| /** |
| * @file tree_data_helpers.c |
| * @author Radek Krejci <rkrejci@cesnet.cz> |
| * @brief Parsing and validation helper functions for data trees |
| * |
| * Copyright (c) 2015 - 2018 CESNET, z.s.p.o. |
| * |
| * This source code is licensed under BSD 3-Clause License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * https://opensource.org/licenses/BSD-3-Clause |
| */ |
| |
| #define _GNU_SOURCE /* asprintf, strdup */ |
| |
| #include <assert.h> |
| #include <ctype.h> |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <time.h> |
| |
| #include "common.h" |
| #include "compat.h" |
| #include "context.h" |
| #include "dict.h" |
| #include "hash_table.h" |
| #include "log.h" |
| #include "lyb.h" |
| #include "parser_data.h" |
| #include "printer_data.h" |
| #include "set.h" |
| #include "tree.h" |
| #include "tree_data.h" |
| #include "tree_data_internal.h" |
| #include "tree_edit.h" |
| #include "tree_schema.h" |
| #include "tree_schema_internal.h" |
| #include "validation.h" |
| #include "xml.h" |
| |
| /** |
| * @brief Find an entry in duplicate instance cache for an instance. Create it if it does not exist. |
| * |
| * @param[in] first_inst Instance of the cache entry. |
| * @param[in,out] dup_inst_cache Duplicate instance cache. |
| * @return Instance cache entry. |
| */ |
| static struct lyd_dup_inst * |
| lyd_dup_inst_get(const struct lyd_node *first_inst, struct lyd_dup_inst **dup_inst_cache) |
| { |
| struct lyd_dup_inst *item; |
| LY_ARRAY_COUNT_TYPE u; |
| |
| LY_ARRAY_FOR(*dup_inst_cache, u) { |
| if ((*dup_inst_cache)[u].inst_set->dnodes[0] == first_inst) { |
| return &(*dup_inst_cache)[u]; |
| } |
| } |
| |
| /* it was not added yet, add it now */ |
| LY_ARRAY_NEW_RET(LYD_CTX(first_inst), *dup_inst_cache, item, NULL); |
| |
| return item; |
| } |
| |
| LY_ERR |
| lyd_dup_inst_next(struct lyd_node **inst, const struct lyd_node *siblings, struct lyd_dup_inst **dup_inst_cache) |
| { |
| struct lyd_dup_inst *dup_inst; |
| |
| if (!*inst || !lysc_is_dup_inst_list((*inst)->schema)) { |
| /* no match or not dup-inst list, inst is unchanged */ |
| return LY_SUCCESS; |
| } |
| |
| /* there can be more exact same instances and we must make sure we do not match a single node more times */ |
| dup_inst = lyd_dup_inst_get(*inst, dup_inst_cache); |
| LY_CHECK_ERR_RET(!dup_inst, LOGMEM(LYD_CTX(siblings)), LY_EMEM); |
| |
| if (!dup_inst->used) { |
| /* we did not cache these instances yet, do so */ |
| lyd_find_sibling_dup_inst_set(siblings, *inst, &dup_inst->inst_set); |
| assert(dup_inst->inst_set->count && (dup_inst->inst_set->dnodes[0] == *inst)); |
| } |
| |
| if (dup_inst->used == dup_inst->inst_set->count) { |
| /* we have used all the instances */ |
| *inst = NULL; |
| } else { |
| assert(dup_inst->used < dup_inst->inst_set->count); |
| |
| /* use another instance */ |
| *inst = dup_inst->inst_set->dnodes[dup_inst->used]; |
| ++dup_inst->used; |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| void |
| lyd_dup_inst_free(struct lyd_dup_inst *dup_inst) |
| { |
| LY_ARRAY_COUNT_TYPE u; |
| |
| LY_ARRAY_FOR(dup_inst, u) { |
| ly_set_free(dup_inst[u].inst_set, NULL); |
| } |
| LY_ARRAY_FREE(dup_inst); |
| } |
| |
| struct lyd_node * |
| lys_getnext_data(const struct lyd_node *last, const struct lyd_node *sibling, const struct lysc_node **slast, |
| const struct lysc_node *parent, const struct lysc_module *module) |
| { |
| const struct lysc_node *siter = NULL; |
| struct lyd_node *match = NULL; |
| |
| assert(parent || module); |
| assert(!last || (slast && *slast)); |
| |
| if (slast) { |
| siter = *slast; |
| } |
| |
| if (last && last->next && (last->next->schema == siter)) { |
| /* return next data instance */ |
| return last->next; |
| } |
| |
| /* find next schema node data instance */ |
| while ((siter = lys_getnext(siter, parent, module, 0))) { |
| if (!lyd_find_sibling_val(sibling, siter, NULL, 0, &match)) { |
| break; |
| } |
| } |
| |
| if (slast) { |
| *slast = siter; |
| } |
| return match; |
| } |
| |
| struct lyd_node ** |
| lyd_node_child_p(struct lyd_node *node) |
| { |
| assert(node); |
| |
| if (!node->schema) { |
| return &((struct lyd_node_opaq *)node)->child; |
| } else { |
| switch (node->schema->nodetype) { |
| case LYS_CONTAINER: |
| case LYS_LIST: |
| case LYS_RPC: |
| case LYS_ACTION: |
| case LYS_NOTIF: |
| return &((struct lyd_node_inner *)node)->child; |
| default: |
| return NULL; |
| } |
| } |
| } |
| |
| API struct lyd_node * |
| lyd_child_no_keys(const struct lyd_node *node) |
| { |
| struct lyd_node **children; |
| |
| if (!node) { |
| return NULL; |
| } |
| |
| if (!node->schema) { |
| /* opaq node */ |
| return ((struct lyd_node_opaq *)node)->child; |
| } |
| |
| children = lyd_node_child_p((struct lyd_node *)node); |
| if (children) { |
| struct lyd_node *child = *children; |
| while (child && child->schema && (child->schema->flags & LYS_KEY)) { |
| child = child->next; |
| } |
| return child; |
| } else { |
| return NULL; |
| } |
| } |
| |
| API const struct lys_module * |
| lyd_owner_module(const struct lyd_node *node) |
| { |
| const struct lysc_node *schema; |
| const struct lyd_node_opaq *opaq; |
| |
| if (!node) { |
| return NULL; |
| } |
| |
| if (!node->schema) { |
| opaq = (struct lyd_node_opaq *)node; |
| switch (opaq->format) { |
| case LY_VALUE_XML: |
| return ly_ctx_get_module_implemented_ns(LYD_CTX(node), opaq->name.module_ns); |
| case LY_VALUE_JSON: |
| return ly_ctx_get_module_implemented(LYD_CTX(node), opaq->name.module_name); |
| default: |
| return NULL; |
| } |
| } |
| |
| for (schema = node->schema; schema->parent; schema = schema->parent) {} |
| return schema->module; |
| } |
| |
| void |
| lyd_first_module_sibling(struct lyd_node **node, const struct lys_module *mod) |
| { |
| int cmp; |
| struct lyd_node *first; |
| |
| assert(node && mod); |
| |
| if (!*node) { |
| return; |
| } |
| |
| first = *node; |
| cmp = strcmp(lyd_owner_module(first)->name, mod->name); |
| if (cmp > 0) { |
| /* there may be some preceding data */ |
| while (first->prev->next) { |
| first = first->prev; |
| if (lyd_owner_module(first) == mod) { |
| cmp = 0; |
| break; |
| } |
| } |
| } |
| |
| if (cmp == 0) { |
| /* there may be some preceding data belonging to this module */ |
| while (first->prev->next) { |
| if (lyd_owner_module(first->prev) != mod) { |
| break; |
| } |
| first = first->prev; |
| } |
| } |
| |
| if (cmp < 0) { |
| /* there may be some following data */ |
| LY_LIST_FOR(first, first) { |
| if (lyd_owner_module(first) == mod) { |
| cmp = 0; |
| break; |
| } |
| } |
| } |
| |
| if (cmp == 0) { |
| /* we have found the first module data node */ |
| *node = first; |
| } |
| } |
| |
| const struct lys_module * |
| lyd_mod_next_module(struct lyd_node *tree, const struct lys_module *module, const struct ly_ctx *ctx, uint32_t *i, |
| struct lyd_node **first) |
| { |
| struct lyd_node *iter; |
| const struct lys_module *mod; |
| |
| /* get the next module */ |
| if (module) { |
| if (*i) { |
| mod = NULL; |
| } else { |
| mod = module; |
| ++(*i); |
| } |
| } else { |
| do { |
| mod = ly_ctx_get_module_iter(ctx, i); |
| } while (mod && !mod->implemented); |
| } |
| |
| /* find its data */ |
| *first = NULL; |
| if (mod) { |
| LY_LIST_FOR(tree, iter) { |
| if (lyd_owner_module(iter) == mod) { |
| *first = iter; |
| break; |
| } |
| } |
| } |
| |
| return mod; |
| } |
| |
| const struct lys_module * |
| lyd_data_next_module(struct lyd_node **next, struct lyd_node **first) |
| { |
| const struct lys_module *mod; |
| |
| if (!*next) { |
| /* all data traversed */ |
| *first = NULL; |
| return NULL; |
| } |
| |
| *first = *next; |
| |
| /* prepare next */ |
| mod = lyd_owner_module(*next); |
| LY_LIST_FOR(*next, *next) { |
| if (lyd_owner_module(*next) != mod) { |
| break; |
| } |
| } |
| |
| return mod; |
| } |
| |
| LY_ERR |
| lyd_parse_check_keys(struct lyd_node *node) |
| { |
| const struct lysc_node *skey = NULL; |
| const struct lyd_node *key; |
| |
| assert(node->schema->nodetype == LYS_LIST); |
| |
| key = lyd_child(node); |
| while ((skey = lys_getnext(skey, node->schema, NULL, 0)) && (skey->flags & LYS_KEY)) { |
| if (!key || (key->schema != skey)) { |
| LOGVAL(LYD_CTX(node), LY_VCODE_NOKEY, skey->name); |
| return LY_EVALID; |
| } |
| |
| key = key->next; |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| void |
| lyd_parse_set_data_flags(struct lyd_node *node, struct ly_set *node_when, struct ly_set *node_exts, struct lyd_meta **meta, |
| uint32_t parse_opts) |
| { |
| struct lyd_meta *meta2, *prev_meta = NULL; |
| |
| if (lysc_has_when(node->schema)) { |
| if (!(parse_opts & LYD_PARSE_ONLY)) { |
| /* remember we need to evaluate this node's when */ |
| LY_CHECK_RET(ly_set_add(node_when, node, 1, NULL), ); |
| } |
| } |
| LY_CHECK_RET(lysc_node_ext_tovalidate(node_exts, node), ); |
| |
| LY_LIST_FOR(*meta, meta2) { |
| if (!strcmp(meta2->name, "default") && !strcmp(meta2->annotation->module->name, "ietf-netconf-with-defaults") && |
| meta2->value.boolean) { |
| /* node is default according to the metadata */ |
| node->flags |= LYD_DEFAULT; |
| |
| /* delete the metadata */ |
| if (prev_meta) { |
| prev_meta->next = meta2->next; |
| } else { |
| *meta = (*meta)->next; |
| } |
| lyd_free_meta_single(meta2); |
| break; |
| } |
| |
| prev_meta = meta2; |
| } |
| } |
| |
| API const char * |
| lyd_value_get_canonical(const struct ly_ctx *ctx, const struct lyd_value *value) |
| { |
| LY_CHECK_ARG_RET(ctx, ctx, value, NULL); |
| |
| return value->_canonical ? value->_canonical : |
| (const char *)value->realtype->plugin->print(ctx, value, LY_VALUE_CANON, NULL, NULL, NULL); |
| } |
| |
| API LY_ERR |
| lyd_any_value_str(const struct lyd_node *any, char **value_str) |
| { |
| const struct lyd_node_any *a; |
| struct lyd_node *tree = NULL; |
| const char *str = NULL; |
| ly_bool dynamic = 0; |
| LY_ERR ret = LY_SUCCESS; |
| |
| LY_CHECK_ARG_RET(NULL, any, value_str, LY_EINVAL); |
| LY_CHECK_ARG_RET(NULL, any->schema, any->schema->nodetype & LYS_ANYDATA, LY_EINVAL); |
| |
| a = (struct lyd_node_any *)any; |
| *value_str = NULL; |
| |
| if (!a->value.str) { |
| /* there is no value in the union */ |
| return LY_SUCCESS; |
| } |
| |
| switch (a->value_type) { |
| case LYD_ANYDATA_LYB: |
| /* parse into a data tree */ |
| ret = lyd_parse_data_mem(LYD_CTX(any), a->value.mem, LYD_LYB, LYD_PARSE_ONLY, 0, &tree); |
| LY_CHECK_GOTO(ret, cleanup); |
| dynamic = 1; |
| break; |
| case LYD_ANYDATA_DATATREE: |
| tree = a->value.tree; |
| break; |
| case LYD_ANYDATA_STRING: |
| case LYD_ANYDATA_XML: |
| case LYD_ANYDATA_JSON: |
| /* simply use the string */ |
| str = a->value.str; |
| break; |
| } |
| |
| if (tree) { |
| /* print into a string */ |
| ret = lyd_print_mem(value_str, tree, LYD_XML, LYD_PRINT_WITHSIBLINGS); |
| LY_CHECK_GOTO(ret, cleanup); |
| } else { |
| assert(str); |
| *value_str = strdup(str); |
| LY_CHECK_ERR_GOTO(!*value_str, LOGMEM(LYD_CTX(any)), cleanup); |
| } |
| |
| /* success */ |
| |
| cleanup: |
| if (dynamic) { |
| lyd_free_all(tree); |
| } |
| return ret; |
| } |
| |
| API LY_ERR |
| lyd_any_copy_value(struct lyd_node *trg, const union lyd_any_value *value, LYD_ANYDATA_VALUETYPE value_type) |
| { |
| struct lyd_node_any *t; |
| |
| LY_CHECK_ARG_RET(NULL, trg, LY_EINVAL); |
| LY_CHECK_ARG_RET(NULL, trg->schema, trg->schema->nodetype & LYS_ANYDATA, LY_EINVAL); |
| |
| t = (struct lyd_node_any *)trg; |
| |
| /* free trg */ |
| switch (t->value_type) { |
| case LYD_ANYDATA_DATATREE: |
| lyd_free_all(t->value.tree); |
| break; |
| case LYD_ANYDATA_STRING: |
| case LYD_ANYDATA_XML: |
| case LYD_ANYDATA_JSON: |
| lydict_remove(LYD_CTX(trg), t->value.str); |
| break; |
| case LYD_ANYDATA_LYB: |
| free(t->value.mem); |
| break; |
| } |
| t->value.str = NULL; |
| |
| if (!value) { |
| /* only free value in this case */ |
| return LY_SUCCESS; |
| } |
| |
| /* copy src */ |
| t->value_type = value_type; |
| switch (value_type) { |
| case LYD_ANYDATA_DATATREE: |
| if (value->tree) { |
| LY_CHECK_RET(lyd_dup_siblings(value->tree, NULL, LYD_DUP_RECURSIVE, &t->value.tree)); |
| } |
| break; |
| case LYD_ANYDATA_STRING: |
| case LYD_ANYDATA_XML: |
| case LYD_ANYDATA_JSON: |
| if (value->str) { |
| LY_CHECK_RET(lydict_insert(LYD_CTX(trg), value->str, 0, &t->value.str)); |
| } |
| break; |
| case LYD_ANYDATA_LYB: |
| if (value->mem) { |
| int len = lyd_lyb_data_length(value->mem); |
| LY_CHECK_RET(len == -1, LY_EINVAL); |
| t->value.mem = malloc(len); |
| LY_CHECK_ERR_RET(!t->value.mem, LOGMEM(LYD_CTX(trg)), LY_EMEM); |
| memcpy(t->value.mem, value->mem, len); |
| } |
| break; |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| void |
| lyd_del_move_root(struct lyd_node **root, const struct lyd_node *to_del, const struct lys_module *mod) |
| { |
| if (*root && (lyd_owner_module(*root) != mod)) { |
| /* there are no data of mod so this is simply the first top-level sibling */ |
| mod = NULL; |
| } |
| |
| if ((*root != to_del) || (*root)->parent) { |
| return; |
| } |
| |
| if (mod && (*root)->prev->next && (!(*root)->next || (lyd_owner_module(to_del) != lyd_owner_module((*root)->next)))) { |
| /* there are no more nodes from mod, simply get the first top-level sibling */ |
| *root = lyd_first_sibling(*root); |
| } else { |
| *root = (*root)->next; |
| } |
| } |
| |
| void |
| ly_free_prefix_data(LY_VALUE_FORMAT format, void *prefix_data) |
| { |
| struct ly_set *ns_list; |
| struct lysc_prefix *prefixes; |
| uint32_t i; |
| LY_ARRAY_COUNT_TYPE u; |
| |
| if (!prefix_data) { |
| return; |
| } |
| |
| switch (format) { |
| case LY_VALUE_XML: |
| ns_list = prefix_data; |
| for (i = 0; i < ns_list->count; ++i) { |
| free(((struct lyxml_ns *)ns_list->objs[i])->prefix); |
| free(((struct lyxml_ns *)ns_list->objs[i])->uri); |
| } |
| ly_set_free(ns_list, free); |
| break; |
| case LY_VALUE_SCHEMA_RESOLVED: |
| prefixes = prefix_data; |
| LY_ARRAY_FOR(prefixes, u) { |
| free(prefixes[u].prefix); |
| } |
| LY_ARRAY_FREE(prefixes); |
| break; |
| case LY_VALUE_CANON: |
| case LY_VALUE_SCHEMA: |
| case LY_VALUE_JSON: |
| case LY_VALUE_LYB: |
| break; |
| } |
| } |
| |
| LY_ERR |
| ly_dup_prefix_data(const struct ly_ctx *ctx, LY_VALUE_FORMAT format, const void *prefix_data, |
| void **prefix_data_p) |
| { |
| LY_ERR ret = LY_SUCCESS; |
| struct lyxml_ns *ns; |
| struct lysc_prefix *prefixes = NULL, *orig_pref; |
| struct ly_set *ns_list, *orig_ns; |
| uint32_t i; |
| LY_ARRAY_COUNT_TYPE u; |
| |
| assert(!*prefix_data_p); |
| |
| switch (format) { |
| case LY_VALUE_SCHEMA: |
| *prefix_data_p = (void *)prefix_data; |
| break; |
| case LY_VALUE_SCHEMA_RESOLVED: |
| /* copy all the value prefixes */ |
| orig_pref = (struct lysc_prefix *)prefix_data; |
| LY_ARRAY_CREATE_GOTO(ctx, prefixes, LY_ARRAY_COUNT(orig_pref), ret, cleanup); |
| *prefix_data_p = prefixes; |
| |
| LY_ARRAY_FOR(orig_pref, u) { |
| if (orig_pref[u].prefix) { |
| prefixes[u].prefix = strdup(orig_pref[u].prefix); |
| LY_CHECK_ERR_GOTO(!prefixes[u].prefix, LOGMEM(ctx); ret = LY_EMEM, cleanup); |
| } |
| prefixes[u].mod = orig_pref[u].mod; |
| LY_ARRAY_INCREMENT(prefixes); |
| } |
| break; |
| case LY_VALUE_XML: |
| /* copy all the namespaces */ |
| LY_CHECK_GOTO(ret = ly_set_new(&ns_list), cleanup); |
| *prefix_data_p = ns_list; |
| |
| orig_ns = (struct ly_set *)prefix_data; |
| for (i = 0; i < orig_ns->count; ++i) { |
| ns = calloc(1, sizeof *ns); |
| LY_CHECK_ERR_GOTO(!ns, LOGMEM(ctx); ret = LY_EMEM, cleanup); |
| LY_CHECK_GOTO(ret = ly_set_add(ns_list, ns, 1, NULL), cleanup); |
| |
| if (((struct lyxml_ns *)orig_ns->objs[i])->prefix) { |
| ns->prefix = strdup(((struct lyxml_ns *)orig_ns->objs[i])->prefix); |
| LY_CHECK_ERR_GOTO(!ns->prefix, LOGMEM(ctx); ret = LY_EMEM, cleanup); |
| } |
| ns->uri = strdup(((struct lyxml_ns *)orig_ns->objs[i])->uri); |
| LY_CHECK_ERR_GOTO(!ns->uri, LOGMEM(ctx); ret = LY_EMEM, cleanup); |
| } |
| break; |
| case LY_VALUE_CANON: |
| case LY_VALUE_JSON: |
| case LY_VALUE_LYB: |
| assert(!prefix_data); |
| *prefix_data_p = NULL; |
| break; |
| } |
| |
| cleanup: |
| if (ret) { |
| ly_free_prefix_data(format, *prefix_data_p); |
| *prefix_data_p = NULL; |
| } |
| return ret; |
| } |
| |
| LY_ERR |
| ly_store_prefix_data(const struct ly_ctx *ctx, const void *value, size_t value_len, LY_VALUE_FORMAT format, |
| const void *prefix_data, LY_VALUE_FORMAT *format_p, void **prefix_data_p) |
| { |
| LY_ERR ret = LY_SUCCESS; |
| const struct lys_module *mod; |
| const struct lyxml_ns *ns; |
| struct lyxml_ns *new_ns; |
| struct ly_set *ns_list; |
| struct lysc_prefix *prefixes = NULL, *val_pref; |
| const char *value_iter, *value_next, *value_end; |
| uint32_t substr_len; |
| ly_bool is_prefix; |
| |
| switch (format) { |
| case LY_VALUE_SCHEMA: |
| /* copy all referenced modules as prefix - module pairs */ |
| if (!*prefix_data_p) { |
| /* new prefix data */ |
| LY_ARRAY_CREATE_GOTO(ctx, prefixes, 0, ret, cleanup); |
| *format_p = LY_VALUE_SCHEMA_RESOLVED; |
| *prefix_data_p = prefixes; |
| } else { |
| /* reuse prefix data */ |
| assert(*format_p == LY_VALUE_SCHEMA_RESOLVED); |
| prefixes = *prefix_data_p; |
| } |
| |
| /* add all used prefixes */ |
| value_end = value + value_len; |
| for (value_iter = value; value_iter; value_iter = value_next) { |
| LY_CHECK_GOTO(ret = ly_value_prefix_next(value_iter, value_end, &substr_len, &is_prefix, &value_next), cleanup); |
| if (is_prefix) { |
| /* we have a possible prefix. Do we already have the prefix? */ |
| mod = ly_resolve_prefix(ctx, value_iter, substr_len, *format_p, *prefix_data_p); |
| if (!mod) { |
| mod = ly_resolve_prefix(ctx, value_iter, substr_len, format, prefix_data); |
| if (mod) { |
| assert(*format_p == LY_VALUE_SCHEMA_RESOLVED); |
| /* store a new prefix - module pair */ |
| LY_ARRAY_NEW_GOTO(ctx, prefixes, val_pref, ret, cleanup); |
| *prefix_data_p = prefixes; |
| |
| val_pref->prefix = strndup(value_iter, substr_len); |
| LY_CHECK_ERR_GOTO(!val_pref->prefix, LOGMEM(ctx); ret = LY_EMEM, cleanup); |
| val_pref->mod = mod; |
| } /* else it is not even defined */ |
| } /* else the prefix is already present */ |
| } |
| } |
| break; |
| case LY_VALUE_XML: |
| /* copy all referenced namespaces as prefix - namespace pairs */ |
| if (!*prefix_data_p) { |
| /* new prefix data */ |
| LY_CHECK_GOTO(ret = ly_set_new(&ns_list), cleanup); |
| *format_p = LY_VALUE_XML; |
| *prefix_data_p = ns_list; |
| } else { |
| /* reuse prefix data */ |
| assert(*format_p == LY_VALUE_XML); |
| ns_list = *prefix_data_p; |
| } |
| |
| /* add all used prefixes */ |
| value_end = value + value_len; |
| for (value_iter = value; value_iter; value_iter = value_next) { |
| LY_CHECK_GOTO(ret = ly_value_prefix_next(value_iter, value_end, &substr_len, &is_prefix, &value_next), cleanup); |
| if (is_prefix) { |
| /* we have a possible prefix. Do we already have the prefix? */ |
| ns = lyxml_ns_get(ns_list, value_iter, substr_len); |
| if (!ns) { |
| ns = lyxml_ns_get(prefix_data, value_iter, substr_len); |
| if (ns) { |
| /* store a new prefix - namespace pair */ |
| new_ns = calloc(1, sizeof *new_ns); |
| LY_CHECK_ERR_GOTO(!new_ns, LOGMEM(ctx); ret = LY_EMEM, cleanup); |
| LY_CHECK_GOTO(ret = ly_set_add(ns_list, new_ns, 1, NULL), cleanup); |
| |
| new_ns->prefix = strndup(value_iter, substr_len); |
| LY_CHECK_ERR_GOTO(!new_ns->prefix, LOGMEM(ctx); ret = LY_EMEM, cleanup); |
| new_ns->uri = strdup(ns->uri); |
| LY_CHECK_ERR_GOTO(!new_ns->uri, LOGMEM(ctx); ret = LY_EMEM, cleanup); |
| } /* else it is not even defined */ |
| } /* else the prefix is already present */ |
| } |
| } |
| break; |
| case LY_VALUE_CANON: |
| case LY_VALUE_SCHEMA_RESOLVED: |
| case LY_VALUE_JSON: |
| case LY_VALUE_LYB: |
| if (!*prefix_data_p) { |
| /* new prefix data - simply copy all the prefix data */ |
| *format_p = format; |
| LY_CHECK_GOTO(ret = ly_dup_prefix_data(ctx, format, prefix_data, prefix_data_p), cleanup); |
| } /* else reuse prefix data - the prefix data are always the same, nothing to do */ |
| break; |
| } |
| |
| cleanup: |
| if (ret) { |
| ly_free_prefix_data(*format_p, *prefix_data_p); |
| *prefix_data_p = NULL; |
| } |
| return ret; |
| } |
| |
| const char * |
| ly_format2str(LY_VALUE_FORMAT format) |
| { |
| switch (format) { |
| case LY_VALUE_CANON: |
| return "canonical"; |
| case LY_VALUE_SCHEMA: |
| return "schema imports"; |
| case LY_VALUE_SCHEMA_RESOLVED: |
| return "schema stored mapping"; |
| case LY_VALUE_XML: |
| return "XML prefixes"; |
| case LY_VALUE_JSON: |
| return "JSON module names"; |
| case LY_VALUE_LYB: |
| return "LYB prefixes"; |
| default: |
| break; |
| } |
| |
| return NULL; |
| } |
| |
| API LY_ERR |
| ly_time_str2time(const char *value, time_t *time, char **fractions_s) |
| { |
| struct tm tm = {0}; |
| uint32_t i, frac_len; |
| const char *frac; |
| int64_t shift, shift_m; |
| time_t t; |
| |
| LY_CHECK_ARG_RET(NULL, value, time, LY_EINVAL); |
| |
| tm.tm_year = atoi(&value[0]) - 1900; |
| tm.tm_mon = atoi(&value[5]) - 1; |
| tm.tm_mday = atoi(&value[8]); |
| tm.tm_hour = atoi(&value[11]); |
| tm.tm_min = atoi(&value[14]); |
| tm.tm_sec = atoi(&value[17]); |
| |
| t = timegm(&tm); |
| i = 19; |
| |
| /* fractions of a second */ |
| if (value[i] == '.') { |
| ++i; |
| frac = &value[i]; |
| for (frac_len = 0; isdigit(frac[frac_len]); ++frac_len) {} |
| |
| i += frac_len; |
| } else { |
| frac = NULL; |
| } |
| |
| /* apply offset */ |
| if ((value[i] == 'Z') || (value[i] == 'z')) { |
| /* zero shift */ |
| shift = 0; |
| } else { |
| shift = strtol(&value[i], NULL, 10); |
| shift = shift * 60 * 60; /* convert from hours to seconds */ |
| shift_m = strtol(&value[i + 4], NULL, 10) * 60; /* includes conversion from minutes to seconds */ |
| /* correct sign */ |
| if (shift < 0) { |
| shift_m *= -1; |
| } |
| /* connect hours and minutes of the shift */ |
| shift = shift + shift_m; |
| } |
| |
| /* we have to shift to the opposite way to correct the time */ |
| t -= shift; |
| |
| *time = t; |
| if (fractions_s) { |
| if (frac) { |
| *fractions_s = strndup(frac, frac_len); |
| LY_CHECK_RET(!*fractions_s, LY_EMEM); |
| } else { |
| *fractions_s = NULL; |
| } |
| } |
| return LY_SUCCESS; |
| } |
| |
| API LY_ERR |
| ly_time_time2str(time_t time, const char *fractions_s, char **str) |
| { |
| struct tm tm; |
| char zoneshift[8]; |
| int32_t zonediff_h, zonediff_m; |
| |
| LY_CHECK_ARG_RET(NULL, str, LY_EINVAL); |
| |
| /* initialize the local timezone */ |
| tzset(); |
| |
| /* convert */ |
| if (!localtime_r(&time, &tm)) { |
| return LY_ESYS; |
| } |
| |
| /* get timezone offset */ |
| if (tm.tm_gmtoff == 0) { |
| /* time is Zulu (UTC) */ |
| zonediff_h = 0; |
| zonediff_m = 0; |
| } else { |
| /* timezone offset */ |
| zonediff_h = tm.tm_gmtoff / 60 / 60; |
| zonediff_m = tm.tm_gmtoff / 60 % 60; |
| } |
| sprintf(zoneshift, "%+03d:%02d", zonediff_h, zonediff_m); |
| |
| /* print */ |
| if (asprintf(str, "%04d-%02d-%02dT%02d:%02d:%02d%s%s%s", |
| tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec, |
| fractions_s ? "." : "", fractions_s ? fractions_s : "", zoneshift) == -1) { |
| return LY_EMEM; |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| API LY_ERR |
| ly_time_str2ts(const char *value, struct timespec *ts) |
| { |
| LY_ERR rc; |
| char *fractions_s, frac_buf[10] = {'0'}; |
| int frac_len; |
| |
| LY_CHECK_ARG_RET(NULL, value, ts, LY_EINVAL); |
| |
| rc = ly_time_str2time(value, &ts->tv_sec, &fractions_s); |
| LY_CHECK_RET(rc); |
| |
| /* convert fractions of a second to nanoseconds */ |
| if (fractions_s) { |
| frac_len = strlen(fractions_s); |
| memcpy(frac_buf, fractions_s, frac_len > 9 ? 9 : frac_len); |
| ts->tv_nsec = atol(frac_buf); |
| free(fractions_s); |
| } else { |
| ts->tv_nsec = 0; |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| API LY_ERR |
| ly_time_ts2str(const struct timespec *ts, char **str) |
| { |
| char frac_buf[10]; |
| |
| LY_CHECK_ARG_RET(NULL, ts, str, ts->tv_nsec <= 999999999, LY_EINVAL); |
| |
| /* convert nanoseconds to fractions of a second */ |
| if (ts->tv_nsec) { |
| sprintf(frac_buf, "%09ld", ts->tv_nsec); |
| } |
| |
| return ly_time_time2str(ts->tv_sec, ts->tv_nsec ? frac_buf : NULL, str); |
| } |