to update.
* @param[in] value New value to set.
* @param[in] value_len Length of @p value.
* @param[in] value_type Type of @p value for anydata/anyxml node.
* @param[in] format Format of @p value.
* @param[out] new_parent Set to @p node if the value was updated, otherwise set to NULL.
* @param[out] new_node Set to @p node if the value was updated, otherwise set to NULL.
* @return LY_ERR value.
*/
static LY_ERR
lyd_new_path_update(struct lyd_node *node, const void *value, size_t value_len, LYD_ANYDATA_VALUETYPE value_type,
LY_VALUE_FORMAT format, struct lyd_node **new_parent, struct lyd_node **new_node)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_node *new_any;
switch (node->schema->nodetype) {
case LYS_CONTAINER:
case LYS_NOTIF:
case LYS_RPC:
case LYS_ACTION:
case LYS_LIST:
/* if it exists, there is nothing to update */
*new_parent = NULL;
*new_node = NULL;
break;
case LYS_LEAFLIST:
if (!lysc_is_dup_inst_list(node->schema)) {
/* if it exists, there is nothing to update */
*new_parent = NULL;
*new_node = NULL;
break;
}
/* fallthrough */
case LYS_LEAF:
ret = _lyd_change_term(node, value, value_len, format);
if ((ret == LY_SUCCESS) || (ret == LY_EEXIST)) {
/* there was an actual change (at least of the default flag) */
*new_parent = node;
*new_node = node;
ret = LY_SUCCESS;
} else if (ret == LY_ENOT) {
/* no change */
*new_parent = NULL;
*new_node = NULL;
ret = LY_SUCCESS;
} /* else error */
break;
case LYS_ANYDATA:
case LYS_ANYXML:
/* create a new any node */
LY_CHECK_RET(lyd_create_any(node->schema, value, value_type, 0, &new_any));
/* compare with the existing one */
if (lyd_compare_single(node, new_any, 0)) {
/* not equal, switch values (so that we can use generic node free) */
((struct lyd_node_any *)new_any)->value = ((struct lyd_node_any *)node)->value;
((struct lyd_node_any *)new_any)->value_type = ((struct lyd_node_any *)node)->value_type;
((struct lyd_node_any *)node)->value.str = value;
((struct lyd_node_any *)node)->value_type = value_type;
*new_parent = node;
*new_node = node;
} else {
/* they are equal */
*new_parent = NULL;
*new_node = NULL;
}
lyd_free_tree(new_any);
break;
default:
LOGINT(LYD_CTX(node));
ret = LY_EINT;
break;
}
return ret;
}
static LY_ERR
lyd_new_path_check_find_lypath(struct ly_path *path, const char *str_path, const char *value, size_t value_len,
LY_VALUE_FORMAT format, uint32_t options)
{
LY_ERR r;
struct ly_path_predicate *pred;
const struct lysc_node *schema = NULL;
LY_ARRAY_COUNT_TYPE u, new_count;
int create = 0;
assert(path);
/* go through all the compiled nodes */
LY_ARRAY_FOR(path, u) {
schema = path[u].node;
if (lysc_is_dup_inst_list(schema)) {
if (path[u].pred_type == LY_PATH_PREDTYPE_NONE) {
/* creating a new key-less list or state leaf-list instance */
create = 1;
new_count = u;
} else if (path[u].pred_type != LY_PATH_PREDTYPE_POSITION) {
LOG_LOCSET(schema, NULL, NULL, NULL);
LOGVAL(schema->module->ctx, LYVE_XPATH, "Invalid predicate for %s \"%s\" in path \"%s\".",
lys_nodetype2str(schema->nodetype), schema->name, str_path);
LOG_LOCBACK(1, 0, 0, 0);
return LY_EINVAL;
}
} else if ((schema->nodetype == LYS_LIST) && (path[u].pred_type != LY_PATH_PREDTYPE_LIST)) {
if ((u < LY_ARRAY_COUNT(path) - 1) || !(options & LYD_NEW_PATH_OPAQ)) {
LOG_LOCSET(schema, NULL, NULL, NULL);
LOGVAL(schema->module->ctx, LYVE_XPATH, "Predicate missing for %s \"%s\" in path \"%s\".",
lys_nodetype2str(schema->nodetype), schema->name, str_path);
LOG_LOCBACK(1, 0, 0, 0);
return LY_EINVAL;
} /* else creating an opaque list */
} else if ((schema->nodetype == LYS_LEAFLIST) && (path[u].pred_type != LY_PATH_PREDTYPE_LEAFLIST)) {
r = LY_SUCCESS;
if (options & LYD_NEW_PATH_OPAQ) {
r = lyd_value_validate(NULL, schema, value, value_len, NULL, NULL, NULL);
}
if (!r) {
/* store the new predicate so that it is used when searching for this instance */
path[u].pred_type = LY_PATH_PREDTYPE_LEAFLIST;
LY_ARRAY_NEW_RET(schema->module->ctx, path[u].predicates, pred, LY_EMEM);
LY_CHECK_RET(lyd_value_store(schema->module->ctx, &pred->value,
((struct lysc_node_leaflist *)schema)->type, value, value_len, NULL, format, NULL,
LYD_HINT_DATA, schema, NULL));
++((struct lysc_type *)pred->value.realtype)->refcount;
} /* else we have opaq flag and the value is not valid, leave no predicate and then create an opaque node */
}
}
if (create) {
/* hide the nodes that should always be created so they are not found */
while (new_count < LY_ARRAY_COUNT(path)) {
LY_ARRAY_DECREMENT(path);
}
}
return LY_SUCCESS;
}
/**
* @brief Create a new node in the data tree based on a path. All node types can be created.
*
* If @p path points to a list key, the key value from the predicate is used and @p value is ignored.
* Also, if a leaf-list is being created and both a predicate is defined in @p path
* and @p value is set, the predicate is preferred.
*
* For key-less lists and state leaf-lists, positional predicates can be used. If no preciate is used for these
* nodes, they are always created.
*
* @param[in] parent Data parent to add to/modify, can be NULL. Note that in case a first top-level sibling is used,
* it may no longer be first if @p path is absolute and starts with a non-existing top-level node inserted
* before @p parent. Use ::lyd_first_sibling() to adjust @p parent in these cases.
* @param[in] ctx libyang context, must be set if @p parent is NULL.
* @param[in] ext Extension instance where the node being created is defined. This argument takes effect only for absolute
* path or when the relative paths touches document root (top-level). In such cases the present extension instance replaces
* searching for the appropriate module.
* @param[in] path [Path](@ref howtoXPath) to create.
* @param[in] value Value of the new leaf/leaf-list (const char *) in ::LY_VALUE_JSON format. If creating an
* anyxml/anydata node, the expected type depends on @p value_type. For other node types, it should be NULL.
* @param[in] value_len Length of @p value in bytes. May be 0 if @p value is a zero-terminated string. Ignored when
* creating anyxml/anydata nodes.
* @param[in] value_type Anyxml/anydata node @p value type.
* @param[in] options Bitmask of options, see @ref pathoptions.
* @param[out] new_parent Optional first parent node created. If only one node was created, equals to @p new_node.
* @param[out] new_node Optional last node created.
* @return LY_ERR value.
*/
static LY_ERR
lyd_new_path_(struct lyd_node *parent, const struct ly_ctx *ctx, const struct lysc_ext_instance *ext, const char *path,
const void *value, size_t value_len, LYD_ANYDATA_VALUETYPE value_type, uint32_t options,
struct lyd_node **new_parent, struct lyd_node **new_node)
{
LY_ERR ret = LY_SUCCESS, r;
struct lyxp_expr *exp = NULL;
struct ly_path *p = NULL;
struct lyd_node *nparent = NULL, *nnode = NULL, *node = NULL, *cur_parent;
const struct lysc_node *schema;
const struct lyd_value *val = NULL;
LY_ARRAY_COUNT_TYPE path_idx = 0, orig_count = 0;
LY_VALUE_FORMAT format;
assert(parent || ctx);
assert(path && ((path[0] == '/') || parent));
assert(!(options & LYD_NEW_PATH_BIN_VALUE) || !(options & LYD_NEW_PATH_CANON_VALUE));
if (!ctx) {
ctx = LYD_CTX(parent);
}
if (value && !value_len) {
value_len = strlen(value);
}
if (options & LYD_NEW_PATH_BIN_VALUE) {
format = LY_VALUE_LYB;
} else if (options & LYD_NEW_PATH_CANON_VALUE) {
format = LY_VALUE_CANON;
} else {
format = LY_VALUE_JSON;
}
/* parse path */
LY_CHECK_GOTO(ret = ly_path_parse(ctx, NULL, path, strlen(path), 0, LY_PATH_BEGIN_EITHER, LY_PATH_PREFIX_OPTIONAL,
LY_PATH_PRED_SIMPLE, &exp), cleanup);
/* compile path */
LY_CHECK_GOTO(ret = ly_path_compile(ctx, NULL, parent ? parent->schema : NULL, ext, exp,
options & LYD_NEW_PATH_OUTPUT ? LY_PATH_OPER_OUTPUT : LY_PATH_OPER_INPUT, LY_PATH_TARGET_MANY, LY_VALUE_JSON,
NULL, &p), cleanup);
/* check the compiled path before searching existing nodes, it may be shortened */
orig_count = LY_ARRAY_COUNT(p);
LY_CHECK_GOTO(ret = lyd_new_path_check_find_lypath(p, path, value, value_len, format, options), cleanup);
/* try to find any existing nodes in the path */
if (parent) {
ret = ly_path_eval_partial(p, parent, &path_idx, &node);
if (ret == LY_SUCCESS) {
if (orig_count == LY_ARRAY_COUNT(p)) {
/* the node exists, are we supposed to update it or is it just a default? */
if (!(options & LYD_NEW_PATH_UPDATE) && !(node->flags & LYD_DEFAULT)) {
LOG_LOCSET(NULL, node, NULL, NULL);
LOGVAL(ctx, LYVE_REFERENCE, "Path \"%s\" already exists", path);
LOG_LOCBACK(0, 1, 0, 0);
ret = LY_EEXIST;
goto cleanup;
}
/* update the existing node */
ret = lyd_new_path_update(node, value, value_len, value_type, format, &nparent, &nnode);
goto cleanup;
} /* else we were not searching for the whole path */
} else if (ret == LY_EINCOMPLETE) {
/* some nodes were found, adjust the iterator to the next segment */
++path_idx;
} else if (ret == LY_ENOTFOUND) {
/* we will create the nodes from top-level, default behavior (absolute path), or from the parent (relative path) */
if (lysc_data_parent(p[0].node)) {
node = parent;
}
} else {
/* error */
goto cleanup;
}
}
/* restore the full path for creating new nodes */
while (orig_count > LY_ARRAY_COUNT(p)) {
LY_ARRAY_INCREMENT(p);
}
/* create all the non-existing nodes in a loop */
for ( ; path_idx < LY_ARRAY_COUNT(p); ++path_idx) {
cur_parent = node;
schema = p[path_idx].node;
switch (schema->nodetype) {
case LYS_LIST:
if (lysc_is_dup_inst_list(schema)) {
/* create key-less list instance */
LY_CHECK_GOTO(ret = lyd_create_inner(schema, &node), cleanup);
} else if ((options & LYD_NEW_PATH_OPAQ) && (p[path_idx].pred_type == LY_PATH_PREDTYPE_NONE)) {
/* creating opaque list without keys */
LY_CHECK_GOTO(ret = lyd_create_opaq(ctx, schema->name, strlen(schema->name), NULL, 0,
schema->module->name, strlen(schema->module->name), NULL, 0, NULL, LY_VALUE_JSON, NULL,
LYD_NODEHINT_LIST, &node), cleanup);
} else {
/* create standard list instance */
assert(p[path_idx].pred_type == LY_PATH_PREDTYPE_LIST);
LY_CHECK_GOTO(ret = lyd_create_list(schema, p[path_idx].predicates, &node), cleanup);
}
break;
case LYS_CONTAINER:
case LYS_NOTIF:
case LYS_RPC:
case LYS_ACTION:
LY_CHECK_GOTO(ret = lyd_create_inner(schema, &node), cleanup);
break;
case LYS_LEAFLIST:
if ((options & LYD_NEW_PATH_OPAQ) && (p[path_idx].pred_type != LY_PATH_PREDTYPE_LEAFLIST)) {
/* we have not checked this only for dup-inst lists, otherwise it must be opaque */
r = LY_EVALID;
if (lysc_is_dup_inst_list(schema)) {
/* validate value */
r = lyd_value_validate(NULL, schema, value ? value : "", value_len, NULL, NULL, NULL);
}
if (r && (r != LY_EINCOMPLETE)) {
/* creating opaque leaf-list */
LY_CHECK_GOTO(ret = lyd_create_opaq(ctx, schema->name, strlen(schema->name), value, value_len,
schema->module->name, strlen(schema->module->name), NULL, 0, NULL, format, NULL,
LYD_NODEHINT_LEAFLIST, &node), cleanup);
break;
}
}
/* get value to set */
if (p[path_idx].pred_type == LY_PATH_PREDTYPE_LEAFLIST) {
val = &p[path_idx].predicates[0].value;
}
/* create a leaf-list instance */
if (val) {
LY_CHECK_GOTO(ret = lyd_create_term2(schema, &p[path_idx].predicates[0].value, &node), cleanup);
} else {
LY_CHECK_GOTO(ret = lyd_create_term(schema, value, value_len, NULL, format, NULL, LYD_HINT_DATA,
NULL, &node), cleanup);
}
break;
case LYS_LEAF:
if (lysc_is_key(schema)) {
/* it must have been already created or some error will occur later */
assert(cur_parent);
lyd_find_sibling_schema(lyd_child(cur_parent), schema, &node);
assert(node);
goto next_iter;
}
if (options & LYD_NEW_PATH_OPAQ) {
/* validate value */
r = lyd_value_validate(NULL, schema, value ? value : "", value_len, NULL, NULL, NULL);
if (r && (r != LY_EINCOMPLETE)) {
/* creating opaque leaf */
LY_CHECK_GOTO(ret = lyd_create_opaq(ctx, schema->name, strlen(schema->name), value, value_len,
schema->module->name, strlen(schema->module->name), NULL, 0, NULL, format, NULL, 0, &node),
cleanup);
break;
}
}
/* create a leaf instance */
LY_CHECK_GOTO(ret = lyd_create_term(schema, value, value_len, NULL, format, NULL, LYD_HINT_DATA, NULL,
&node), cleanup);
break;
case LYS_ANYDATA:
case LYS_ANYXML:
LY_CHECK_GOTO(ret = lyd_create_any(schema, value, value_type, 0, &node), cleanup);
break;
default:
LOGINT(ctx);
ret = LY_EINT;
goto cleanup;
}
if (cur_parent) {
/* connect to the parent */
lyd_insert_node(cur_parent, NULL, node, 0);
} else if (parent) {
/* connect to top-level siblings */
lyd_insert_node(NULL, &parent, node, 0);
}
next_iter:
/* update remembered nodes */
if (!nparent) {
nparent = node;
}
nnode = node;
}
cleanup:
lyxp_expr_free(ctx, exp);
if (p) {
while (orig_count > LY_ARRAY_COUNT(p)) {
LY_ARRAY_INCREMENT(p);
}
}
ly_path_free(ctx, p);
if (!ret) {
/* set out params only on success */
if (new_parent) {
*new_parent = nparent;
}
if (new_node) {
*new_node = nnode;
}
} else {
lyd_free_tree(nparent);
}
return ret;
}
API LY_ERR
lyd_new_path(struct lyd_node *parent, const struct ly_ctx *ctx, const char *path, const char *value, uint32_t options,
struct lyd_node **node)
{
LY_CHECK_ARG_RET(ctx, parent || ctx, path, (path[0] == '/') || parent,
!(options & LYD_NEW_PATH_BIN_VALUE) || !(options & LYD_NEW_PATH_CANON_VALUE), LY_EINVAL);
return lyd_new_path_(parent, ctx, NULL, path, value, 0, LYD_ANYDATA_STRING, options, node, NULL);
}
API LY_ERR
lyd_new_path2(struct lyd_node *parent, const struct ly_ctx *ctx, const char *path, const void *value,
size_t value_len, LYD_ANYDATA_VALUETYPE value_type, uint32_t options, struct lyd_node **new_parent,
struct lyd_node **new_node)
{
LY_CHECK_ARG_RET(ctx, parent || ctx, path, (path[0] == '/') || parent,
!(options & LYD_NEW_PATH_BIN_VALUE) || !(options & LYD_NEW_PATH_CANON_VALUE), LY_EINVAL);
return lyd_new_path_(parent, ctx, NULL, path, value, value_len, value_type, options, new_parent, new_node);
}
API LY_ERR
lyd_new_ext_path(struct lyd_node *parent, const struct lysc_ext_instance *ext, const char *path, const void *value,
uint32_t options, struct lyd_node **node)
{
const struct ly_ctx *ctx = ext ? ext->module->ctx : NULL;
LY_CHECK_ARG_RET(ctx, ext, path, (path[0] == '/') || parent,
!(options & LYD_NEW_PATH_BIN_VALUE) || !(options & LYD_NEW_PATH_CANON_VALUE), LY_EINVAL);
return lyd_new_path_(parent, ctx, ext, path, value, 0, LYD_ANYDATA_STRING, options, node, NULL);
}
LY_ERR
lyd_new_implicit_r(struct lyd_node *parent, struct lyd_node **first, const struct lysc_node *sparent,
const struct lys_module *mod, struct ly_set *node_when, struct ly_set *node_exts, struct ly_set *node_types,
uint32_t impl_opts, struct lyd_node **diff)
{
LY_ERR ret;
const struct lysc_node *iter = NULL;
struct lyd_node *node = NULL;
struct lyd_value **dflts;
LY_ARRAY_COUNT_TYPE u;
uint32_t getnext_opts;
assert(first && (parent || sparent || mod));
if (!sparent && parent) {
sparent = parent->schema;
}
getnext_opts = LYS_GETNEXT_WITHCHOICE;
if (impl_opts & LYD_IMPLICIT_OUTPUT) {
getnext_opts |= LYS_GETNEXT_OUTPUT;
}
while ((iter = lys_getnext(iter, sparent, mod ? mod->compiled : NULL, getnext_opts))) {
if ((impl_opts & LYD_IMPLICIT_NO_STATE) && (iter->flags & LYS_CONFIG_R)) {
continue;
} else if ((impl_opts & LYD_IMPLICIT_NO_CONFIG) && (iter->flags & LYS_CONFIG_W)) {
continue;
}
switch (iter->nodetype) {
case LYS_CHOICE:
node = lys_getnext_data(NULL, *first, NULL, iter, NULL);
if (!node && ((struct lysc_node_choice *)iter)->dflt) {
/* create default case data */
LY_CHECK_RET(lyd_new_implicit_r(parent, first, &((struct lysc_node_choice *)iter)->dflt->node,
NULL, node_when, node_exts, node_types, impl_opts, diff));
} else if (node) {
/* create any default data in the existing case */
assert(node->schema->parent->nodetype == LYS_CASE);
LY_CHECK_RET(lyd_new_implicit_r(parent, first, node->schema->parent, NULL, node_when, node_exts, node_types,
impl_opts, diff));
}
break;
case LYS_CONTAINER:
if (!(iter->flags & LYS_PRESENCE) && lyd_find_sibling_val(*first, iter, NULL, 0, NULL)) {
/* create default NP container */
LY_CHECK_RET(lyd_create_inner(iter, &node));
node->flags = LYD_DEFAULT | (lysc_has_when(iter) ? LYD_WHEN_TRUE : 0);
lyd_insert_node(parent, first, node, 0);
if (lysc_has_when(iter) && node_when) {
/* remember to resolve when */
LY_CHECK_RET(ly_set_add(node_when, node, 1, NULL));
}
if (node_exts) {
/* remember to call all the extension's validation callbacks */
LY_CHECK_RET(lysc_node_ext_tovalidate(node_exts, node));
}
if (diff) {
/* add into diff */
LY_CHECK_RET(lyd_val_diff_add(node, LYD_DIFF_OP_CREATE, diff));
}
/* create any default children */
LY_CHECK_RET(lyd_new_implicit_r(node, lyd_node_child_p(node), NULL, NULL, node_when, node_exts, node_types,
impl_opts, diff));
}
break;
case LYS_LEAF:
if (!(impl_opts & LYD_IMPLICIT_NO_DEFAULTS) && ((struct lysc_node_leaf *)iter)->dflt &&
lyd_find_sibling_val(*first, iter, NULL, 0, NULL)) {
/* create default leaf */
ret = lyd_create_term2(iter, ((struct lysc_node_leaf *)iter)->dflt, &node);
if (ret == LY_EINCOMPLETE) {
if (node_types) {
/* remember to resolve type */
LY_CHECK_RET(ly_set_add(node_types, node, 1, NULL));
}
} else if (ret) {
return ret;
}
node->flags = LYD_DEFAULT | (lysc_has_when(iter) ? LYD_WHEN_TRUE : 0);
lyd_insert_node(parent, first, node, 0);
if (lysc_has_when(iter) && node_when) {
/* remember to resolve when */
LY_CHECK_RET(ly_set_add(node_when, node, 1, NULL));
}
if (node_exts) {
/* remember to call all the extension's validation callbacks */
LY_CHECK_RET(lysc_node_ext_tovalidate(node_exts, node));
}
if (diff) {
/* add into diff */
LY_CHECK_RET(lyd_val_diff_add(node, LYD_DIFF_OP_CREATE, diff));
}
}
break;
case LYS_LEAFLIST:
if (!(impl_opts & LYD_IMPLICIT_NO_DEFAULTS) && ((struct lysc_node_leaflist *)iter)->dflts &&
lyd_find_sibling_val(*first, iter, NULL, 0, NULL)) {
/* create all default leaf-lists */
dflts = ((struct lysc_node_leaflist *)iter)->dflts;
LY_ARRAY_FOR(dflts, u) {
ret = lyd_create_term2(iter, dflts[u], &node);
if (ret == LY_EINCOMPLETE) {
if (node_types) {
/* remember to resolve type */
LY_CHECK_RET(ly_set_add(node_types, node, 1, NULL));
}
} else if (ret) {
return ret;
}
node->flags = LYD_DEFAULT | (lysc_has_when(iter) ? LYD_WHEN_TRUE : 0);
lyd_insert_node(parent, first, node, 0);
if (lysc_has_when(iter) && node_when) {
/* remember to resolve when */
LY_CHECK_RET(ly_set_add(node_when, node, 1, NULL));
}
if (node_exts) {
/* remember to call all the extension's validation callbacks */
LY_CHECK_RET(lysc_node_ext_tovalidate(node_exts, node));
}
if (diff) {
/* add into diff */
LY_CHECK_RET(lyd_val_diff_add(node, LYD_DIFF_OP_CREATE, diff));
}
}
}
break;
default:
/* without defaults */
break;
}
}
return LY_SUCCESS;
}
API LY_ERR
lyd_new_implicit_tree(struct lyd_node *tree, uint32_t implicit_options, struct lyd_node **diff)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_node *node;
struct ly_set node_when = {0}, node_exts = {0};
LY_CHECK_ARG_RET(NULL, tree, LY_EINVAL);
if (diff) {
*diff = NULL;
}
LYD_TREE_DFS_BEGIN(tree, node) {
/* skip added default nodes */
if (((node->flags & (LYD_DEFAULT | LYD_NEW)) != (LYD_DEFAULT | LYD_NEW)) &&
(node->schema->nodetype & LYD_NODE_INNER)) {
LY_CHECK_GOTO(ret = lyd_new_implicit_r(node, lyd_node_child_p(node), NULL, NULL, &node_when, &node_exts,
NULL, implicit_options, diff), cleanup);
}
LYD_TREE_DFS_END(tree, node);
}
/* resolve when and remove any invalid defaults */
LY_CHECK_GOTO(ret = lyd_validate_unres(&tree, NULL, &node_when, &node_exts, NULL, NULL, diff), cleanup);
cleanup:
ly_set_erase(&node_when, NULL);
ly_set_erase(&node_exts, NULL);
if (ret && diff) {
lyd_free_all(*diff);
*diff = NULL;
}
return ret;
}
API LY_ERR
lyd_new_implicit_all(struct lyd_node **tree, const struct ly_ctx *ctx, uint32_t implicit_options, struct lyd_node **diff)
{
const struct lys_module *mod;
struct lyd_node *d = NULL;
uint32_t i = 0;
LY_ERR ret = LY_SUCCESS;
LY_CHECK_ARG_RET(ctx, tree, *tree || ctx, LY_EINVAL);
if (diff) {
*diff = NULL;
}
if (!ctx) {
ctx = LYD_CTX(*tree);
}
/* add nodes for each module one-by-one */
while ((mod = ly_ctx_get_module_iter(ctx, &i))) {
if (!mod->implemented) {
continue;
}
LY_CHECK_GOTO(ret = lyd_new_implicit_module(tree, mod, implicit_options, diff ? &d : NULL), cleanup);
if (d) {
/* merge into one diff */
lyd_insert_sibling(*diff, d, diff);
d = NULL;
}
}
cleanup:
if (ret && diff) {
lyd_free_all(*diff);
*diff = NULL;
}
return ret;
}
API LY_ERR
lyd_new_implicit_module(struct lyd_node **tree, const struct lys_module *module, uint32_t implicit_options, struct lyd_node **diff)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_node *root, *d = NULL;
struct ly_set node_when = {0}, node_exts = {0};
LY_CHECK_ARG_RET(NULL, tree, module, LY_EINVAL);
if (diff) {
*diff = NULL;
}
/* add all top-level defaults for this module */
LY_CHECK_GOTO(ret = lyd_new_implicit_r(NULL, tree, NULL, module, &node_when, &node_exts, NULL, implicit_options, diff), cleanup);
/* resolve when and remove any invalid defaults */
LY_CHECK_GOTO(ret = lyd_validate_unres(tree, module, &node_when, &node_exts, NULL, NULL, diff), cleanup);
/* process nested nodes */
LY_LIST_FOR(*tree, root) {
/* skip added default nodes */
if ((root->flags & (LYD_DEFAULT | LYD_NEW)) != (LYD_DEFAULT | LYD_NEW)) {
LY_CHECK_GOTO(ret = lyd_new_implicit_tree(root, implicit_options, diff ? &d : NULL), cleanup);
if (d) {
/* merge into one diff */
lyd_insert_sibling(*diff, d, diff);
d = NULL;
}
}
}
cleanup:
ly_set_erase(&node_when, NULL);
ly_set_erase(&node_exts, NULL);
if (ret && diff) {
lyd_free_all(*diff);
*diff = NULL;
}
return ret;
}
struct lyd_node *
lyd_insert_get_next_anchor(const struct lyd_node *first_sibling, const struct lyd_node *new_node)
{
const struct lysc_node *schema, *sparent;
struct lyd_node *match = NULL;
ly_bool found;
uint32_t getnext_opts;
assert(new_node);
if (!first_sibling || !new_node->schema) {
/* insert at the end, no next anchor */
return NULL;
}
getnext_opts = 0;
if (new_node->schema->flags & LYS_IS_OUTPUT) {
getnext_opts = LYS_GETNEXT_OUTPUT;
}
if (first_sibling->parent && first_sibling->parent->schema && first_sibling->parent->children_ht) {
/* find the anchor using hashes */
sparent = first_sibling->parent->schema;
schema = lys_getnext(new_node->schema, sparent, NULL, getnext_opts);
while (schema) {
/* keep trying to find the first existing instance of the closest following schema sibling,
* otherwise return NULL - inserting at the end */
if (!lyd_find_sibling_schema(first_sibling, schema, &match)) {
break;
}
schema = lys_getnext(schema, sparent, NULL, getnext_opts);
}
} else {
/* find the anchor without hashes */
match = (struct lyd_node *)first_sibling;
sparent = lysc_data_parent(new_node->schema);
if (!sparent) {
/* we are in top-level, skip all the data from preceding modules */
LY_LIST_FOR(match, match) {
if (!match->schema || (strcmp(lyd_owner_module(match)->name, lyd_owner_module(new_node)->name) >= 0)) {
break;
}
}
}
/* get the first schema sibling */
schema = lys_getnext(NULL, sparent, new_node->schema->module->compiled, getnext_opts);
found = 0;
LY_LIST_FOR(match, match) {
if (!match->schema || (lyd_owner_module(match) != lyd_owner_module(new_node))) {
/* we have found an opaque node, which must be at the end, so use it OR
* modules do not match, so we must have traversed all the data from new_node module (if any),
* we have found the first node of the next module, that is what we want */
break;
}
/* skip schema nodes until we find the instantiated one */
while (!found) {
if (new_node->schema == schema) {
/* we have found the schema of the new node, continue search to find the first
* data node with a different schema (after our schema) */
found = 1;
break;
}
if (match->schema == schema) {
/* current node (match) is a data node still before the new node, continue search in data */
break;
}
schema = lys_getnext(schema, sparent, new_node->schema->module->compiled, getnext_opts);
assert(schema);
}
if (found && (match->schema != new_node->schema)) {
/* find the next node after we have found our node schema data instance */
break;
}
}
}
return match;
}
/**
* @brief Insert node after a sibling.
*
* Handles inserting into NP containers and key-less lists.
*
* @param[in] sibling Sibling to insert after.
* @param[in] node Node to insert.
*/
static void
lyd_insert_after_node(struct lyd_node *sibling, struct lyd_node *node)
{
struct lyd_node_inner *par;
assert(!node->next && (node->prev == node));
node->next = sibling->next;
node->prev = sibling;
sibling->next = node;
if (node->next) {
/* sibling had a succeeding node */
node->next->prev = node;
} else {
/* sibling was last, find first sibling and change its prev */
if (sibling->parent) {
sibling = sibling->parent->child;
} else {
for ( ; sibling->prev->next != node; sibling = sibling->prev) {}
}
sibling->prev = node;
}
node->parent = sibling->parent;
for (par = node->parent; par; par = par->parent) {
if ((par->flags & LYD_DEFAULT) && !(node->flags & LYD_DEFAULT)) {
/* remove default flags from NP containers */
par->flags &= ~LYD_DEFAULT;
}
}
}
/**
* @brief Insert node before a sibling.
*
* Handles inserting into NP containers and key-less lists.
*
* @param[in] sibling Sibling to insert before.
* @param[in] node Node to insert.
*/
static void
lyd_insert_before_node(struct lyd_node *sibling, struct lyd_node *node)
{
struct lyd_node_inner *par;
assert(!node->next && (node->prev == node));
node->next = sibling;
/* covers situation of sibling being first */
node->prev = sibling->prev;
sibling->prev = node;
if (node->prev->next) {
/* sibling had a preceding node */
node->prev->next = node;
} else if (sibling->parent) {
/* sibling was first and we must also change parent child pointer */
sibling->parent->child = node;
}
node->parent = sibling->parent;
for (par = node->parent; par; par = par->parent) {
if ((par->flags & LYD_DEFAULT) && !(node->flags & LYD_DEFAULT)) {
/* remove default flags from NP containers */
par->flags &= ~LYD_DEFAULT;
}
}
}
/**
* @brief Insert node as the first and only child of a parent.
*
* Handles inserting into NP containers and key-less lists.
*
* @param[in] parent Parent to insert into.
* @param[in] node Node to insert.
*/
static void
lyd_insert_only_child(struct lyd_node *parent, struct lyd_node *node)
{
struct lyd_node_inner *par;
assert(parent && !lyd_child(parent) && !node->next && (node->prev == node));
assert(!parent->schema || (parent->schema->nodetype & LYD_NODE_INNER));
par = (struct lyd_node_inner *)parent;
par->child = node;
node->parent = par;
for ( ; par; par = par->parent) {
if ((par->flags & LYD_DEFAULT) && !(node->flags & LYD_DEFAULT)) {
/* remove default flags from NP containers */
par->flags &= ~LYD_DEFAULT;
}
}
}
/**
* @brief Learn whether a list instance has all the keys.
*
* @param[in] list List instance to check.
* @return non-zero if all the keys were found,
* @return 0 otherwise.
*/
static int
lyd_insert_has_keys(const struct lyd_node *list)
{
const struct lyd_node *key;
const struct lysc_node *skey = NULL;
assert(list->schema->nodetype == LYS_LIST);
key = lyd_child(list);
while ((skey = lys_getnext(skey, list->schema, NULL, 0)) && (skey->flags & LYS_KEY)) {
if (!key || (key->schema != skey)) {
/* key missing */
return 0;
}
key = key->next;
}
/* all keys found */
return 1;
}
void
lyd_insert_node(struct lyd_node *parent, struct lyd_node **first_sibling_p, struct lyd_node *node, ly_bool last)
{
struct lyd_node *anchor, *first_sibling;
/* inserting list without its keys is not supported */
assert((parent || first_sibling_p) && node && (node->hash || !node->schema));
assert(!parent || !parent->schema ||
(parent->schema->nodetype & (LYS_CONTAINER | LYS_LIST | LYS_RPC | LYS_ACTION | LYS_NOTIF)));
if (!parent && first_sibling_p && (*first_sibling_p) && (*first_sibling_p)->parent) {
parent = lyd_parent(*first_sibling_p);
}
/* get first sibling */
first_sibling = parent ? lyd_child(parent) : *first_sibling_p;
if (last) {
/* no next anchor */
anchor = NULL;
} else {
/* find the anchor, our next node, so we can insert before it */
anchor = lyd_insert_get_next_anchor(first_sibling, node);
}
if (anchor) {
/* insert before the anchor */
lyd_insert_before_node(anchor, node);
if (!parent && (*first_sibling_p == anchor)) {
/* move first sibling */
*first_sibling_p = node;
}
} else if (first_sibling) {
/* insert as the last node */
lyd_insert_after_node(first_sibling->prev, node);
} else if (parent) {
/* insert as the only child */
lyd_insert_only_child(parent, node);
} else {
/* insert as the only sibling */
*first_sibling_p = node;
}
/* insert into parent HT */
lyd_insert_hash(node);
/* finish hashes for our parent, if needed and possible */
if (node->schema && (node->schema->flags & LYS_KEY) && parent && lyd_insert_has_keys(parent)) {
lyd_hash(parent);
/* now we can insert even the list into its parent HT */
lyd_insert_hash(parent);
}
}
/**
* @brief Check schema place of a node to be inserted.
*
* @param[in] parent Schema node of the parent data node.
* @param[in] sibling Schema node of a sibling data node.
* @param[in] schema Schema node if the data node to be inserted.
* @return LY_SUCCESS on success.
* @return LY_EINVAL if the place is invalid.
*/
static LY_ERR
lyd_insert_check_schema(const struct lysc_node *parent, const struct lysc_node *sibling, const struct lysc_node *schema)
{
const struct lysc_node *par2;
assert(!parent || !(parent->nodetype & (LYS_CASE | LYS_CHOICE)));
assert(!sibling || !(sibling->nodetype & (LYS_CASE | LYS_CHOICE)));
assert(!schema || !(schema->nodetype & (LYS_CASE | LYS_CHOICE)));
if (!schema || (!parent && !sibling)) {
/* opaque nodes can be inserted wherever */
return LY_SUCCESS;
}
if (!parent) {
parent = lysc_data_parent(sibling);
}
/* find schema parent */
par2 = lysc_data_parent(schema);
if (parent) {
/* inner node */
if (par2 != parent) {
LOGERR(schema->module->ctx, LY_EINVAL, "Cannot insert, parent of \"%s\" is not \"%s\".", schema->name,
parent->name);
return LY_EINVAL;
}
} else {
/* top-level node */
if (par2) {
LOGERR(schema->module->ctx, LY_EINVAL, "Cannot insert, node \"%s\" is not top-level.", schema->name);
return LY_EINVAL;
}
}
return LY_SUCCESS;
}
API LY_ERR
lyd_insert_child(struct lyd_node *parent, struct lyd_node *node)
{
struct lyd_node *iter;
LY_CHECK_ARG_RET(NULL, parent, node, !parent->schema || (parent->schema->nodetype & LYD_NODE_INNER), LY_EINVAL);
LY_CHECK_RET(lyd_insert_check_schema(parent->schema, NULL, node->schema));
if (node->schema && (node->schema->flags & LYS_KEY)) {
LOGERR(parent->schema->module->ctx, LY_EINVAL, "Cannot insert key \"%s\".", node->schema->name);
return LY_EINVAL;
}
if (node->parent || node->prev->next) {
lyd_unlink_tree(node);
}
while (node) {
iter = node->next;
lyd_unlink_tree(node);
lyd_insert_node(parent, NULL, node, 0);
node = iter;
}
return LY_SUCCESS;
}
API LY_ERR
lyd_insert_sibling(struct lyd_node *sibling, struct lyd_node *node, struct lyd_node **first)
{
struct lyd_node *iter;
LY_CHECK_ARG_RET(NULL, node, LY_EINVAL);
if (sibling) {
LY_CHECK_RET(lyd_insert_check_schema(NULL, sibling->schema, node->schema));
}
if (sibling == node) {
/* we need to keep the connection to siblings so we can insert into them */
sibling = sibling->prev;
}
if (node->parent || node->prev->next) {
lyd_unlink_tree(node);
}
while (node) {
if (lysc_is_key(node->schema)) {
LOGERR(LYD_CTX(node), LY_EINVAL, "Cannot insert key \"%s\".", node->schema->name);
return LY_EINVAL;
}
iter = node->next;
lyd_unlink_tree(node);
lyd_insert_node(NULL, &sibling, node, 0);
node = iter;
}
if (first) {
/* find the first sibling */
*first = sibling;
while ((*first)->prev->next) {
*first = (*first)->prev;
}
}
return LY_SUCCESS;
}
API LY_ERR
lyd_insert_before(struct lyd_node *sibling, struct lyd_node *node)
{
LY_CHECK_ARG_RET(NULL, sibling, node, LY_EINVAL);
LY_CHECK_RET(lyd_insert_check_schema(NULL, sibling->schema, node->schema));
if (!(node->schema->nodetype & (LYS_LIST | LYS_LEAFLIST)) || !(node->schema->flags & LYS_ORDBY_USER)) {
LOGERR(LYD_CTX(sibling), LY_EINVAL, "Can be used only for user-ordered nodes.");
return LY_EINVAL;
}
lyd_unlink_tree(node);
lyd_insert_before_node(sibling, node);
lyd_insert_hash(node);
return LY_SUCCESS;
}
API LY_ERR
lyd_insert_after(struct lyd_node *sibling, struct lyd_node *node)
{
LY_CHECK_ARG_RET(NULL, sibling, node, LY_EINVAL);
LY_CHECK_RET(lyd_insert_check_schema(NULL, sibling->schema, node->schema));
if (!(node->schema->nodetype & (LYS_LIST | LYS_LEAFLIST)) || !(node->schema->flags & LYS_ORDBY_USER)) {
LOGERR(LYD_CTX(sibling), LY_EINVAL, "Can be used only for user-ordered nodes.");
return LY_EINVAL;
}
lyd_unlink_tree(node);
lyd_insert_after_node(sibling, node);
lyd_insert_hash(node);
return LY_SUCCESS;
}
API void
lyd_unlink_siblings(struct lyd_node *node)
{
struct lyd_node *next, *elem, *first = NULL;
LY_LIST_FOR_SAFE(node, next, elem) {
lyd_unlink_tree(elem);
lyd_insert_node(NULL, &first, elem, 1);
}
}
API void
lyd_unlink_tree(struct lyd_node *node)
{
struct lyd_node *iter;
if (!node) {
return;
}
/* update hashes while still linked into the tree */
lyd_unlink_hash(node);
/* unlink from siblings */
if (node->prev->next) {
node->prev->next = node->next;
}
if (node->next) {
node->next->prev = node->prev;
} else {
/* unlinking the last node */
if (node->parent) {
iter = node->parent->child;
} else {
iter = node->prev;
while (iter->prev != node) {
iter = iter->prev;
}
}
/* update the "last" pointer from the first node */
iter->prev = node->prev;
}
/* unlink from parent */
if (node->parent) {
if (node->parent->child == node) {
/* the node is the first child */
node->parent->child = node->next;
}
/* check for NP container whether its last non-default node is not being unlinked */
if (node->parent->schema && (node->parent->schema->nodetype == LYS_CONTAINER) &&
!(node->parent->flags & LYD_DEFAULT) && !(node->parent->schema->flags & LYS_PRESENCE)) {
LY_LIST_FOR(node->parent->child, iter) {
if ((iter != node) && !(iter->flags & LYD_DEFAULT)) {
break;
}
}
if (!iter) {
node->parent->flags |= LYD_DEFAULT;
}
}
node->parent = NULL;
}
node->next = NULL;
node->prev = node;
}
void
lyd_insert_meta(struct lyd_node *parent, struct lyd_meta *meta, ly_bool clear_dflt)
{
struct lyd_meta *last, *iter;
assert(parent);
if (!meta) {
return;
}
for (iter = meta; iter; iter = iter->next) {
iter->parent = parent;
}
/* insert as the last attribute */
if (parent->meta) {
for (last = parent->meta; last->next; last = last->next) {}
last->next = meta;
} else {
parent->meta = meta;
}
/* remove default flags from NP containers */
while (clear_dflt && parent && (parent->schema->nodetype == LYS_CONTAINER) && (parent->flags & LYD_DEFAULT)) {
parent->flags &= ~LYD_DEFAULT;
parent = lyd_parent(parent);
}
}
LY_ERR
lyd_create_meta(struct lyd_node *parent, struct lyd_meta **meta, const struct lys_module *mod, const char *name,
size_t name_len, const char *value, size_t value_len, ly_bool *dynamic, LY_VALUE_FORMAT format,
void *prefix_data, uint32_t hints, ly_bool clear_dflt, ly_bool *incomplete)
{
LY_ERR ret = LY_SUCCESS;
struct lysc_ext_instance *ant = NULL;
const struct lysc_type **ant_type;
struct lyd_meta *mt, *last;
LY_ARRAY_COUNT_TYPE u;
assert((parent || meta) && mod);
LOG_LOCSET(parent ? parent->schema : NULL, parent, NULL, NULL);
LY_ARRAY_FOR(mod->compiled->exts, u) {
if ((mod->compiled->exts[u].def->plugin == lyplg_find(LYPLG_EXTENSION, LYEXT_PLUGIN_INTERNAL_ANNOTATION)) &&
!ly_strncmp(mod->compiled->exts[u].argument, name, name_len)) {
/* we have the annotation definition */
ant = &mod->compiled->exts[u];
break;
}
}
if (!ant) {
/* attribute is not defined as a metadata annotation (RFC 7952) */
LOGVAL(mod->ctx, LYVE_REFERENCE, "Annotation definition for attribute \"%s:%.*s\" not found.",
mod->name, (int)name_len, name);
ret = LY_EINVAL;
goto cleanup;
}
mt = calloc(1, sizeof *mt);
LY_CHECK_ERR_GOTO(!mt, LOGMEM(mod->ctx); ret = LY_EMEM, cleanup);
mt->parent = parent;
mt->annotation = ant;
ant_type = ant->substmts[ANNOTATION_SUBSTMT_TYPE].storage;
ret = lyd_value_store(mod->ctx, &mt->value, *ant_type, value, value_len, dynamic, format, prefix_data, hints,
parent ? parent->schema : NULL, incomplete);
LY_CHECK_ERR_GOTO(ret, free(mt), cleanup);
ret = lydict_insert(mod->ctx, name, name_len, &mt->name);
LY_CHECK_ERR_GOTO(ret, free(mt), cleanup);
/* insert as the last attribute */
if (parent) {
lyd_insert_meta(parent, mt, clear_dflt);
} else if (*meta) {
for (last = *meta; last->next; last = last->next) {}
last->next = mt;
}
if (meta) {
*meta = mt;
}
cleanup:
LOG_LOCBACK((parent && parent->schema) ? 1 : 0, parent ? 1 : 0, 0, 0);
return ret;
}
void
lyd_insert_attr(struct lyd_node *parent, struct lyd_attr *attr)
{
struct lyd_attr *last, *iter;
struct lyd_node_opaq *opaq;
assert(parent && !parent->schema);
if (!attr) {
return;
}
opaq = (struct lyd_node_opaq *)parent;
for (iter = attr; iter; iter = iter->next) {
iter->parent = opaq;
}
/* insert as the last attribute */
if (opaq->attr) {
for (last = opaq->attr; last->next; last = last->next) {}
last->next = attr;
} else {
opaq->attr = attr;
}
}
LY_ERR
lyd_create_attr(struct lyd_node *parent, struct lyd_attr **attr, const struct ly_ctx *ctx, const char *name, size_t name_len,
const char *prefix, size_t prefix_len, const char *module_key, size_t module_key_len, const char *value,
size_t value_len, ly_bool *dynamic, LY_VALUE_FORMAT format, void *val_prefix_data, uint32_t hints)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_attr *at, *last;
assert(ctx && (parent || attr) && (!parent || !parent->schema));
assert(name && name_len && format);
if (!value_len && (!dynamic || !*dynamic)) {
value = "";
}
at = calloc(1, sizeof *at);
LY_CHECK_ERR_RET(!at, LOGMEM(ctx); ly_free_prefix_data(format, val_prefix_data), LY_EMEM);
LY_CHECK_GOTO(ret = lydict_insert(ctx, name, name_len, &at->name.name), finish);
if (prefix_len) {
LY_CHECK_GOTO(ret = lydict_insert(ctx, prefix, prefix_len, &at->name.prefix), finish);
}
if (module_key_len) {
LY_CHECK_GOTO(ret = lydict_insert(ctx, module_key, module_key_len, &at->name.module_ns), finish);
}
if (dynamic && *dynamic) {
ret = lydict_insert_zc(ctx, (char *)value, &at->value);
LY_CHECK_GOTO(ret, finish);
*dynamic = 0;
} else {
LY_CHECK_GOTO(ret = lydict_insert(ctx, value, value_len, &at->value), finish);
}
at->format = format;
at->val_prefix_data = val_prefix_data;
at->hints = hints;
/* insert as the last attribute */
if (parent) {
lyd_insert_attr(parent, at);
} else if (*attr) {
for (last = *attr; last->next; last = last->next) {}
last->next = at;
}
finish:
if (ret) {
lyd_free_attr_single(ctx, at);
} else if (attr) {
*attr = at;
}
return LY_SUCCESS;
}
API const struct lyd_node_term *
lyd_target(const struct ly_path *path, const struct lyd_node *tree)
{
struct lyd_node *target;
if (ly_path_eval(path, tree, &target)) {
return NULL;
}
return (struct lyd_node_term *)target;
}
/**
* @brief Check the equality of the two schemas from different contexts.
*
* @param schema1 of first node.
* @param schema2 of second node.
* @return 1 if the schemas are equal otherwise 0.
*/
static ly_bool
lyd_compare_schema_equal(const struct lysc_node *schema1, const struct lysc_node *schema2)
{
if (!schema1 && !schema2) {
return 1;
} else if (!schema1 || !schema2) {
return 0;
}
assert(schema1->module->ctx != schema2->module->ctx);
if (schema1->nodetype != schema2->nodetype) {
return 0;
}
if (strcmp(schema1->name, schema2->name)) {
return 0;
}
if (strcmp(schema1->module->name, schema2->module->name)) {
return 0;
}
if (schema1->module->revision || schema2->module->revision) {
if (!schema1->module->revision || !schema2->module->revision) {
return 0;
}
if (strcmp(schema1->module->revision, schema2->module->revision)) {
return 0;
}
}
return 1;
}
/**
* @brief Check the equality of the schemas for all parent nodes.
*
* Both nodes must be from different contexts.
*
* @param node1 Data of first node.
* @param node2 Data of second node.
* @return 1 if the all related parental schemas are equal otherwise 0.
*/
static ly_bool
lyd_compare_schema_parents_equal(const struct lyd_node *node1, const struct lyd_node *node2)
{
const struct lysc_node *parent1, *parent2;
assert(node1 && node2);
for (parent1 = node1->schema->parent, parent2 = node2->schema->parent;
parent1 && parent2;
parent1 = parent1->parent, parent2 = parent2->parent) {
if (!lyd_compare_schema_equal(parent1, parent2)) {
return 0;
}
}
if (parent1 || parent2) {
return 0;
}
return 1;
}
/**
* @brief Internal implementation of @ref lyd_compare_single.
* @copydoc lyd_compare_single
* @param[in] parental_schemas_checked Flag used for optimization.
* When this function is called for the first time, the flag must be set to 0.
* The @ref lyd_compare_schema_parents_equal should be called only once during
* recursive calls, and this is accomplished by setting to 1 in the lyd_compare_single_ body.
*/
static LY_ERR
lyd_compare_single_(const struct lyd_node *node1, const struct lyd_node *node2,
uint32_t options, ly_bool parental_schemas_checked)
{
const struct lyd_node *iter1, *iter2;
struct lyd_node_term *term1, *term2;
struct lyd_node_any *any1, *any2;
struct lyd_node_opaq *opaq1, *opaq2;
size_t len1, len2;
if (!node1 || !node2) {
if (node1 == node2) {
return LY_SUCCESS;
} else {
return LY_ENOT;
}
}
if (LYD_CTX(node1) == LYD_CTX(node2)) {
/* same contexts */
if (node1->schema != node2->schema) {
return LY_ENOT;
}
} else {
/* different contexts */
if (!lyd_compare_schema_equal(node1->schema, node2->schema)) {
return LY_ENOT;
}
if (!parental_schemas_checked) {
if (!lyd_compare_schema_parents_equal(node1, node2)) {
return LY_ENOT;
}
parental_schemas_checked = 1;
}
}
if (node1->hash != node2->hash) {
return LY_ENOT;
}
/* equal hashes do not mean equal nodes, they can be just in collision so the nodes must be checked explicitly */
if (!node1->schema) {
opaq1 = (struct lyd_node_opaq *)node1;
opaq2 = (struct lyd_node_opaq *)node2;
if ((strcmp(opaq1->name.name, opaq2->name.name)) || (opaq1->format != opaq2->format) ||
(strcmp(opaq1->name.module_ns, opaq2->name.module_ns))) {
return LY_ENOT;
}
switch (opaq1->format) {
case LY_VALUE_XML:
if (lyxml_value_compare(LYD_CTX(node1), opaq1->value, opaq1->val_prefix_data, LYD_CTX(node2), opaq2->value,
opaq2->val_prefix_data)) {
return LY_ENOT;
}
break;
case LY_VALUE_JSON:
/* prefixes in JSON are unique, so it is not necessary to canonize the values */
if (strcmp(opaq1->value, opaq2->value)) {
return LY_ENOT;
}
break;
default:
/* not allowed */
LOGINT(LYD_CTX(node1));
return LY_EINT;
}
if (options & LYD_COMPARE_FULL_RECURSION) {
iter1 = opaq1->child;
iter2 = opaq2->child;
goto all_children_compare;
}
return LY_SUCCESS;
} else {
switch (node1->schema->nodetype) {
case LYS_LEAF:
case LYS_LEAFLIST:
if (options & LYD_COMPARE_DEFAULTS) {
if ((node1->flags & LYD_DEFAULT) != (node2->flags & LYD_DEFAULT)) {
return LY_ENOT;
}
}
term1 = (struct lyd_node_term *)node1;
term2 = (struct lyd_node_term *)node2;
/* same contexts */
if (LYD_CTX(node1) == LYD_CTX(node2)) {
return term1->value.realtype->plugin->compare(&term1->value, &term2->value);
}
/* different contexts */
if (strcmp(lyd_get_value(node1), lyd_get_value(node2))) {
return LY_ENOT;
}
return LY_SUCCESS;
case LYS_CONTAINER:
if (options & LYD_COMPARE_DEFAULTS) {
if ((node1->flags & LYD_DEFAULT) != (node2->flags & LYD_DEFAULT)) {
return LY_ENOT;
}
}
if (options & LYD_COMPARE_FULL_RECURSION) {
iter1 = lyd_child(node1);
iter2 = lyd_child(node2);
goto all_children_compare;
}
return LY_SUCCESS;
case LYS_RPC:
case LYS_ACTION:
if (options & LYD_COMPARE_FULL_RECURSION) {
/* TODO action/RPC
goto all_children_compare;
*/
}
return LY_SUCCESS;
case LYS_NOTIF:
if (options & LYD_COMPARE_FULL_RECURSION) {
/* TODO Notification
goto all_children_compare;
*/
}
return LY_SUCCESS;
case LYS_LIST:
iter1 = lyd_child(node1);
iter2 = lyd_child(node2);
if (!(node1->schema->flags & LYS_KEYLESS) && !(options & LYD_COMPARE_FULL_RECURSION)) {
/* lists with keys, their equivalence is based on their keys */
for (const struct lysc_node *key = lysc_node_child(node1->schema);
key && (key->flags & LYS_KEY);
key = key->next) {
if (lyd_compare_single_(iter1, iter2, options, parental_schemas_checked)) {
return LY_ENOT;
}
iter1 = iter1->next;
iter2 = iter2->next;
}
} else {
/* lists without keys, their equivalence is based on equivalence of all the children (both direct and indirect) */
all_children_compare:
if (!iter1 && !iter2) {
/* no children, nothing to compare */
return LY_SUCCESS;
}
for ( ; iter1 && iter2; iter1 = iter1->next, iter2 = iter2->next) {
if (lyd_compare_single_(iter1, iter2, options | LYD_COMPARE_FULL_RECURSION, parental_schemas_checked)) {
return LY_ENOT;
}
}
if (iter1 || iter2) {
return LY_ENOT;
}
}
return LY_SUCCESS;
case LYS_ANYXML:
case LYS_ANYDATA:
any1 = (struct lyd_node_any *)node1;
any2 = (struct lyd_node_any *)node2;
if (any1->value_type != any2->value_type) {
return LY_ENOT;
}
switch (any1->value_type) {
case LYD_ANYDATA_DATATREE:
iter1 = any1->value.tree;
iter2 = any2->value.tree;
goto all_children_compare;
case LYD_ANYDATA_STRING:
case LYD_ANYDATA_XML:
case LYD_ANYDATA_JSON:
len1 = strlen(any1->value.str);
len2 = strlen(any2->value.str);
if ((len1 != len2) || strcmp(any1->value.str, any2->value.str)) {
return LY_ENOT;
}
return LY_SUCCESS;
case LYD_ANYDATA_LYB:
len1 = lyd_lyb_data_length(any1->value.mem);
len2 = lyd_lyb_data_length(any2->value.mem);
if ((len1 != len2) || memcmp(any1->value.mem, any2->value.mem, len1)) {
return LY_ENOT;
}
return LY_SUCCESS;
}
}
}
LOGINT(LYD_CTX(node1));
return LY_EINT;
}
API LY_ERR
lyd_compare_single(const struct lyd_node *node1, const struct lyd_node *node2, uint32_t options)
{
return lyd_compare_single_(node1, node2, options, 0);
}
API LY_ERR
lyd_compare_siblings(const struct lyd_node *node1, const struct lyd_node *node2, uint32_t options)
{
for ( ; node1 && node2; node1 = node1->next, node2 = node2->next) {
LY_CHECK_RET(lyd_compare_single(node1, node2, options));
}
if (node1 == node2) {
return LY_SUCCESS;
}
return LY_ENOT;
}
API LY_ERR
lyd_compare_meta(const struct lyd_meta *meta1, const struct lyd_meta *meta2)
{
if (!meta1 || !meta2) {
if (meta1 == meta2) {
return LY_SUCCESS;
} else {
return LY_ENOT;
}
}
if ((meta1->annotation->module->ctx != meta2->annotation->module->ctx) || (meta1->annotation != meta2->annotation)) {
return LY_ENOT;
}
return meta1->value.realtype->plugin->compare(&meta1->value, &meta2->value);
}
/**
* @brief Create a copy of the attribute.
*
* @param[in] attr Attribute to copy.
* @param[in] node Opaque where to append the new attribute.
* @param[out] dup Optional created attribute copy.
* @return LY_ERR value.
*/
static LY_ERR
lyd_dup_attr_single(const struct lyd_attr *attr, struct lyd_node *node, struct lyd_attr **dup)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_attr *a, *last;
struct lyd_node_opaq *opaq = (struct lyd_node_opaq *)node;
LY_CHECK_ARG_RET(NULL, attr, node, !node->schema, LY_EINVAL);
/* create a copy */
a = calloc(1, sizeof *attr);
LY_CHECK_ERR_RET(!a, LOGMEM(LYD_CTX(node)), LY_EMEM);
LY_CHECK_GOTO(ret = lydict_insert(LYD_CTX(node), attr->name.name, 0, &a->name.name), finish);
LY_CHECK_GOTO(ret = lydict_insert(LYD_CTX(node), attr->name.prefix, 0, &a->name.prefix), finish);
LY_CHECK_GOTO(ret = lydict_insert(LYD_CTX(node), attr->name.module_ns, 0, &a->name.module_ns), finish);
LY_CHECK_GOTO(ret = lydict_insert(LYD_CTX(node), attr->value, 0, &a->value), finish);
a->hints = attr->hints;
a->format = attr->format;
if (attr->val_prefix_data) {
ret = ly_dup_prefix_data(LYD_CTX(node), attr->format, attr->val_prefix_data, &a->val_prefix_data);
LY_CHECK_GOTO(ret, finish);
}
/* insert as the last attribute */
a->parent = opaq;
if (opaq->attr) {
for (last = opaq->attr; last->next; last = last->next) {}
last->next = a;
} else {
opaq->attr = a;
}
finish:
if (ret) {
lyd_free_attr_single(LYD_CTX(node), a);
} else if (dup) {
*dup = a;
}
return LY_SUCCESS;
}
/**
* @brief Duplicate a single node and connect it into @p parent (if present) or last of @p first siblings.
*
* Ignores LYD_DUP_WITH_PARENTS and LYD_DUP_WITH_SIBLINGS which are supposed to be handled by lyd_dup().
*
* @param[in] node Original node to duplicate
* @param[in] parent Parent to insert into, NULL for top-level sibling.
* @param[in,out] first First sibling, NULL if no top-level sibling exist yet. Can be also NULL if @p parent is set.
* @param[in] options Bitmask of options flags, see @ref dupoptions.
* @param[out] dup_p Pointer where the created duplicated node is placed (besides connecting it int @p parent / @p first sibling).
* @return LY_ERR value
*/
static LY_ERR
lyd_dup_r(const struct lyd_node *node, struct lyd_node *parent, struct lyd_node **first, uint32_t options,
struct lyd_node **dup_p)
{
LY_ERR ret;
struct lyd_node *dup = NULL;
struct lyd_meta *meta;
struct lyd_attr *attr;
struct lyd_node_any *any;
LY_CHECK_ARG_RET(NULL, node, LY_EINVAL);
if (!node->schema) {
dup = calloc(1, sizeof(struct lyd_node_opaq));
((struct lyd_node_opaq *)dup)->ctx = LYD_CTX(node);
} else {
switch (node->schema->nodetype) {
case LYS_RPC:
case LYS_ACTION:
case LYS_NOTIF:
case LYS_CONTAINER:
case LYS_LIST:
dup = calloc(1, sizeof(struct lyd_node_inner));
break;
case LYS_LEAF:
case LYS_LEAFLIST:
dup = calloc(1, sizeof(struct lyd_node_term));
break;
case LYS_ANYDATA:
case LYS_ANYXML:
dup = calloc(1, sizeof(struct lyd_node_any));
break;
default:
LOGINT(LYD_CTX(node));
ret = LY_EINT;
goto error;
}
}
LY_CHECK_ERR_GOTO(!dup, LOGMEM(LYD_CTX(node)); ret = LY_EMEM, error);
if (options & LYD_DUP_WITH_FLAGS) {
dup->flags = node->flags;
} else {
dup->flags = (node->flags & LYD_DEFAULT) | LYD_NEW;
}
dup->schema = node->schema;
dup->prev = dup;
/* duplicate metadata/attributes */
if (!(options & LYD_DUP_NO_META)) {
if (!node->schema) {
LY_LIST_FOR(((struct lyd_node_opaq *)node)->attr, attr) {
LY_CHECK_GOTO(ret = lyd_dup_attr_single(attr, dup, NULL), error);
}
} else {
LY_LIST_FOR(node->meta, meta) {
LY_CHECK_GOTO(ret = lyd_dup_meta_single(meta, dup, NULL), error);
}
}
}
/* nodetype-specific work */
if (!dup->schema) {
struct lyd_node_opaq *opaq = (struct lyd_node_opaq *)dup;
struct lyd_node_opaq *orig = (struct lyd_node_opaq *)node;
struct lyd_node *child;
if (options & LYD_DUP_RECURSIVE) {
/* duplicate all the children */
LY_LIST_FOR(orig->child, child) {
LY_CHECK_GOTO(ret = lyd_dup_r(child, dup, NULL, options, NULL), error);
}
}
LY_CHECK_GOTO(ret = lydict_insert(LYD_CTX(node), orig->name.name, 0, &opaq->name.name), error);
LY_CHECK_GOTO(ret = lydict_insert(LYD_CTX(node), orig->name.prefix, 0, &opaq->name.prefix), error);
LY_CHECK_GOTO(ret = lydict_insert(LYD_CTX(node), orig->name.module_ns, 0, &opaq->name.module_ns), error);
LY_CHECK_GOTO(ret = lydict_insert(LYD_CTX(node), orig->value, 0, &opaq->value), error);
opaq->hints = orig->hints;
opaq->format = orig->format;
if (orig->val_prefix_data) {
ret = ly_dup_prefix_data(LYD_CTX(node), opaq->format, orig->val_prefix_data, &opaq->val_prefix_data);
LY_CHECK_GOTO(ret, error);
}
} else if (dup->schema->nodetype & LYD_NODE_TERM) {
struct lyd_node_term *term = (struct lyd_node_term *)dup;
struct lyd_node_term *orig = (struct lyd_node_term *)node;
term->hash = orig->hash;
LY_CHECK_ERR_GOTO(orig->value.realtype->plugin->duplicate(LYD_CTX(node), &orig->value, &term->value),
LOGERR(LYD_CTX(node), LY_EINT, "Value duplication failed."); ret = LY_EINT, error);
} else if (dup->schema->nodetype & LYD_NODE_INNER) {
struct lyd_node_inner *orig = (struct lyd_node_inner *)node;
struct lyd_node *child;
if (options & LYD_DUP_RECURSIVE) {
/* duplicate all the children */
LY_LIST_FOR(orig->child, child) {
LY_CHECK_GOTO(ret = lyd_dup_r(child, dup, NULL, options, NULL), error);
}
} else if ((dup->schema->nodetype == LYS_LIST) && !(dup->schema->flags & LYS_KEYLESS)) {
/* always duplicate keys of a list */
child = orig->child;
for (const struct lysc_node *key = lysc_node_child(dup->schema);
key && (key->flags & LYS_KEY);
key = key->next) {
if (!child) {
/* possibly not keys are present in filtered tree */
break;
} else if (child->schema != key) {
/* possibly not all keys are present in filtered tree,
* but there can be also some non-key nodes */
continue;
}
LY_CHECK_GOTO(ret = lyd_dup_r(child, dup, NULL, options, NULL), error);
child = child->next;
}
}
lyd_hash(dup);
} else if (dup->schema->nodetype & LYD_NODE_ANY) {
dup->hash = node->hash;
any = (struct lyd_node_any *)node;
LY_CHECK_GOTO(ret = lyd_any_copy_value(dup, &any->value, any->value_type), error);
}
/* insert */
lyd_insert_node(parent, first, dup, 0);
if (dup_p) {
*dup_p = dup;
}
return LY_SUCCESS;
error:
lyd_free_tree(dup);
return ret;
}
static LY_ERR
lyd_dup_get_local_parent(const struct lyd_node *node, const struct lyd_node_inner *parent, uint32_t options,
struct lyd_node **dup_parent, struct lyd_node_inner **local_parent)
{
const struct lyd_node_inner *orig_parent, *iter;
ly_bool repeat = 1;
*dup_parent = NULL;
*local_parent = NULL;
for (orig_parent = node->parent; repeat && orig_parent; orig_parent = orig_parent->parent) {
if (parent && (parent->schema == orig_parent->schema)) {
/* stop creating parents, connect what we have into the provided parent */
iter = parent;
repeat = 0;
} else {
iter = NULL;
LY_CHECK_RET(lyd_dup_r((struct lyd_node *)orig_parent, NULL, (struct lyd_node **)&iter, options,
(struct lyd_node **)&iter));
}
if (!*local_parent) {
*local_parent = (struct lyd_node_inner *)iter;
}
if (iter->child) {
/* 1) list - add after keys
* 2) provided parent with some children */
iter->child->prev->next = *dup_parent;
if (*dup_parent) {
(*dup_parent)->prev = iter->child->prev;
iter->child->prev = *dup_parent;
}
} else {
((struct lyd_node_inner *)iter)->child = *dup_parent;
}
if (*dup_parent) {
(*dup_parent)->parent = (struct lyd_node_inner *)iter;
}
*dup_parent = (struct lyd_node *)iter;
}
if (repeat && parent) {
/* given parent and created parents chain actually do not interconnect */
LOGERR(LYD_CTX(node), LY_EINVAL,
"Invalid argument parent (%s()) - does not interconnect with the created node's parents chain.", __func__);
return LY_EINVAL;
}
return LY_SUCCESS;
}
static LY_ERR
lyd_dup(const struct lyd_node *node, struct lyd_node_inner *parent, uint32_t options, ly_bool nosiblings, struct lyd_node **dup)
{
LY_ERR rc;
const struct lyd_node *orig; /* original node to be duplicated */
struct lyd_node *first = NULL; /* the first duplicated node, this is returned */
struct lyd_node *top = NULL; /* the most higher created node */
struct lyd_node_inner *local_parent = NULL; /* the direct parent node for the duplicated node(s) */
LY_CHECK_ARG_RET(NULL, node, LY_EINVAL);
if (options & LYD_DUP_WITH_PARENTS) {
LY_CHECK_GOTO(rc = lyd_dup_get_local_parent(node, parent, options & (LYD_DUP_WITH_FLAGS | LYD_DUP_NO_META),
&top, &local_parent), error);
} else {
local_parent = parent;
}
LY_LIST_FOR(node, orig) {
if (lysc_is_key(orig->schema)) {
if (local_parent) {
/* the key must already exist in the parent */
rc = lyd_find_sibling_schema(local_parent->child, orig->schema, first ? NULL : &first);
LY_CHECK_ERR_GOTO(rc, LOGINT(LYD_CTX(node)), error);
} else {
assert(!(options & LYD_DUP_WITH_PARENTS));
/* duplicating a single key, okay, I suppose... */
rc = lyd_dup_r(orig, NULL, &first, options, first ? NULL : &first);
LY_CHECK_GOTO(rc, error);
}
} else {
/* if there is no local parent, it will be inserted into first */
rc = lyd_dup_r(orig, local_parent ? &local_parent->node : NULL, &first, options, first ? NULL : &first);
LY_CHECK_GOTO(rc, error);
}
if (nosiblings) {
break;
}
}
if (dup) {
*dup = first;
}
return LY_SUCCESS;
error:
if (top) {
lyd_free_tree(top);
} else {
lyd_free_siblings(first);
}
return rc;
}
API LY_ERR
lyd_dup_single(const struct lyd_node *node, struct lyd_node_inner *parent, uint32_t options, struct lyd_node **dup)
{
return lyd_dup(node, parent, options, 1, dup);
}
API LY_ERR
lyd_dup_siblings(const struct lyd_node *node, struct lyd_node_inner *parent, uint32_t options, struct lyd_node **dup)
{
return lyd_dup(node, parent, options, 0, dup);
}
API LY_ERR
lyd_dup_meta_single(const struct lyd_meta *meta, struct lyd_node *node, struct lyd_meta **dup)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_meta *mt, *last;
LY_CHECK_ARG_RET(NULL, meta, node, LY_EINVAL);
/* create a copy */
mt = calloc(1, sizeof *mt);
LY_CHECK_ERR_RET(!mt, LOGMEM(LYD_CTX(node)), LY_EMEM);
mt->annotation = meta->annotation;
ret = meta->value.realtype->plugin->duplicate(LYD_CTX(node), &meta->value, &mt->value);
LY_CHECK_ERR_GOTO(ret, LOGERR(LYD_CTX(node), LY_EINT, "Value duplication failed."), finish);
LY_CHECK_GOTO(ret = lydict_insert(LYD_CTX(node), meta->name, 0, &mt->name), finish);
/* insert as the last attribute */
mt->parent = node;
if (node->meta) {
for (last = node->meta; last->next; last = last->next) {}
last->next = mt;
} else {
node->meta = mt;
}
finish:
if (ret) {
lyd_free_meta_single(mt);
} else if (dup) {
*dup = mt;
}
return LY_SUCCESS;
}
/**
* @brief Merge a source sibling into target siblings.
*
* @param[in,out] first_trg First target sibling, is updated if top-level.
* @param[in] parent_trg Target parent.
* @param[in,out] sibling_src Source sibling to merge, set to NULL if spent.
* @param[in] merge_cb Optional merge callback.
* @param[in] cb_data Arbitrary callback data.
* @param[in] options Merge options.
* @param[in,out] dup_inst Duplicate instance cache for all @p first_trg siblings.
* @return LY_ERR value.
*/
static LY_ERR
lyd_merge_sibling_r(struct lyd_node **first_trg, struct lyd_node *parent_trg, const struct lyd_node **sibling_src_p,
lyd_merge_cb merge_cb, void *cb_data, uint16_t options, struct lyd_dup_inst **dup_inst)
{
const struct lyd_node *child_src, *tmp, *sibling_src;
struct lyd_node *match_trg, *dup_src, *elem;
struct lysc_type *type;
struct lyd_dup_inst *child_dup_inst = NULL;
LY_ERR ret;
ly_bool first_inst = 0;
sibling_src = *sibling_src_p;
if (!sibling_src->schema) {
/* try to find the same opaque node */
lyd_find_sibling_opaq_next(*first_trg, LYD_NAME(sibling_src), &match_trg);
} else if (sibling_src->schema->nodetype & (LYS_LIST | LYS_LEAFLIST)) {
/* try to find the exact instance */
lyd_find_sibling_first(*first_trg, sibling_src, &match_trg);
} else {
/* try to simply find the node, there cannot be more instances */
lyd_find_sibling_val(*first_trg, sibling_src->schema, NULL, 0, &match_trg);
}
if (match_trg) {
/* update match as needed */
LY_CHECK_RET(lyd_dup_inst_next(&match_trg, *first_trg, dup_inst));
} else {
/* first instance of this node */
first_inst = 1;
}
if (match_trg) {
/* call callback */
if (merge_cb) {
LY_CHECK_RET(merge_cb(match_trg, sibling_src, cb_data));
}
/* node found, make sure even value matches for all node types */
if ((match_trg->schema->nodetype == LYS_LEAF) && lyd_compare_single(sibling_src, match_trg, LYD_COMPARE_DEFAULTS)) {
/* since they are different, they cannot both be default */
assert(!(sibling_src->flags & LYD_DEFAULT) || !(match_trg->flags & LYD_DEFAULT));
/* update value (or only LYD_DEFAULT flag) only if flag set or the source node is not default */
if ((options & LYD_MERGE_DEFAULTS) || !(sibling_src->flags & LYD_DEFAULT)) {
type = ((struct lysc_node_leaf *)match_trg->schema)->type;
type->plugin->free(LYD_CTX(match_trg), &((struct lyd_node_term *)match_trg)->value);
LY_CHECK_RET(type->plugin->duplicate(LYD_CTX(match_trg), &((struct lyd_node_term *)sibling_src)->value,
&((struct lyd_node_term *)match_trg)->value));
/* copy flags and add LYD_NEW */
match_trg->flags = sibling_src->flags | LYD_NEW;
}
} else if ((match_trg->schema->nodetype & LYS_ANYDATA) && lyd_compare_single(sibling_src, match_trg, 0)) {
/* update value */
LY_CHECK_RET(lyd_any_copy_value(match_trg, &((struct lyd_node_any *)sibling_src)->value,
((struct lyd_node_any *)sibling_src)->value_type));
/* copy flags and add LYD_NEW */
match_trg->flags = sibling_src->flags | LYD_NEW;
}
/* check descendants, recursively */
ret = LY_SUCCESS;
LY_LIST_FOR_SAFE(lyd_child_no_keys(sibling_src), tmp, child_src) {
ret = lyd_merge_sibling_r(lyd_node_child_p(match_trg), match_trg, &child_src, merge_cb, cb_data, options,
&child_dup_inst);
if (ret) {
break;
}
}
lyd_dup_inst_free(child_dup_inst);
LY_CHECK_RET(ret);
} else {
/* node not found, merge it */
if (options & LYD_MERGE_DESTRUCT) {
dup_src = (struct lyd_node *)sibling_src;
lyd_unlink_tree(dup_src);
/* spend it */
*sibling_src_p = NULL;
} else {
LY_CHECK_RET(lyd_dup_single(sibling_src, NULL, LYD_DUP_RECURSIVE | LYD_DUP_WITH_FLAGS, &dup_src));
}
/* set LYD_NEW for all the new nodes, required for validation */
LYD_TREE_DFS_BEGIN(dup_src, elem) {
elem->flags |= LYD_NEW;
LYD_TREE_DFS_END(dup_src, elem);
}
/* insert */
lyd_insert_node(parent_trg, first_trg, dup_src, 0);
if (first_inst) {
/* remember not to find this instance next time */
LY_CHECK_RET(lyd_dup_inst_next(&dup_src, *first_trg, dup_inst));
}
/* call callback, no source node */
if (merge_cb) {
LY_CHECK_RET(merge_cb(dup_src, NULL, cb_data));
}
}
return LY_SUCCESS;
}
static LY_ERR
lyd_merge(struct lyd_node **target, const struct lyd_node *source, const struct lys_module *mod,
lyd_merge_cb merge_cb, void *cb_data, uint16_t options, ly_bool nosiblings)
{
const struct lyd_node *sibling_src, *tmp;
struct lyd_dup_inst *dup_inst = NULL;
ly_bool first;
LY_ERR ret = LY_SUCCESS;
LY_CHECK_ARG_RET(NULL, target, LY_EINVAL);
if (!source) {
/* nothing to merge */
return LY_SUCCESS;
}
if ((*target && lysc_data_parent((*target)->schema)) || lysc_data_parent(source->schema)) {
LOGERR(LYD_CTX(source), LY_EINVAL, "Invalid arguments - can merge only 2 top-level subtrees (%s()).", __func__);
return LY_EINVAL;
}
LY_LIST_FOR_SAFE(source, tmp, sibling_src) {
if (mod && (lyd_owner_module(sibling_src) != mod)) {
/* skip data nodes from different modules */
continue;
}
first = (sibling_src == source) ? 1 : 0;
ret = lyd_merge_sibling_r(target, NULL, &sibling_src, merge_cb, cb_data, options, &dup_inst);
if (ret) {
break;
}
if (first && !sibling_src) {
/* source was spent (unlinked), move to the next node */
source = tmp;
}
if (nosiblings) {
break;
}
}
if (options & LYD_MERGE_DESTRUCT) {
/* free any leftover source data that were not merged */
lyd_free_siblings((struct lyd_node *)source);
}
lyd_dup_inst_free(dup_inst);
return ret;
}
API LY_ERR
lyd_merge_tree(struct lyd_node **target, const struct lyd_node *source, uint16_t options)
{
return lyd_merge(target, source, NULL, NULL, NULL, options, 1);
}
API LY_ERR
lyd_merge_siblings(struct lyd_node **target, const struct lyd_node *source, uint16_t options)
{
return lyd_merge(target, source, NULL, NULL, NULL, options, 0);
}
API LY_ERR
lyd_merge_module(struct lyd_node **target, const struct lyd_node *source, const struct lys_module *mod,
lyd_merge_cb merge_cb, void *cb_data, uint16_t options)
{
return lyd_merge(target, source, mod, merge_cb, cb_data, options, 0);
}
static LY_ERR
lyd_path_str_enlarge(char **buffer, size_t *buflen, size_t reqlen, ly_bool is_static)
{
/* ending \0 */
++reqlen;
if (reqlen > *buflen) {
if (is_static) {
return LY_EINCOMPLETE;
}
*buffer = ly_realloc(*buffer, reqlen * sizeof **buffer);
if (!*buffer) {
return LY_EMEM;
}
*buflen = reqlen;
}
return LY_SUCCESS;
}
LY_ERR
lyd_path_list_predicate(const struct lyd_node *node, char **buffer, size_t *buflen, size_t *bufused, ly_bool is_static)
{
const struct lyd_node *key;
size_t len;
const char *val;
char quot;
for (key = lyd_child(node); key && (key->schema->flags & LYS_KEY); key = key->next) {
val = lyd_get_value(key);
len = 1 + strlen(key->schema->name) + 2 + strlen(val) + 2;
LY_CHECK_RET(lyd_path_str_enlarge(buffer, buflen, *bufused + len, is_static));
quot = '\'';
if (strchr(val, '\'')) {
quot = '"';
}
*bufused += sprintf(*buffer + *bufused, "[%s=%c%s%c]", key->schema->name, quot, val, quot);
}
return LY_SUCCESS;
}
/**
* @brief Append leaf-list value predicate to path.
*
* @param[in] node Node to print.
* @param[in,out] buffer Buffer to print to.
* @param[in,out] buflen Current buffer length.
* @param[in,out] bufused Current number of characters used in @p buffer.
* @param[in] is_static Whether buffer is static or can be reallocated.
* @return LY_ERR
*/
static LY_ERR
lyd_path_leaflist_predicate(const struct lyd_node *node, char **buffer, size_t *buflen, size_t *bufused, ly_bool is_static)
{
size_t len;
const char *val;
char quot;
val = lyd_get_value(node);
len = 4 + strlen(val) + 2; /* "[.='" + val + "']" */
LY_CHECK_RET(lyd_path_str_enlarge(buffer, buflen, *bufused + len, is_static));
quot = '\'';
if (strchr(val, '\'')) {
quot = '"';
}
*bufused += sprintf(*buffer + *bufused, "[.=%c%s%c]", quot, val, quot);
return LY_SUCCESS;
}
/**
* @brief Append node position (relative to its other instances) predicate to path.
*
* @param[in] node Node to print.
* @param[in,out] buffer Buffer to print to.
* @param[in,out] buflen Current buffer length.
* @param[in,out] bufused Current number of characters used in @p buffer.
* @param[in] is_static Whether buffer is static or can be reallocated.
* @return LY_ERR
*/
static LY_ERR
lyd_path_position_predicate(const struct lyd_node *node, char **buffer, size_t *buflen, size_t *bufused, ly_bool is_static)
{
size_t len;
uint32_t pos;
char *val = NULL;
LY_ERR rc;
pos = lyd_list_pos(node);
if (asprintf(&val, "%" PRIu32, pos) == -1) {
return LY_EMEM;
}
len = 1 + strlen(val) + 1;
rc = lyd_path_str_enlarge(buffer, buflen, *bufused + len, is_static);
if (rc != LY_SUCCESS) {
goto cleanup;
}
*bufused += sprintf(*buffer + *bufused, "[%s]", val);
cleanup:
free(val);
return rc;
}
API char *
lyd_path(const struct lyd_node *node, LYD_PATH_TYPE pathtype, char *buffer, size_t buflen)
{
ly_bool is_static = 0;
uint32_t i, depth;
size_t bufused = 0, len;
const struct lyd_node *iter;
const struct lys_module *mod;
LY_ERR rc = LY_SUCCESS;
LY_CHECK_ARG_RET(NULL, node, NULL);
if (buffer) {
LY_CHECK_ARG_RET(LYD_CTX(node), buflen > 1, NULL);
is_static = 1;
} else {
buflen = 0;
}
switch (pathtype) {
case LYD_PATH_STD:
case LYD_PATH_STD_NO_LAST_PRED:
depth = 1;
for (iter = node; iter->parent; iter = lyd_parent(iter)) {
++depth;
}
goto iter_print;
while (depth) {
/* find the right node */
for (iter = node, i = 1; i < depth; iter = lyd_parent(iter), ++i) {}
iter_print:
/* print prefix and name */
mod = NULL;
if (iter->schema && (!iter->parent || (iter->schema->module != iter->parent->schema->module))) {
mod = iter->schema->module;
}
/* realloc string */
len = 1 + (mod ? strlen(mod->name) + 1 : 0) + (iter->schema ? strlen(iter->schema->name) :
strlen(((struct lyd_node_opaq *)iter)->name.name));
rc = lyd_path_str_enlarge(&buffer, &buflen, bufused + len, is_static);
if (rc != LY_SUCCESS) {
break;
}
/* print next node */
bufused += sprintf(buffer + bufused, "/%s%s%s", mod ? mod->name : "", mod ? ":" : "",
iter->schema ? iter->schema->name : ((struct lyd_node_opaq *)iter)->name.name);
/* do not always print the last (first) predicate */
if (iter->schema && ((depth > 1) || (pathtype == LYD_PATH_STD))) {
switch (iter->schema->nodetype) {
case LYS_LIST:
if (iter->schema->flags & LYS_KEYLESS) {
/* print its position */
rc = lyd_path_position_predicate(iter, &buffer, &buflen, &bufused, is_static);
} else {
/* print all list keys in predicates */
rc = lyd_path_list_predicate(iter, &buffer, &buflen, &bufused, is_static);
}
break;
case LYS_LEAFLIST:
if (iter->schema->flags & LYS_CONFIG_W) {
/* print leaf-list value */
rc = lyd_path_leaflist_predicate(iter, &buffer, &buflen, &bufused, is_static);
} else {
/* print its position */
rc = lyd_path_position_predicate(iter, &buffer, &buflen, &bufused, is_static);
}
break;
default:
/* nothing to print more */
break;
}
}
if (rc != LY_SUCCESS) {
break;
}
--depth;
}
break;
}
return buffer;
}
API struct lyd_meta *
lyd_find_meta(const struct lyd_meta *first, const struct lys_module *module, const char *name)
{
struct lyd_meta *ret = NULL;
const struct ly_ctx *ctx;
const char *prefix, *tmp;
char *str;
size_t pref_len, name_len;
LY_CHECK_ARG_RET(NULL, module || strchr(name, ':'), name, NULL);
if (!first) {
return NULL;
}
ctx = first->annotation->module->ctx;
/* parse the name */
tmp = name;
if (ly_parse_nodeid(&tmp, &prefix, &pref_len, &name, &name_len) || tmp[0]) {
LOGERR(ctx, LY_EINVAL, "Metadata name \"%s\" is not valid.", name);
return NULL;
}
/* find the module */
if (prefix) {
str = strndup(prefix, pref_len);
module = ly_ctx_get_module_latest(ctx, str);
free(str);
LY_CHECK_ERR_RET(!module, LOGERR(ctx, LY_EINVAL, "Module \"%.*s\" not found.", (int)pref_len, prefix), NULL);
}
/* find the metadata */
LY_LIST_FOR(first, first) {
if ((first->annotation->module == module) && !strcmp(first->name, name)) {
ret = (struct lyd_meta *)first;
break;
}
}
return ret;
}
API LY_ERR
lyd_find_sibling_first(const struct lyd_node *siblings, const struct lyd_node *target, struct lyd_node **match)
{
struct lyd_node **match_p, *iter;
struct lyd_node_inner *parent;
ly_bool found;
LY_CHECK_ARG_RET(NULL, target, LY_EINVAL);
if (!siblings || (siblings->schema && target->schema &&
(lysc_data_parent(siblings->schema) != lysc_data_parent(target->schema)))) {
/* no data or schema mismatch */
if (match) {
*match = NULL;
}
return LY_ENOTFOUND;
}
/* get first sibling */
siblings = lyd_first_sibling(siblings);
parent = siblings->parent;
if (parent && parent->schema && parent->children_ht) {
assert(target->hash);
if (lysc_is_dup_inst_list(target->schema)) {
/* we must search the instances from beginning to find the first matching one */
found = 0;
LYD_LIST_FOR_INST(siblings, target->schema, iter) {
if (!lyd_compare_single(target, iter, 0)) {
found = 1;
break;
}
}
if (found) {
siblings = iter;
} else {
siblings = NULL;
}
} else {
/* find by hash */
if (!lyht_find(parent->children_ht, &target, target->hash, (void **)&match_p)) {
siblings = *match_p;
} else {
/* not found */
siblings = NULL;
}
}
} else {
/* no children hash table */
for ( ; siblings; siblings = siblings->next) {
if (!lyd_compare_single(siblings, target, 0)) {
break;
}
}
}
if (!siblings) {
if (match) {
*match = NULL;
}
return LY_ENOTFOUND;
}
if (match) {
*match = (struct lyd_node *)siblings;
}
return LY_SUCCESS;
}
/**
* @brief Comparison callback to match schema node with a schema of a data node.
*
* @param[in] val1_p Pointer to the schema node
* @param[in] val2_p Pointer to the data node
* Implementation of ::lyht_value_equal_cb.
*/
static ly_bool
lyd_hash_table_schema_val_equal(void *val1_p, void *val2_p, ly_bool UNUSED(mod), void *UNUSED(cb_data))
{
struct lysc_node *val1;
struct lyd_node *val2;
val1 = *((struct lysc_node **)val1_p);
val2 = *((struct lyd_node **)val2_p);
if (val1 == val2->schema) {
/* schema match is enough */
return 1;
} else {
return 0;
}
}
/**
* @brief Search in the given siblings (NOT recursively) for the first schema node data instance.
* Uses hashes - should be used whenever possible for best performance.
*
* @param[in] siblings Siblings to search in including preceding and succeeding nodes.
* @param[in] schema Target data node schema to find.
* @param[out] match Can be NULL, otherwise the found data node.
* @return LY_SUCCESS on success, @p match set.
* @return LY_ENOTFOUND if not found, @p match set to NULL.
* @return LY_ERR value if another error occurred.
*/
static LY_ERR
lyd_find_sibling_schema(const struct lyd_node *siblings, const struct lysc_node *schema, struct lyd_node **match)
{
struct lyd_node **match_p;
struct lyd_node_inner *parent;
uint32_t hash;
lyht_value_equal_cb ht_cb;
assert(siblings && schema);
parent = siblings->parent;
if (parent && parent->schema && parent->children_ht) {
/* calculate our hash */
hash = dict_hash_multi(0, schema->module->name, strlen(schema->module->name));
hash = dict_hash_multi(hash, schema->name, strlen(schema->name));
hash = dict_hash_multi(hash, NULL, 0);
/* use special hash table function */
ht_cb = lyht_set_cb(parent->children_ht, lyd_hash_table_schema_val_equal);
/* find by hash */
if (!lyht_find(parent->children_ht, &schema, hash, (void **)&match_p)) {
siblings = *match_p;
} else {
/* not found */
siblings = NULL;
}
/* set the original hash table compare function back */
lyht_set_cb(parent->children_ht, ht_cb);
} else {
/* find first sibling */
if (siblings->parent) {
siblings = siblings->parent->child;
} else {
while (siblings->prev->next) {
siblings = siblings->prev;
}
}
/* search manually without hashes */
for ( ; siblings; siblings = siblings->next) {
if (siblings->schema == schema) {
/* schema match is enough */
break;
}
}
}
if (!siblings) {
if (match) {
*match = NULL;
}
return LY_ENOTFOUND;
}
if (match) {
*match = (struct lyd_node *)siblings;
}
return LY_SUCCESS;
}
API LY_ERR
lyd_find_sibling_val(const struct lyd_node *siblings, const struct lysc_node *schema, const char *key_or_value,
size_t val_len, struct lyd_node **match)
{
LY_ERR rc;
struct lyd_node *target = NULL;
LY_CHECK_ARG_RET(NULL, schema, !(schema->nodetype & (LYS_CHOICE | LYS_CASE)), LY_EINVAL);
if (!siblings || (siblings->schema && (lysc_data_parent(siblings->schema) != lysc_data_parent(schema)))) {
/* no data or schema mismatch */
if (match) {
*match = NULL;
}
return LY_ENOTFOUND;
}
if (key_or_value && !val_len) {
val_len = strlen(key_or_value);
}
if ((schema->nodetype & (LYS_LIST | LYS_LEAFLIST)) && key_or_value) {
/* create a data node and find the instance */
if (schema->nodetype == LYS_LEAFLIST) {
/* target used attributes: schema, hash, value */
rc = lyd_create_term(schema, key_or_value, val_len, NULL, LY_VALUE_JSON, NULL, LYD_HINT_DATA, NULL, &target);
LY_CHECK_RET(rc);
} else {
/* target used attributes: schema, hash, child (all keys) */
LY_CHECK_RET(lyd_create_list2(schema, key_or_value, val_len, &target));
}
/* find it */
rc = lyd_find_sibling_first(siblings, target, match);
} else {
/* find the first schema node instance */
rc = lyd_find_sibling_schema(siblings, schema, match);
}
lyd_free_tree(target);
return rc;
}
API LY_ERR
lyd_find_sibling_dup_inst_set(const struct lyd_node *siblings, const struct lyd_node *target, struct ly_set **set)
{
struct lyd_node **match_p, *first, *iter;
struct lyd_node_inner *parent;
LY_CHECK_ARG_RET(NULL, target, lysc_is_dup_inst_list(target->schema), set, LY_EINVAL);
LY_CHECK_RET(ly_set_new(set));
if (!siblings || (siblings->schema && (lysc_data_parent(siblings->schema) != lysc_data_parent(target->schema)))) {
/* no data or schema mismatch */
return LY_ENOTFOUND;
}
/* get first sibling */
siblings = lyd_first_sibling(siblings);
parent = siblings->parent;
if (parent && parent->schema && parent->children_ht) {
assert(target->hash);
/* find the first instance */
lyd_find_sibling_first(siblings, target, &first);
if (first) {
/* add it so that it is the first in the set */
if (ly_set_add(*set, first, 1, NULL)) {
goto error;
}
/* find by hash */
if (!lyht_find(parent->children_ht, &target, target->hash, (void **)&match_p)) {
iter = *match_p;
} else {
/* not found */
iter = NULL;
}
while (iter) {
/* add all found nodes into the set */
if ((iter != first) && !lyd_compare_single(iter, target, 0) && ly_set_add(*set, iter, 1, NULL)) {
goto error;
}
/* find next instance */
if (lyht_find_next(parent->children_ht, &iter, iter->hash, (void **)&match_p)) {
iter = NULL;
} else {
iter = *match_p;
}
}
}
} else {
/* no children hash table */
LY_LIST_FOR(siblings, siblings) {
if (!lyd_compare_single(target, siblings, 0)) {
ly_set_add(*set, (void *)siblings, 1, NULL);
}
}
}
if (!(*set)->count) {
return LY_ENOTFOUND;
}
return LY_SUCCESS;
error:
ly_set_free(*set, NULL);
*set = NULL;
return LY_EMEM;
}
API LY_ERR
lyd_find_sibling_opaq_next(const struct lyd_node *first, const char *name, struct lyd_node **match)
{
LY_CHECK_ARG_RET(NULL, name, LY_EINVAL);
for ( ; first; first = first->next) {
if (!first->schema && !strcmp(LYD_NAME(first), name)) {
break;
}
}
if (match) {
*match = (struct lyd_node *)first;
}
return first ? LY_SUCCESS : LY_ENOTFOUND;
}
API LY_ERR
lyd_find_xpath(const struct lyd_node *ctx_node, const char *xpath, struct ly_set **set)
{
LY_ERR ret = LY_SUCCESS;
struct lyxp_set xp_set = {0};
struct lyxp_expr *exp = NULL;
uint32_t i;
LY_CHECK_ARG_RET(NULL, ctx_node, xpath, set, LY_EINVAL);
*set = NULL;
/* compile expression */
ret = lyxp_expr_parse((struct ly_ctx *)LYD_CTX(ctx_node), xpath, 0, 1, &exp);
LY_CHECK_GOTO(ret, cleanup);
/* evaluate expression */
ret = lyxp_eval(LYD_CTX(ctx_node), exp, NULL, LY_VALUE_JSON, NULL, ctx_node, ctx_node, &xp_set, LYXP_IGNORE_WHEN);
LY_CHECK_GOTO(ret, cleanup);
/* allocate return set */
ret = ly_set_new(set);
LY_CHECK_GOTO(ret, cleanup);
/* transform into ly_set */
if (xp_set.type == LYXP_SET_NODE_SET) {
/* allocate memory for all the elements once (even though not all items must be elements but most likely will be) */
(*set)->objs = malloc(xp_set.used * sizeof *(*set)->objs);
LY_CHECK_ERR_GOTO(!(*set)->objs, LOGMEM(LYD_CTX(ctx_node)); ret = LY_EMEM, cleanup);
(*set)->size = xp_set.used;
for (i = 0; i < xp_set.used; ++i) {
if (xp_set.val.nodes[i].type == LYXP_NODE_ELEM) {
ret = ly_set_add(*set, xp_set.val.nodes[i].node, 1, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
}
}
cleanup:
lyxp_set_free_content(&xp_set);
lyxp_expr_free((struct ly_ctx *)LYD_CTX(ctx_node), exp);
if (ret) {
ly_set_free(*set, NULL);
*set = NULL;
}
return ret;
}
API LY_ERR
lyd_eval_xpath(const struct lyd_node *ctx_node, const char *xpath, ly_bool *result)
{
LY_ERR ret = LY_SUCCESS;
struct lyxp_set xp_set = {0};
struct lyxp_expr *exp = NULL;
LY_CHECK_ARG_RET(NULL, ctx_node, xpath, result, LY_EINVAL);
/* compile expression */
ret = lyxp_expr_parse((struct ly_ctx *)LYD_CTX(ctx_node), xpath, 0, 1, &exp);
LY_CHECK_GOTO(ret, cleanup);
/* evaluate expression */
ret = lyxp_eval(LYD_CTX(ctx_node), exp, NULL, LY_VALUE_JSON, NULL, ctx_node, ctx_node, &xp_set, LYXP_IGNORE_WHEN);
LY_CHECK_GOTO(ret, cleanup);
/* transform into boolean */
ret = lyxp_set_cast(&xp_set, LYXP_SET_BOOLEAN);
LY_CHECK_GOTO(ret, cleanup);
/* set result */
*result = xp_set.val.bln;
cleanup:
lyxp_set_free_content(&xp_set);
lyxp_expr_free((struct ly_ctx *)LYD_CTX(ctx_node), exp);
return ret;
}
API LY_ERR
lyd_find_path(const struct lyd_node *ctx_node, const char *path, ly_bool output, struct lyd_node **match)
{
LY_ERR ret = LY_SUCCESS;
struct lyxp_expr *expr = NULL;
struct ly_path *lypath = NULL;
LY_CHECK_ARG_RET(NULL, ctx_node, ctx_node->schema, path, LY_EINVAL);
/* parse the path */
ret = ly_path_parse(LYD_CTX(ctx_node), ctx_node->schema, path, strlen(path), 0, LY_PATH_BEGIN_EITHER,
LY_PATH_PREFIX_OPTIONAL, LY_PATH_PRED_SIMPLE, &expr);
LY_CHECK_GOTO(ret, cleanup);
/* compile the path */
ret = ly_path_compile(LYD_CTX(ctx_node), NULL, ctx_node->schema, NULL, expr,
output ? LY_PATH_OPER_OUTPUT : LY_PATH_OPER_INPUT, LY_PATH_TARGET_SINGLE, LY_VALUE_JSON, NULL, &lypath);
LY_CHECK_GOTO(ret, cleanup);
/* evaluate the path */
ret = ly_path_eval_partial(lypath, ctx_node, NULL, match);
cleanup:
lyxp_expr_free(LYD_CTX(ctx_node), expr);
ly_path_free(LYD_CTX(ctx_node), lypath);
return ret;
}
API LY_ERR
lyd_find_target(const struct ly_path *path, const struct lyd_node *tree, struct lyd_node **match)
{
LY_ERR ret;
struct lyd_node *m;
LY_CHECK_ARG_RET(NULL, path, LY_EINVAL);
ret = ly_path_eval(path, tree, &m);
if (ret) {
if (match) {
*match = NULL;
}
return LY_ENOTFOUND;
}
if (match) {
*match = m;
}
return LY_SUCCESS;
}
API uint32_t
lyd_list_pos(const struct lyd_node *instance)
{
const struct lyd_node *iter = NULL;
uint32_t pos = 0;
if (!instance || !(instance->schema->nodetype & (LYS_LIST | LYS_LEAFLIST))) {
return 0;
}
/* data instances are ordered, so we can stop when we found instance of other schema node */
for (iter = instance; iter->schema == instance->schema; iter = iter->prev) {
if (pos && (iter->next == NULL)) {
/* overrun to the end of the siblings list */
break;
}
++pos;
}
return pos;
}
API struct lyd_node *
lyd_first_sibling(const struct lyd_node *node)
{
struct lyd_node *start;
if (!node) {
return NULL;
}
/* get the first sibling */
if (node->parent) {
start = node->parent->child;
} else {
for (start = (struct lyd_node *)node; start->prev->next; start = start->prev) {}
}
return start;
}