blob: bde0adc5ac9928b6f98114e2cc984b03fd4aee0e [file] [log] [blame]
/**
* @file validation.c
* @author Michal Vasko <mvasko@cesnet.cz>
* @brief Validation
*
* Copyright (c) 2019 - 2022 CESNET, z.s.p.o.
*
* This source code is licensed under BSD 3-Clause License (the "License").
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*/
#define _GNU_SOURCE /* asprintf, strdup */
#include "validation.h"
#include <assert.h>
#include <limits.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "common.h"
#include "compat.h"
#include "diff.h"
#include "hash_table.h"
#include "log.h"
#include "parser_data.h"
#include "parser_internal.h"
#include "plugins_exts.h"
#include "plugins_exts/metadata.h"
#include "plugins_types.h"
#include "set.h"
#include "tree.h"
#include "tree_data.h"
#include "tree_data_internal.h"
#include "tree_schema.h"
#include "tree_schema_internal.h"
#include "xpath.h"
LY_ERR
lyd_val_diff_add(const struct lyd_node *node, enum lyd_diff_op op, struct lyd_node **diff)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_node *new_diff = NULL;
const struct lyd_node *prev_inst;
char *key = NULL, *value = NULL, *position = NULL;
size_t buflen = 0, bufused = 0;
uint32_t pos;
assert((op == LYD_DIFF_OP_DELETE) || (op == LYD_DIFF_OP_CREATE));
if ((op == LYD_DIFF_OP_CREATE) && lysc_is_userordered(node->schema)) {
if (lysc_is_dup_inst_list(node->schema)) {
pos = lyd_list_pos(node);
/* generate position meta */
if (pos > 1) {
if (asprintf(&position, "%" PRIu32, pos - 1) == -1) {
LOGMEM(LYD_CTX(node));
ret = LY_EMEM;
goto cleanup;
}
} else {
position = strdup("");
LY_CHECK_ERR_GOTO(!position, LOGMEM(LYD_CTX(node)); ret = LY_EMEM, cleanup);
}
} else {
if (node->prev->next && (node->prev->schema == node->schema)) {
prev_inst = node->prev;
} else {
/* first instance */
prev_inst = NULL;
}
if (node->schema->nodetype == LYS_LIST) {
/* generate key meta */
if (prev_inst) {
LY_CHECK_GOTO(ret = lyd_path_list_predicate(prev_inst, &key, &buflen, &bufused, 0), cleanup);
} else {
key = strdup("");
LY_CHECK_ERR_GOTO(!key, LOGMEM(LYD_CTX(node)); ret = LY_EMEM, cleanup);
}
} else {
/* generate value meta */
if (prev_inst) {
value = strdup(lyd_get_value(prev_inst));
LY_CHECK_ERR_GOTO(!value, LOGMEM(LYD_CTX(node)); ret = LY_EMEM, cleanup);
} else {
value = strdup("");
LY_CHECK_ERR_GOTO(!value, LOGMEM(LYD_CTX(node)); ret = LY_EMEM, cleanup);
}
}
}
}
/* create new diff tree */
LY_CHECK_GOTO(ret = lyd_diff_add(node, op, NULL, NULL, key, value, position, NULL, NULL, &new_diff), cleanup);
/* merge into existing diff */
ret = lyd_diff_merge_all(diff, new_diff, 0);
cleanup:
lyd_free_tree(new_diff);
free(key);
free(value);
free(position);
return ret;
}
/**
* @brief Evaluate all relevant "when" conditions of a node.
*
* @param[in] tree Data tree.
* @param[in] node Node whose relevant when conditions will be evaluated.
* @param[in] schema Schema node of @p node. It may not be possible to use directly if @p node is opaque.
* @param[in] xpath_options Additional XPath options to use.
* @param[out] disabled First when that evaluated false, if any.
* @return LY_SUCCESS on success.
* @return LY_EINCOMPLETE if a referenced node does not have its when evaluated.
* @return LY_ERR value on error.
*/
static LY_ERR
lyd_validate_node_when(const struct lyd_node *tree, const struct lyd_node *node, const struct lysc_node *schema,
uint32_t xpath_options, const struct lysc_when **disabled)
{
LY_ERR ret;
const struct lyd_node *ctx_node;
struct lyxp_set xp_set;
LY_ARRAY_COUNT_TYPE u;
assert(!node->schema || (node->schema == schema));
*disabled = NULL;
do {
const struct lysc_when *when;
struct lysc_when **when_list = lysc_node_when(schema);
LY_ARRAY_FOR(when_list, u) {
when = when_list[u];
/* get context node */
if (when->context == schema) {
ctx_node = node;
} else {
assert((!when->context && !node->parent) || (when->context == node->parent->schema));
ctx_node = lyd_parent(node);
}
/* evaluate when */
memset(&xp_set, 0, sizeof xp_set);
ret = lyxp_eval(LYD_CTX(node), when->cond, schema->module, LY_VALUE_SCHEMA_RESOLVED, when->prefixes,
ctx_node, ctx_node, tree, NULL, &xp_set, LYXP_SCHEMA | xpath_options);
lyxp_set_cast(&xp_set, LYXP_SET_BOOLEAN);
/* return error or LY_EINCOMPLETE for dependant unresolved when */
LY_CHECK_RET(ret);
if (!xp_set.val.bln) {
/* false when */
*disabled = when;
return LY_SUCCESS;
}
}
schema = schema->parent;
} while (schema && (schema->nodetype & (LYS_CASE | LYS_CHOICE)));
return LY_SUCCESS;
}
/**
* @brief Evaluate when conditions of collected unres nodes.
*
* @param[in,out] tree Data tree, is updated if some nodes are autodeleted.
* @param[in] mod Module of the @p tree to take into consideration when deleting @p tree and moving it.
* If set, it is expected @p tree should point to the first node of @p mod. Otherwise it will simply be
* the first top-level sibling.
* @param[in] node_when Set with nodes with "when" conditions.
* @param[in] xpath_options Additional XPath options to use.
* @param[in,out] node_types Set with nodes with unresolved types, remove any with false "when" parents.
* @param[in,out] diff Validation diff.
* @return LY_SUCCESS on success.
* @return LY_ERR value on error.
*/
static LY_ERR
lyd_validate_unres_when(struct lyd_node **tree, const struct lys_module *mod, struct ly_set *node_when,
uint32_t xpath_options, struct ly_set *node_types, struct lyd_node **diff)
{
LY_ERR ret;
uint32_t i, idx;
const struct lysc_when *disabled;
struct lyd_node *node = NULL, *elem;
if (!node_when->count) {
return LY_SUCCESS;
}
i = node_when->count;
do {
--i;
node = node_when->dnodes[i];
LOG_LOCSET(node->schema, node, NULL, NULL);
/* evaluate all when expressions that affect this node's existence */
ret = lyd_validate_node_when(*tree, node, node->schema, xpath_options, &disabled);
if (!ret) {
if (disabled) {
/* when false */
if (node->flags & LYD_WHEN_TRUE) {
/* autodelete */
lyd_del_move_root(tree, node, mod);
if (diff) {
/* add into diff */
ret = lyd_val_diff_add(node, LYD_DIFF_OP_DELETE, diff);
LY_CHECK_GOTO(ret, error);
}
/* remove from node types set, if present */
if (node_types) {
LYD_TREE_DFS_BEGIN(node, elem) {
if (ly_set_contains(node_types, elem, &idx)) {
LY_CHECK_GOTO(ret = ly_set_rm_index(node_types, idx, NULL), error);
}
LYD_TREE_DFS_END(node, elem);
}
}
/* free */
lyd_free_tree(node);
} else {
/* invalid data */
LOGVAL(LYD_CTX(node), LY_VCODE_NOWHEN, disabled->cond->expr);
ret = LY_EVALID;
goto error;
}
} else {
/* when true */
node->flags |= LYD_WHEN_TRUE;
}
/* remove this node from the set keeping the order, its when was resolved */
ly_set_rm_index_ordered(node_when, i, NULL);
} else if (ret != LY_EINCOMPLETE) {
/* error */
goto error;
}
LOG_LOCBACK(1, 1, 0, 0);
} while (i);
return LY_SUCCESS;
error:
LOG_LOCBACK(1, 1, 0, 0);
return ret;
}
LY_ERR
lyd_validate_unres(struct lyd_node **tree, const struct lys_module *mod, enum lyd_type data_type, struct ly_set *node_when,
uint32_t when_xp_opts, struct ly_set *node_types, struct ly_set *meta_types, struct ly_set *ext_val,
uint32_t val_opts, struct lyd_node **diff)
{
LY_ERR ret = LY_SUCCESS;
uint32_t i;
if (ext_val && ext_val->count) {
/* first validate parsed extension data */
i = ext_val->count;
do {
--i;
struct lyd_ctx_ext_val *ext_v = ext_val->objs[i];
/* validate extension data */
ret = ext_v->ext->def->plugin->validate(ext_v->ext, ext_v->sibling, *tree, data_type, val_opts, diff);
LY_CHECK_RET(ret);
/* remove this item from the set */
ly_set_rm_index(ext_val, i, free);
} while (i);
}
if (node_when) {
/* evaluate all when conditions */
uint32_t prev_count;
do {
prev_count = node_when->count;
LY_CHECK_RET(lyd_validate_unres_when(tree, mod, node_when, when_xp_opts, node_types, diff));
/* there must have been some when conditions resolved */
} while (prev_count > node_when->count);
/* there could have been no cyclic when dependencies, checked during compilation */
assert(!node_when->count);
}
if (node_types && node_types->count) {
/* finish incompletely validated terminal values (traverse from the end for efficient set removal) */
i = node_types->count;
do {
--i;
struct lyd_node_term *node = node_types->objs[i];
struct lysc_type *type = ((struct lysc_node_leaf *)node->schema)->type;
/* resolve the value of the node */
LOG_LOCSET(node->schema, &node->node, NULL, NULL);
ret = lyd_value_validate_incomplete(LYD_CTX(node), type, &node->value, &node->node, *tree);
LOG_LOCBACK(node->schema ? 1 : 0, 1, 0, 0);
LY_CHECK_RET(ret);
/* remove this node from the set */
ly_set_rm_index(node_types, i, NULL);
} while (i);
}
if (meta_types && meta_types->count) {
/* ... and metadata values */
i = meta_types->count;
do {
--i;
struct lyd_meta *meta = meta_types->objs[i];
struct lysc_type *type = *(struct lysc_type **)meta->annotation->substmts[ANNOTATION_SUBSTMT_TYPE].storage;
/* validate and store the value of the metadata */
ret = lyd_value_validate_incomplete(LYD_CTX(meta->parent), type, &meta->value, meta->parent, *tree);
LY_CHECK_RET(ret);
/* remove this attr from the set */
ly_set_rm_index(meta_types, i, NULL);
} while (i);
}
return ret;
}
/**
* @brief Validate instance duplication.
*
* @param[in] first First sibling to search in.
* @param[in] node Data node instance to check.
* @return LY_ERR value.
*/
static LY_ERR
lyd_validate_duplicates(const struct lyd_node *first, const struct lyd_node *node)
{
struct lyd_node **match_p;
ly_bool fail = 0;
assert(node->flags & LYD_NEW);
/* key-less list or non-configuration leaf-list */
if (lysc_is_dup_inst_list(node->schema)) {
/* duplicate instances allowed */
return LY_SUCCESS;
}
/* find exactly the same next instance using hashes if possible */
if (node->parent && node->parent->children_ht) {
if (!lyht_find_next(node->parent->children_ht, &node, node->hash, (void **)&match_p)) {
fail = 1;
}
} else {
for ( ; first; first = first->next) {
if (first == node) {
continue;
}
if (node->schema->nodetype & (LYD_NODE_ANY | LYS_LEAF)) {
if (first->schema == node->schema) {
fail = 1;
break;
}
} else if (!lyd_compare_single(first, node, 0)) {
fail = 1;
break;
}
}
}
if (fail) {
LOGVAL(node->schema->module->ctx, LY_VCODE_DUP, node->schema->name);
return LY_EVALID;
}
return LY_SUCCESS;
}
/**
* @brief Validate multiple case data existence with possible autodelete.
*
* @param[in,out] first First sibling to search in, is updated if needed.
* @param[in] mod Module of the siblings, NULL for nested siblings.
* @param[in] choic Choice node whose cases to check.
* @param[in,out] diff Validation diff.
* @return LY_ERR value.
*/
static LY_ERR
lyd_validate_cases(struct lyd_node **first, const struct lys_module *mod, const struct lysc_node_choice *choic,
struct lyd_node **diff)
{
const struct lysc_node *scase, *iter, *old_case = NULL, *new_case = NULL;
struct lyd_node *match, *to_del;
ly_bool found;
LOG_LOCSET(&choic->node, NULL, NULL, NULL);
LY_LIST_FOR((struct lysc_node *)choic->cases, scase) {
found = 0;
iter = NULL;
match = NULL;
while ((match = lys_getnext_data(match, *first, &iter, scase, NULL))) {
if (match->flags & LYD_NEW) {
/* a new case data found, nothing more to look for */
found = 2;
break;
} else {
/* and old case data found */
if (found == 0) {
found = 1;
}
}
}
if (found == 1) {
/* there should not be 2 old cases */
if (old_case) {
/* old data from 2 cases */
LOGVAL(choic->module->ctx, LY_VCODE_DUPCASE, old_case->name, scase->name);
LOG_LOCBACK(1, 0, 0, 0);
return LY_EVALID;
}
/* remember an old existing case */
old_case = scase;
} else if (found == 2) {
if (new_case) {
/* new data from 2 cases */
LOGVAL(choic->module->ctx, LY_VCODE_DUPCASE, new_case->name, scase->name);
LOG_LOCBACK(1, 0, 0, 0);
return LY_EVALID;
}
/* remember a new existing case */
new_case = scase;
}
}
LOG_LOCBACK(1, 0, 0, 0);
if (old_case && new_case) {
/* auto-delete old case */
iter = NULL;
match = NULL;
to_del = NULL;
while ((match = lys_getnext_data(match, *first, &iter, old_case, NULL))) {
lyd_del_move_root(first, to_del, mod);
/* free previous node */
lyd_free_tree(to_del);
if (diff) {
/* add into diff */
LY_CHECK_RET(lyd_val_diff_add(match, LYD_DIFF_OP_DELETE, diff));
}
to_del = match;
}
lyd_del_move_root(first, to_del, mod);
lyd_free_tree(to_del);
}
return LY_SUCCESS;
}
/**
* @brief Check whether a schema node can have some default values (true for NP containers as well).
*
* @param[in] schema Schema node to check.
* @return non-zero if yes,
* @return 0 otherwise.
*/
static int
lyd_val_has_default(const struct lysc_node *schema)
{
switch (schema->nodetype) {
case LYS_LEAF:
if (((struct lysc_node_leaf *)schema)->dflt) {
return 1;
}
break;
case LYS_LEAFLIST:
if (((struct lysc_node_leaflist *)schema)->dflts) {
return 1;
}
break;
case LYS_CONTAINER:
if (!(schema->flags & LYS_PRESENCE)) {
return 1;
}
break;
default:
break;
}
return 0;
}
/**
* @brief Properly delete a node as part of autodelete validation tasks.
*
* @param[in,out] first First sibling, is updated if needed.
* @param[in] node Node instance to delete.
* @param[in] mod Module of the siblings, NULL for nested siblings.
* @param[in,out] next_p Temporary LY_LIST_FOR_SAFE next pointer, is updated if needed.
* @param[in,out] diff Validation diff.
*/
static void
lyd_validate_autodel_node_del(struct lyd_node **first, struct lyd_node *node, const struct lys_module *mod,
struct lyd_node **next_p, struct lyd_node **diff)
{
struct lyd_node *iter;
lyd_del_move_root(first, node, mod);
if (node == *next_p) {
*next_p = (*next_p)->next;
}
if (diff) {
/* add into diff */
if ((node->schema->nodetype == LYS_CONTAINER) && !(node->schema->flags & LYS_PRESENCE)) {
/* we do not want to track NP container changes, but remember any removed children */
LY_LIST_FOR(lyd_child(node), iter) {
lyd_val_diff_add(iter, LYD_DIFF_OP_DELETE, diff);
}
} else {
lyd_val_diff_add(node, LYD_DIFF_OP_DELETE, diff);
}
}
lyd_free_tree(node);
}
/**
* @brief Autodelete old instances to prevent validation errors.
*
* @param[in,out] first First sibling to search in, is updated if needed.
* @param[in] node New data node instance to check.
* @param[in] mod Module of the siblings, NULL for nested siblings.
* @param[in,out] next_p Temporary LY_LIST_FOR_SAFE next pointer, is updated if needed.
* @param[in,out] diff Validation diff.
*/
static void
lyd_validate_autodel_dup(struct lyd_node **first, struct lyd_node *node, const struct lys_module *mod,
struct lyd_node **next_p, struct lyd_node **diff)
{
struct lyd_node *match, *next;
assert(node->flags & LYD_NEW);
if (lyd_val_has_default(node->schema)) {
assert(node->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_CONTAINER));
LYD_LIST_FOR_INST_SAFE(*first, node->schema, next, match) {
if ((match->flags & LYD_DEFAULT) && !(match->flags & LYD_NEW)) {
/* default instance found, remove it */
lyd_validate_autodel_node_del(first, match, mod, next_p, diff);
/* remove only a single container/leaf default instance, if there are more, it is an error */
if (node->schema->nodetype & (LYS_LEAF | LYS_CONTAINER)) {
break;
}
}
}
}
}
/**
* @brief Autodelete leftover default nodes of deleted cases (that have no existing explicit data).
*
* @param[in,out] first First sibling to search in, is updated if needed.
* @param[in] node Default data node instance to check.
* @param[in] mod Module of the siblings, NULL for nested siblings.
* @param[in,out] next_p Temporary LY_LIST_FOR_SAFE next pointer, is updated if needed.
* @param[in,out] diff Validation diff.
*/
static void
lyd_validate_autodel_case_dflt(struct lyd_node **first, struct lyd_node *node, const struct lys_module *mod,
struct lyd_node **next_p, struct lyd_node **diff)
{
struct lysc_node_choice *choic;
struct lyd_node *iter = NULL;
const struct lysc_node *slast = NULL;
assert(node->flags & LYD_DEFAULT);
if (!node->schema->parent || (node->schema->parent->nodetype != LYS_CASE)) {
/* the default node is not a descendant of a case */
return;
}
choic = (struct lysc_node_choice *)node->schema->parent->parent;
assert(choic->nodetype == LYS_CHOICE);
if (choic->dflt && (choic->dflt == (struct lysc_node_case *)node->schema->parent)) {
/* data of a default case, keep them */
return;
}
/* try to find an explicit node of the case */
while ((iter = lys_getnext_data(iter, *first, &slast, node->schema->parent, NULL))) {
if (!(iter->flags & LYD_DEFAULT)) {
break;
}
}
if (!iter) {
/* there are only default nodes of the case meaning it does not exist and neither should any default nodes
* of the case, remove this one default node */
lyd_validate_autodel_node_del(first, node, mod, next_p, diff);
}
}
/**
* @brief Validate new siblings in choices, recursively for nested choices.
*
* @param[in,out] first First sibling.
* @param[in] sparent Schema parent of the siblings, NULL for top-level siblings.
* @param[in] mod Module of the siblings, NULL for nested siblings.
* @param[in,out] diff Validation diff.
* @return LY_ERR value.
*/
static LY_ERR
lyd_validate_choice_r(struct lyd_node **first, const struct lysc_node *sparent, const struct lys_module *mod,
struct lyd_node **diff)
{
const struct lysc_node *snode = NULL;
while (*first && (snode = lys_getnext(snode, sparent, mod ? mod->compiled : NULL, LYS_GETNEXT_WITHCHOICE))) {
/* check case duplicites */
if (snode->nodetype == LYS_CHOICE) {
LY_CHECK_RET(lyd_validate_cases(first, mod, (struct lysc_node_choice *)snode, diff));
/* check for nested choice */
LY_CHECK_RET(lyd_validate_choice_r(first, snode, mod, diff));
}
}
return LY_SUCCESS;
}
LY_ERR
lyd_validate_new(struct lyd_node **first, const struct lysc_node *sparent, const struct lys_module *mod,
struct lyd_node **diff)
{
struct lyd_node *next, *node;
assert(first && (sparent || mod));
/* validate choices */
LY_CHECK_RET(lyd_validate_choice_r(first, sparent, mod, diff));
LY_LIST_FOR_SAFE(*first, next, node) {
if (!node->schema || (mod && (lyd_owner_module(node) != mod))) {
/* opaque node or all top-level data from this module checked */
break;
}
if (!(node->flags & (LYD_NEW | LYD_DEFAULT))) {
/* check only new and default nodes */
continue;
}
LOG_LOCSET(node->schema, node, NULL, NULL);
if (node->flags & LYD_NEW) {
LY_ERR ret;
/* remove old default(s) of the new node if it exists */
lyd_validate_autodel_dup(first, node, mod, &next, diff);
/* then check new node instance duplicities */
ret = lyd_validate_duplicates(*first, node);
LY_CHECK_ERR_RET(ret, LOG_LOCBACK(node->schema ? 1 : 0, 1, 0, 0), ret);
/* this node is valid */
node->flags &= ~LYD_NEW;
}
LOG_LOCBACK(node->schema ? 1 : 0, 1, 0, 0);
if (node->flags & LYD_DEFAULT) {
/* remove leftover default nodes from a no-longer existing case */
lyd_validate_autodel_case_dflt(first, node, mod, &next, diff);
}
}
return LY_SUCCESS;
}
/**
* @brief Evaluate any "when" conditions of a non-existent data node with existing parent.
*
* @param[in] first First data sibling of the non-existing node.
* @param[in] parent Data parent of the non-existing node.
* @param[in] snode Schema node of the non-existing node.
* @param[out] disabled First when that evaluated false, if any.
* @return LY_ERR value.
*/
static LY_ERR
lyd_validate_dummy_when(const struct lyd_node *first, const struct lyd_node *parent, const struct lysc_node *snode,
const struct lysc_when **disabled)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_node *tree, *dummy = NULL;
uint32_t xp_opts;
/* find root */
if (parent) {
tree = (struct lyd_node *)parent;
while (tree->parent) {
tree = lyd_parent(tree);
}
tree = lyd_first_sibling(tree);
} else {
/* is the first sibling from the same module, but may not be the actual first */
tree = lyd_first_sibling(first);
}
/* create dummy opaque node */
ret = lyd_new_opaq((struct lyd_node *)parent, snode->module->ctx, snode->name, NULL, NULL, snode->module->name, &dummy);
LY_CHECK_GOTO(ret, cleanup);
/* connect it if needed */
if (!parent) {
if (first) {
lyd_insert_sibling((struct lyd_node *)first, dummy, &tree);
} else {
assert(!tree);
tree = dummy;
}
}
/* explicitly specified accesible tree */
if (snode->flags & LYS_CONFIG_W) {
xp_opts = LYXP_ACCESS_TREE_CONFIG;
} else {
xp_opts = LYXP_ACCESS_TREE_ALL;
}
/* evaluate all when */
ret = lyd_validate_node_when(tree, dummy, snode, xp_opts, disabled);
if (ret == LY_EINCOMPLETE) {
/* all other when must be resolved by now */
LOGINT(snode->module->ctx);
ret = LY_EINT;
goto cleanup;
} else if (ret) {
/* error */
goto cleanup;
}
cleanup:
lyd_free_tree(dummy);
return ret;
}
/**
* @brief Validate mandatory node existence.
*
* @param[in] first First sibling to search in.
* @param[in] parent Data parent.
* @param[in] snode Schema node to validate.
* @return LY_ERR value.
*/
static LY_ERR
lyd_validate_mandatory(const struct lyd_node *first, const struct lyd_node *parent, const struct lysc_node *snode)
{
const struct lysc_when *disabled;
if (snode->nodetype == LYS_CHOICE) {
/* some data of a choice case exist */
if (lys_getnext_data(NULL, first, NULL, snode, NULL)) {
return LY_SUCCESS;
}
} else {
assert(snode->nodetype & (LYS_LEAF | LYS_CONTAINER | LYD_NODE_ANY));
if (!lyd_find_sibling_val(first, snode, NULL, 0, NULL)) {
/* data instance found */
return LY_SUCCESS;
}
}
disabled = NULL;
if (lysc_has_when(snode)) {
/* if there are any when conditions, they must be true for a validation error */
LY_CHECK_RET(lyd_validate_dummy_when(first, parent, snode, &disabled));
}
if (!disabled) {
/* node instance not found */
if (snode->nodetype == LYS_CHOICE) {
LOGVAL_APPTAG(snode->module->ctx, "missing-choice", LY_VCODE_NOMAND_CHOIC, snode->name);
} else {
LOGVAL(snode->module->ctx, LY_VCODE_NOMAND, snode->name);
}
return LY_EVALID;
}
return LY_SUCCESS;
}
/**
* @brief Validate min/max-elements constraints, if any.
*
* @param[in] first First sibling to search in.
* @param[in] parent Data parent.
* @param[in] snode Schema node to validate.
* @param[in] min Minimum number of elements, 0 for no restriction.
* @param[in] max Max number of elements, 0 for no restriction.
* @return LY_ERR value.
*/
static LY_ERR
lyd_validate_minmax(const struct lyd_node *first, const struct lyd_node *parent, const struct lysc_node *snode,
uint32_t min, uint32_t max)
{
uint32_t count = 0;
struct lyd_node *iter;
const struct lysc_when *disabled;
ly_bool invalid_instance = 0;
assert(min || max);
LYD_LIST_FOR_INST(first, snode, iter) {
++count;
if (min && (count == min)) {
/* satisfied */
min = 0;
if (!max) {
/* nothing more to check */
break;
}
}
if (max && (count > max)) {
/* not satisifed */
LOG_LOCSET(NULL, iter, NULL, NULL);
invalid_instance = 1;
break;
}
}
if (min) {
assert(count < min);
disabled = NULL;
if (lysc_has_when(snode)) {
/* if there are any when conditions, they must be true for a validation error */
LY_CHECK_RET(lyd_validate_dummy_when(first, parent, snode, &disabled));
}
if (!disabled) {
LOGVAL_APPTAG(snode->module->ctx, "too-few-elements", LY_VCODE_NOMIN, snode->name);
goto failure;
}
} else if (max && (count > max)) {
LOGVAL_APPTAG(snode->module->ctx, "too-many-elements", LY_VCODE_NOMAX, snode->name);
goto failure;
}
return LY_SUCCESS;
failure:
LOG_LOCBACK(0, invalid_instance, 0, 0);
return LY_EVALID;
}
/**
* @brief Find node referenced by a list unique statement.
*
* @param[in] uniq_leaf Unique leaf to find.
* @param[in] list List instance to use for the search.
* @return Found leaf,
* @return NULL if no leaf found.
*/
static struct lyd_node *
lyd_val_uniq_find_leaf(const struct lysc_node_leaf *uniq_leaf, const struct lyd_node *list)
{
struct lyd_node *node;
const struct lysc_node *iter;
size_t depth = 0, i;
/* get leaf depth */
for (iter = &uniq_leaf->node; iter && (iter != list->schema); iter = lysc_data_parent(iter)) {
++depth;
}
node = (struct lyd_node *)list;
while (node && depth) {
/* find schema node with this depth */
for (i = depth - 1, iter = &uniq_leaf->node; i; iter = lysc_data_parent(iter)) {
--i;
}
/* find iter instance in children */
assert(iter->nodetype & (LYS_CONTAINER | LYS_LEAF));
lyd_find_sibling_val(lyd_child(node), iter, NULL, 0, &node);
--depth;
}
return node;
}
/**
* @brief Callback for comparing 2 list unique leaf values.
*
* Implementation of ::lyht_value_equal_cb.
*
* @param[in] cb_data 0 to compare all uniques, n to compare only n-th unique.
*/
static ly_bool
lyd_val_uniq_list_equal(void *val1_p, void *val2_p, ly_bool UNUSED(mod), void *cb_data)
{
struct ly_ctx *ctx;
struct lysc_node_list *slist;
struct lyd_node *diter, *first, *second;
struct lyd_value *val1, *val2;
char *path1, *path2, *uniq_str, *ptr;
LY_ARRAY_COUNT_TYPE u, v, action;
assert(val1_p && val2_p);
first = *((struct lyd_node **)val1_p);
second = *((struct lyd_node **)val2_p);
action = (uintptr_t)cb_data;
assert(first && (first->schema->nodetype == LYS_LIST));
assert(second && (second->schema == first->schema));
ctx = first->schema->module->ctx;
slist = (struct lysc_node_list *)first->schema;
/* compare unique leaves */
if (action > 0) {
u = action - 1;
if (u < LY_ARRAY_COUNT(slist->uniques)) {
goto uniquecheck;
}
}
LY_ARRAY_FOR(slist->uniques, u) {
uniquecheck:
LY_ARRAY_FOR(slist->uniques[u], v) {
/* first */
diter = lyd_val_uniq_find_leaf(slist->uniques[u][v], first);
if (diter) {
val1 = &((struct lyd_node_term *)diter)->value;
} else {
/* use default value */
val1 = slist->uniques[u][v]->dflt;
}
/* second */
diter = lyd_val_uniq_find_leaf(slist->uniques[u][v], second);
if (diter) {
val2 = &((struct lyd_node_term *)diter)->value;
} else {
/* use default value */
val2 = slist->uniques[u][v]->dflt;
}
if (!val1 || !val2 || val1->realtype->plugin->compare(val1, val2)) {
/* values differ or either one is not set */
break;
}
}
if (v && (v == LY_ARRAY_COUNT(slist->uniques[u]))) {
/* all unique leafs are the same in this set, create this nice error */
path1 = lyd_path(first, LYD_PATH_STD, NULL, 0);
path2 = lyd_path(second, LYD_PATH_STD, NULL, 0);
/* use buffer to rebuild the unique string */
#define UNIQ_BUF_SIZE 1024
uniq_str = malloc(UNIQ_BUF_SIZE);
uniq_str[0] = '\0';
ptr = uniq_str;
LY_ARRAY_FOR(slist->uniques[u], v) {
if (v) {
strcpy(ptr, " ");
++ptr;
}
ptr = lysc_path_until((struct lysc_node *)slist->uniques[u][v], &slist->node, LYSC_PATH_LOG,
ptr, UNIQ_BUF_SIZE - (ptr - uniq_str));
if (!ptr) {
/* path will be incomplete, whatever */
break;
}
ptr += strlen(ptr);
}
LOG_LOCSET(NULL, second, NULL, NULL);
LOGVAL_APPTAG(ctx, "data-not-unique", LY_VCODE_NOUNIQ, uniq_str, path1, path2);
LOG_LOCBACK(0, 1, 0, 0);
free(path1);
free(path2);
free(uniq_str);
#undef UNIQ_BUF_SIZE
return 1;
}
if (action > 0) {
/* done */
return 0;
}
}
return 0;
}
/**
* @brief Validate list unique leaves.
*
* @param[in] first First sibling to search in.
* @param[in] snode Schema node to validate.
* @param[in] uniques List unique arrays to validate.
* @return LY_ERR value.
*/
static LY_ERR
lyd_validate_unique(const struct lyd_node *first, const struct lysc_node *snode, const struct lysc_node_leaf ***uniques)
{
const struct lyd_node *diter;
struct ly_set *set;
LY_ARRAY_COUNT_TYPE u, v, x = 0;
LY_ERR ret = LY_SUCCESS;
uint32_t hash, i, size = 0;
size_t key_len;
ly_bool dyn;
const void *hash_key;
void *cb_data;
struct hash_table **uniqtables = NULL;
struct lyd_value *val;
struct ly_ctx *ctx = snode->module->ctx;
assert(uniques);
/* get all list instances */
LY_CHECK_RET(ly_set_new(&set));
LY_LIST_FOR(first, diter) {
if (diter->schema == snode) {
ret = ly_set_add(set, (void *)diter, 1, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
}
if (set->count == 2) {
/* simple comparison */
if (lyd_val_uniq_list_equal(&set->objs[0], &set->objs[1], 0, (void *)0)) {
/* instance duplication */
ret = LY_EVALID;
goto cleanup;
}
} else if (set->count > 2) {
/* use hashes for comparison */
/* first, allocate the table, the size depends on number of items in the set,
* the following code detects number of upper zero bits in the items' counter value ... */
for (i = (sizeof set->count * CHAR_BIT) - 1; i > 0; i--) {
size = set->count << i;
size = size >> i;
if (size == set->count) {
break;
}
}
LY_CHECK_ERR_GOTO(!i, LOGINT(ctx); ret = LY_EINT, cleanup);
/* ... and then we convert it to the position of the highest non-zero bit ... */
i = (sizeof set->count * CHAR_BIT) - i;
/* ... and by using it to shift 1 to the left we get the closest sufficient hash table size */
size = 1 << i;
uniqtables = malloc(LY_ARRAY_COUNT(uniques) * sizeof *uniqtables);
LY_CHECK_ERR_GOTO(!uniqtables, LOGMEM(ctx); ret = LY_EMEM, cleanup);
x = LY_ARRAY_COUNT(uniques);
for (v = 0; v < x; v++) {
cb_data = (void *)(uintptr_t)(v + 1L);
uniqtables[v] = lyht_new(size, sizeof(struct lyd_node *), lyd_val_uniq_list_equal, cb_data, 0);
LY_CHECK_ERR_GOTO(!uniqtables[v], LOGMEM(ctx); ret = LY_EMEM, cleanup);
}
for (i = 0; i < set->count; i++) {
/* loop for unique - get the hash for the instances */
for (u = 0; u < x; u++) {
val = NULL;
for (v = hash = 0; v < LY_ARRAY_COUNT(uniques[u]); v++) {
diter = lyd_val_uniq_find_leaf(uniques[u][v], set->objs[i]);
if (diter) {
val = &((struct lyd_node_term *)diter)->value;
} else {
/* use default value */
val = uniques[u][v]->dflt;
}
if (!val) {
/* unique item not present nor has default value */
break;
}
/* get hash key */
hash_key = val->realtype->plugin->print(NULL, val, LY_VALUE_LYB, NULL, &dyn, &key_len);
hash = dict_hash_multi(hash, hash_key, key_len);
if (dyn) {
free((void *)hash_key);
}
}
if (!val) {
/* skip this list instance since its unique set is incomplete */
continue;
}
/* finish the hash value */
hash = dict_hash_multi(hash, NULL, 0);
/* insert into the hashtable */
ret = lyht_insert(uniqtables[u], &set->objs[i], hash, NULL);
if (ret == LY_EEXIST) {
/* instance duplication */
ret = LY_EVALID;
}
LY_CHECK_GOTO(ret != LY_SUCCESS, cleanup);
}
}
}
cleanup:
ly_set_free(set, NULL);
for (v = 0; v < x; v++) {
if (!uniqtables[v]) {
/* failed when allocating uniquetables[j], following j are not allocated */
break;
}
lyht_free(uniqtables[v]);
}
free(uniqtables);
return ret;
}
/**
* @brief Validate data siblings based on generic schema node restrictions, recursively for schema-only nodes.
*
* @param[in] first First sibling to search in.
* @param[in] parent Data parent.
* @param[in] sparent Schema parent of the nodes to check.
* @param[in] mod Module of the nodes to check.
* @param[in] val_opts Validation options, see @ref datavalidationoptions.
* @param[in] int_opts Internal parser options.
* @return LY_ERR value.
*/
static LY_ERR
lyd_validate_siblings_schema_r(const struct lyd_node *first, const struct lyd_node *parent,
const struct lysc_node *sparent, const struct lysc_module *mod, uint32_t val_opts, uint32_t int_opts)
{
LY_ERR ret = LY_SUCCESS;
const struct lysc_node *snode = NULL, *scase;
struct lysc_node_list *slist;
struct lysc_node_leaflist *sllist;
uint32_t getnext_opts;
getnext_opts = LYS_GETNEXT_WITHCHOICE | (int_opts & LYD_INTOPT_REPLY ? LYS_GETNEXT_OUTPUT : 0);
/* disabled nodes are skipped by lys_getnext */
while ((snode = lys_getnext(snode, sparent, mod, getnext_opts))) {
if ((val_opts & LYD_VALIDATE_NO_STATE) && (snode->flags & LYS_CONFIG_R)) {
continue;
}
LOG_LOCSET(snode, NULL, NULL, NULL);
/* check min-elements and max-elements */
if (snode->nodetype == LYS_LIST) {
slist = (struct lysc_node_list *)snode;
if (slist->min || slist->max) {
ret = lyd_validate_minmax(first, parent, snode, slist->min, slist->max);
LY_CHECK_GOTO(ret, error);
}
} else if (snode->nodetype == LYS_LEAFLIST) {
sllist = (struct lysc_node_leaflist *)snode;
if (sllist->min || sllist->max) {
ret = lyd_validate_minmax(first, parent, snode, sllist->min, sllist->max);
LY_CHECK_GOTO(ret, error);
}
} else if (snode->flags & LYS_MAND_TRUE) {
/* check generic mandatory existence */
ret = lyd_validate_mandatory(first, parent, snode);
LY_CHECK_GOTO(ret, error);
}
/* check unique */
if (snode->nodetype == LYS_LIST) {
slist = (struct lysc_node_list *)snode;
if (slist->uniques) {
ret = lyd_validate_unique(first, snode, (const struct lysc_node_leaf ***)slist->uniques);
LY_CHECK_GOTO(ret, error);
}
}
if (snode->nodetype == LYS_CHOICE) {
/* find the existing case, if any */
LY_LIST_FOR(lysc_node_child(snode), scase) {
if (lys_getnext_data(NULL, first, NULL, scase, NULL)) {
/* validate only this case */
ret = lyd_validate_siblings_schema_r(first, parent, scase, mod, val_opts, int_opts);
LY_CHECK_GOTO(ret, error);
break;
}
}
}
LOG_LOCBACK(1, 0, 0, 0);
}
return LY_SUCCESS;
error:
LOG_LOCBACK(1, 0, 0, 0);
return ret;
}
/**
* @brief Validate obsolete nodes, only warnings are printed.
*
* @param[in] node Node to check.
*/
static void
lyd_validate_obsolete(const struct lyd_node *node)
{
const struct lysc_node *snode;
snode = node->schema;
do {
if (snode->flags & LYS_STATUS_OBSLT) {
LOGWRN(snode->module->ctx, "Obsolete schema node \"%s\" instantiated in data.", snode->name);
break;
}
snode = snode->parent;
} while (snode && (snode->nodetype & (LYS_CHOICE | LYS_CASE)));
}
/**
* @brief Validate must conditions of a data node.
*
* @param[in] node Node to validate.
* @param[in] int_opts Internal parser options.
* @param[in] xpath_options Additional XPath options to use.
* @return LY_ERR value.
*/
static LY_ERR
lyd_validate_must(const struct lyd_node *node, uint32_t int_opts, uint32_t xpath_options)
{
LY_ERR ret;
struct lyxp_set xp_set;
struct lysc_must *musts;
const struct lyd_node *tree;
const struct lysc_node *schema;
const char *emsg, *eapptag;
LY_ARRAY_COUNT_TYPE u;
assert((int_opts & (LYD_INTOPT_RPC | LYD_INTOPT_REPLY)) != (LYD_INTOPT_RPC | LYD_INTOPT_REPLY));
assert((int_opts & (LYD_INTOPT_ACTION | LYD_INTOPT_REPLY)) != (LYD_INTOPT_ACTION | LYD_INTOPT_REPLY));
if (node->schema->nodetype & (LYS_ACTION | LYS_RPC)) {
if (int_opts & (LYD_INTOPT_RPC | LYD_INTOPT_ACTION)) {
schema = &((struct lysc_node_action *)node->schema)->input.node;
} else if (int_opts & LYD_INTOPT_REPLY) {
schema = &((struct lysc_node_action *)node->schema)->output.node;
} else {
LOGINT_RET(LYD_CTX(node));
}
} else {
schema = node->schema;
}
musts = lysc_node_musts(schema);
if (!musts) {
/* no must to evaluate */
return LY_SUCCESS;
}
/* find first top-level node */
for (tree = node; tree->parent; tree = lyd_parent(tree)) {}
tree = lyd_first_sibling(tree);
LY_ARRAY_FOR(musts, u) {
memset(&xp_set, 0, sizeof xp_set);
/* evaluate must */
ret = lyxp_eval(LYD_CTX(node), musts[u].cond, node->schema->module, LY_VALUE_SCHEMA_RESOLVED,
musts[u].prefixes, node, node, tree, NULL, &xp_set, LYXP_SCHEMA | xpath_options);
if (ret == LY_EINCOMPLETE) {
LOGINT_RET(LYD_CTX(node));
} else if (ret) {
return ret;
}
/* check the result */
lyxp_set_cast(&xp_set, LYXP_SET_BOOLEAN);
if (!xp_set.val.bln) {
/* use specific error information */
emsg = musts[u].emsg;
eapptag = musts[u].eapptag ? musts[u].eapptag : "must-violation";
if (emsg) {
LOGVAL_APPTAG(LYD_CTX(node), eapptag, LYVE_DATA, "%s", emsg);
} else {
LOGVAL_APPTAG(LYD_CTX(node), eapptag, LY_VCODE_NOMUST, musts[u].cond->expr);
}
return LY_EVALID;
}
}
return LY_SUCCESS;
}
/**
* @brief Perform all remaining validation tasks, the data tree must be final when calling this function.
*
* @param[in] first First sibling.
* @param[in] parent Data parent.
* @param[in] sparent Schema parent of the siblings, NULL for top-level siblings.
* @param[in] mod Module of the siblings, NULL for nested siblings.
* @param[in] val_opts Validation options (@ref datavalidationoptions).
* @param[in] int_opts Internal parser options.
* @param[in] must_xp_opts Additional XPath options to use for evaluating "must".
* @return LY_ERR value.
*/
static LY_ERR
lyd_validate_final_r(struct lyd_node *first, const struct lyd_node *parent, const struct lysc_node *sparent,
const struct lys_module *mod, uint32_t val_opts, uint32_t int_opts, uint32_t must_xp_opts)
{
LY_ERR r;
const char *innode;
struct lyd_node *next = NULL, *node;
/* validate all restrictions of nodes themselves */
LY_LIST_FOR_SAFE(first, next, node) {
if (node->flags & LYD_EXT) {
/* ext instance data should have already been validated */
continue;
}
LOG_LOCSET(node->schema, node, NULL, NULL);
/* opaque data */
if (!node->schema) {
r = lyd_parse_opaq_error(node);
LOG_LOCBACK(0, 1, 0, 0);
return r;
}
if (!node->parent && mod && (lyd_owner_module(node) != mod)) {
/* all top-level data from this module checked */
LOG_LOCBACK(1, 1, 0, 0);
break;
}
/* no state/input/output/op data */
innode = NULL;
if ((val_opts & LYD_VALIDATE_NO_STATE) && (node->schema->flags & LYS_CONFIG_R)) {
innode = "state";
} else if ((int_opts & (LYD_INTOPT_RPC | LYD_INTOPT_ACTION)) && (node->schema->flags & LYS_IS_OUTPUT)) {
innode = "output";
} else if ((int_opts & LYD_INTOPT_REPLY) && (node->schema->flags & LYS_IS_INPUT)) {
innode = "input";
} else if (!(int_opts & (LYD_INTOPT_RPC | LYD_INTOPT_REPLY)) && (node->schema->nodetype == LYS_RPC)) {
innode = "rpc";
} else if (!(int_opts & (LYD_INTOPT_ACTION | LYD_INTOPT_REPLY)) && (node->schema->nodetype == LYS_ACTION)) {
innode = "action";
} else if (!(int_opts & LYD_INTOPT_NOTIF) && (node->schema->nodetype == LYS_NOTIF)) {
innode = "notification";
}
if (innode) {
LOGVAL(LYD_CTX(node), LY_VCODE_UNEXPNODE, innode, node->schema->name);
LOG_LOCBACK(1, 1, 0, 0);
return LY_EVALID;
}
/* obsolete data */
lyd_validate_obsolete(node);
/* node's musts */
if ((r = lyd_validate_must(node, int_opts, must_xp_opts))) {
LOG_LOCBACK(1, 1, 0, 0);
return r;
}
/* node value was checked by plugins */
/* next iter */
LOG_LOCBACK(1, 1, 0, 0);
}
/* validate schema-based restrictions */
LY_CHECK_RET(lyd_validate_siblings_schema_r(first, parent, sparent, mod ? mod->compiled : NULL, val_opts, int_opts));
LY_LIST_FOR(first, node) {
if (!node->parent && mod && (lyd_owner_module(node) != mod)) {
/* all top-level data from this module checked */
break;
}
/* validate all children recursively */
LY_CHECK_RET(lyd_validate_final_r(lyd_child(node), node, node->schema, NULL, val_opts, int_opts, must_xp_opts));
/* set default for containers */
if (node->schema && (node->schema->nodetype == LYS_CONTAINER) && !(node->schema->flags & LYS_PRESENCE)) {
LY_LIST_FOR(lyd_child(node), next) {
if (!(next->flags & LYD_DEFAULT)) {
break;
}
}
if (!next) {
node->flags |= LYD_DEFAULT;
}
}
}
return LY_SUCCESS;
}
/**
* @brief Validate extension instance data by storing it in its unres set.
*
* @param[in] sibling First sibling with ::LYD_EXT flag, all the following ones are expected to have it, too.
* @param[in,out] ext_val Set with parsed extension instance data to validate.
* @return LY_ERR value.
*/
static LY_ERR
lyd_validate_nested_ext(struct lyd_node *sibling, struct ly_set *ext_val)
{
struct lyd_node *node;
struct lyd_ctx_ext_val *ext_v;
struct lysc_ext_instance *nested_exts, *ext = NULL;
LY_ARRAY_COUNT_TYPE u;
/* check of basic assumptions */
if (!sibling->parent || !sibling->parent->schema) {
LOGINT_RET(LYD_CTX(sibling));
}
LY_LIST_FOR(sibling, node) {
if (!(node->flags & LYD_EXT)) {
LOGINT_RET(LYD_CTX(sibling));
}
}
/* try to find the extension instance */
nested_exts = sibling->parent->schema->exts;
LY_ARRAY_FOR(nested_exts, u) {
if (nested_exts[u].def->plugin->validate) {
if (ext) {
/* more extension instances with validate callback */
LOGINT_RET(LYD_CTX(sibling));
}
ext = &nested_exts[u];
}
}
if (!ext) {
/* no extension instance with validate callback */
LOGINT_RET(LYD_CTX(sibling));
}
/* store for validation */
ext_v = malloc(sizeof *ext_v);
LY_CHECK_ERR_RET(!ext_v, LOGMEM(LYD_CTX(sibling)), LY_EMEM);
ext_v->ext = ext;
ext_v->sibling = sibling;
LY_CHECK_RET(ly_set_add(ext_val, ext_v, 1, NULL));
return LY_SUCCESS;
}
/**
* @brief Validate the whole data subtree.
*
* @param[in] root Subtree root.
* @param[in,out] node_when Set for nodes with when conditions.
* @param[in,out] node_types Set for unres node types.
* @param[in,out] meta_types Set for unres metadata types.
* @param[in,out] ext_val Set for parsed extension data to validate.
* @param[in] impl_opts Implicit options, see @ref implicitoptions.
* @param[in,out] diff Validation diff.
* @return LY_ERR value.
*/
static LY_ERR
lyd_validate_subtree(struct lyd_node *root, struct ly_set *node_when, struct ly_set *node_types,
struct ly_set *meta_types, struct ly_set *ext_val, uint32_t impl_opts, struct lyd_node **diff)
{
const struct lyd_meta *meta;
struct lyd_node *node;
LYD_TREE_DFS_BEGIN(root, node) {
if (node->flags & LYD_EXT) {
/* validate using the extension instance callback */
return lyd_validate_nested_ext(node, ext_val);
}
if (!node->schema) {
/* do not validate opaque nodes */
goto next_node;
}
LY_LIST_FOR(node->meta, meta) {
if ((*(const struct lysc_type **)meta->annotation->substmts[ANNOTATION_SUBSTMT_TYPE].storage)->plugin->validate) {
/* metadata type resolution */
LY_CHECK_RET(ly_set_add(meta_types, (void *)meta, 1, NULL));
}
}
if ((node->schema->nodetype & LYD_NODE_TERM) && ((struct lysc_node_leaf *)node->schema)->type->plugin->validate) {
/* node type resolution */
LY_CHECK_RET(ly_set_add(node_types, (void *)node, 1, NULL));
} else if (node->schema->nodetype & LYD_NODE_INNER) {
/* new node validation, autodelete */
LY_CHECK_RET(lyd_validate_new(lyd_node_child_p(node), node->schema, NULL, diff));
/* add nested defaults */
LY_CHECK_RET(lyd_new_implicit_r(node, lyd_node_child_p(node), NULL, NULL, NULL, NULL, impl_opts, diff));
}
if (lysc_has_when(node->schema)) {
/* when evaluation */
LY_CHECK_RET(ly_set_add(node_when, (void *)node, 1, NULL));
}
next_node:
LYD_TREE_DFS_END(root, node);
}
return LY_SUCCESS;
}
LY_ERR
lyd_validate(struct lyd_node **tree, const struct lys_module *module, const struct ly_ctx *ctx, uint32_t val_opts,
ly_bool validate_subtree, struct ly_set *node_when_p, struct ly_set *node_types_p, struct ly_set *meta_types_p,
struct ly_set *ext_val_p, struct lyd_node **diff)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_node *first, *next, **first2, *iter;
const struct lys_module *mod;
struct ly_set node_types = {0}, meta_types = {0}, node_when = {0}, ext_val = {0};
uint32_t i = 0;
assert(tree && ctx);
assert((node_when_p && node_types_p && meta_types_p && ext_val_p) ||
(!node_when_p && !node_types_p && !meta_types_p && !ext_val_p));
if (!node_when_p) {
node_when_p = &node_when;
node_types_p = &node_types;
meta_types_p = &meta_types;
ext_val_p = &ext_val;
}
next = *tree;
while (1) {
if (val_opts & LYD_VALIDATE_PRESENT) {
mod = lyd_data_next_module(&next, &first);
} else {
mod = lyd_mod_next_module(next, module, ctx, &i, &first);
}
if (!mod) {
break;
}
if (!first || (first == *tree)) {
/* make sure first2 changes are carried to tree */
first2 = tree;
} else {
first2 = &first;
}
/* validate new top-level nodes of this module, autodelete */
ret = lyd_validate_new(first2, NULL, mod, diff);
LY_CHECK_GOTO(ret, cleanup);
/* add all top-level defaults for this module, if going to validate subtree, do not add into unres sets
* (lyd_validate_subtree() adds all the nodes in that case) */
ret = lyd_new_implicit_r(NULL, first2, NULL, mod, validate_subtree ? NULL : node_when_p,
validate_subtree ? NULL : node_types_p, (val_opts & LYD_VALIDATE_NO_STATE) ? LYD_IMPLICIT_NO_STATE : 0, diff);
LY_CHECK_GOTO(ret, cleanup);
/* our first module node pointer may no longer be the first */
first = *first2;
lyd_first_module_sibling(&first, mod);
if (!first || (first == *tree)) {
first2 = tree;
} else {
first2 = &first;
}
if (validate_subtree) {
/* process nested nodes */
LY_LIST_FOR(*first2, iter) {
if (lyd_owner_module(iter) != mod) {
break;
}
ret = lyd_validate_subtree(iter, node_when_p, node_types_p, meta_types_p, ext_val_p,
(val_opts & LYD_VALIDATE_NO_STATE) ? LYD_IMPLICIT_NO_STATE : 0, diff);
LY_CHECK_GOTO(ret, cleanup);
}
}
/* finish incompletely validated terminal values/attributes and when conditions */
ret = lyd_validate_unres(first2, mod, LYD_TYPE_DATA_YANG, node_when_p, 0, node_types_p, meta_types_p, ext_val_p,
val_opts, diff);
LY_CHECK_GOTO(ret, cleanup);
/* perform final validation that assumes the data tree is final */
ret = lyd_validate_final_r(*first2, NULL, NULL, mod, val_opts, 0, 0);
LY_CHECK_GOTO(ret, cleanup);
}
cleanup:
ly_set_erase(&node_when, NULL);
ly_set_erase(&node_types, NULL);
ly_set_erase(&meta_types, NULL);
ly_set_erase(&ext_val, free);
return ret;
}
LIBYANG_API_DEF LY_ERR
lyd_validate_all(struct lyd_node **tree, const struct ly_ctx *ctx, uint32_t val_opts, struct lyd_node **diff)
{
LY_CHECK_ARG_RET(NULL, tree, *tree || ctx, LY_EINVAL);
LY_CHECK_CTX_EQUAL_RET(*tree ? LYD_CTX(*tree) : NULL, ctx, LY_EINVAL);
if (!ctx) {
ctx = LYD_CTX(*tree);
}
if (diff) {
*diff = NULL;
}
return lyd_validate(tree, NULL, ctx, val_opts, 1, NULL, NULL, NULL, NULL, diff);
}
LIBYANG_API_DEF LY_ERR
lyd_validate_module(struct lyd_node **tree, const struct lys_module *module, uint32_t val_opts, struct lyd_node **diff)
{
LY_CHECK_ARG_RET(NULL, tree, *tree || module, LY_EINVAL);
LY_CHECK_CTX_EQUAL_RET(*tree ? LYD_CTX(*tree) : NULL, module ? module->ctx : NULL, LY_EINVAL);
if (diff) {
*diff = NULL;
}
return lyd_validate(tree, module, (*tree) ? LYD_CTX(*tree) : module->ctx, val_opts, 1, NULL, NULL, NULL, NULL, diff);
}
/**
* @brief Find nodes for merging an operation into data tree for validation.
*
* @param[in] op_tree Full operation data tree.
* @param[in] op_node Operation node itself.
* @param[in] tree Data tree to be merged into.
* @param[out] op_subtree Operation subtree to merge.
* @param[out] tree_sibling Data tree sibling to merge next to, is set if @p tree_parent is NULL.
* @param[out] tree_parent Data tree parent to merge into, is set if @p tree_sibling is NULL.
*/
static void
lyd_val_op_merge_find(const struct lyd_node *op_tree, const struct lyd_node *op_node, const struct lyd_node *tree,
struct lyd_node **op_subtree, struct lyd_node **tree_sibling, struct lyd_node **tree_parent)
{
const struct lyd_node *tree_iter, *op_iter;
struct lyd_node *match;
uint32_t i, cur_depth, op_depth;
*op_subtree = NULL;
*tree_sibling = NULL;
*tree_parent = NULL;
/* learn op depth (top-level being depth 0) */
op_depth = 0;
for (op_iter = op_node; op_iter != op_tree; op_iter = lyd_parent(op_iter)) {
++op_depth;
}
/* find where to merge op */
tree_iter = tree;
cur_depth = op_depth;
while (cur_depth && tree_iter) {
/* find op iter in tree */
lyd_find_sibling_first(tree_iter, op_iter, &match);
if (!match) {
break;
}
/* move tree_iter */
tree_iter = lyd_child(match);
/* move depth */
--cur_depth;
/* find next op parent */
op_iter = op_node;
for (i = 0; i < cur_depth; ++i) {
op_iter = lyd_parent(op_iter);
}
}
assert(op_iter);
*op_subtree = (struct lyd_node *)op_iter;
if (!tree || tree_iter) {
/* there is no tree whatsoever or this is the last found sibling */
*tree_sibling = (struct lyd_node *)tree_iter;
} else {
/* matching parent was found but it has no children to insert next to */
assert(match);
*tree_parent = match;
}
}
/**
* @brief Validate an RPC/action request, reply, or notification.
*
* @param[in] op_tree Full operation data tree.
* @param[in] op_node Operation node itself.
* @param[in] dep_tree Tree to be used for validating references from the operation subtree.
* @param[in] int_opts Internal parser options.
* @param[in] data_type Type of validated data.
* @param[in] validate_subtree Whether subtree was already validated (as part of data parsing) or not (separate validation).
* @param[in] node_when_p Set of nodes with when conditions, if NULL a local set is used.
* @param[in] node_types_p Set of unres node types, if NULL a local set is used.
* @param[in] meta_types_p Set of unres metadata types, if NULL a local set is used.
* @param[in] ext_val_p Set of parsed extension data to validate, if NULL a local set is used.
* @param[out] diff Optional diff with any changes made by the validation.
* @return LY_SUCCESS on success.
* @return LY_ERR error on error.
*/
static LY_ERR
_lyd_validate_op(struct lyd_node *op_tree, struct lyd_node *op_node, const struct lyd_node *dep_tree, enum lyd_type data_type,
uint32_t int_opts, ly_bool validate_subtree, struct ly_set *node_when_p, struct ly_set *node_types_p,
struct ly_set *meta_types_p, struct ly_set *ext_val_p, struct lyd_node **diff)
{
LY_ERR rc = LY_SUCCESS;
struct lyd_node *tree_sibling, *tree_parent, *op_subtree, *op_parent, *op_sibling_before, *op_sibling_after, *child;
struct ly_set node_types = {0}, meta_types = {0}, node_when = {0}, ext_val = {0};
assert(op_tree && op_node);
assert((node_when_p && node_types_p && meta_types_p && ext_val_p) ||
(!node_when_p && !node_types_p && !meta_types_p && !ext_val_p));
if (!node_when_p) {
node_when_p = &node_when;
node_types_p = &node_types;
meta_types_p = &meta_types;
ext_val_p = &ext_val;
}
/* merge op_tree into dep_tree */
lyd_val_op_merge_find(op_tree, op_node, dep_tree, &op_subtree, &tree_sibling, &tree_parent);
op_sibling_before = op_subtree->prev->next ? op_subtree->prev : NULL;
op_sibling_after = op_subtree->next;
op_parent = lyd_parent(op_subtree);
lyd_unlink_tree(op_subtree);
lyd_insert_node(tree_parent, &tree_sibling, op_subtree, 0);
if (!dep_tree) {
dep_tree = tree_sibling;
}
LOG_LOCSET(NULL, op_node, NULL, NULL);
if (int_opts & LYD_INTOPT_REPLY) {
/* add output children defaults */
rc = lyd_new_implicit_r(op_node, lyd_node_child_p(op_node), NULL, NULL, node_when_p, node_types_p,
LYD_IMPLICIT_OUTPUT, diff);
LY_CHECK_GOTO(rc, cleanup);
if (validate_subtree) {
/* skip validating the operation itself, go to children directly */
LY_LIST_FOR(lyd_child(op_node), child) {
rc = lyd_validate_subtree(child, node_when_p, node_types_p, meta_types_p, ext_val_p, 0, diff);
LY_CHECK_GOTO(rc, cleanup);
}
}
} else {
if (validate_subtree) {
/* prevalidate whole operation subtree */
rc = lyd_validate_subtree(op_node, node_when_p, node_types_p, meta_types_p, ext_val_p, 0, diff);
LY_CHECK_GOTO(rc, cleanup);
}
}
/* finish incompletely validated terminal values/attributes and when conditions on the full tree,
* account for unresolved 'when' that may appear in the non-validated dependency data tree */
LY_CHECK_GOTO(rc = lyd_validate_unres((struct lyd_node **)&dep_tree, NULL, data_type, node_when_p, LYXP_IGNORE_WHEN,
node_types_p, meta_types_p, ext_val_p, 0, diff), cleanup);
/* perform final validation of the operation/notification */
lyd_validate_obsolete(op_node);
LY_CHECK_GOTO(rc = lyd_validate_must(op_node, int_opts, LYXP_IGNORE_WHEN), cleanup);
/* final validation of all the descendants */
rc = lyd_validate_final_r(lyd_child(op_node), op_node, op_node->schema, NULL, 0, int_opts, LYXP_IGNORE_WHEN);
LY_CHECK_GOTO(rc, cleanup);
cleanup:
LOG_LOCBACK(0, 1, 0, 0);
/* restore operation tree */
lyd_unlink_tree(op_subtree);
if (op_sibling_before) {
lyd_insert_after_node(op_sibling_before, op_subtree);
} else if (op_sibling_after) {
lyd_insert_before_node(op_sibling_after, op_subtree);
} else if (op_parent) {
lyd_insert_node(op_parent, NULL, op_subtree, 0);
}
ly_set_erase(&node_when, NULL);
ly_set_erase(&node_types, NULL);
ly_set_erase(&meta_types, NULL);
ly_set_erase(&ext_val, free);
return rc;
}
LIBYANG_API_DEF LY_ERR
lyd_validate_op(struct lyd_node *op_tree, const struct lyd_node *dep_tree, enum lyd_type data_type, struct lyd_node **diff)
{
struct lyd_node *op_node;
uint32_t int_opts;
struct ly_set ext_val = {0};
LY_ERR rc;
LY_CHECK_ARG_RET(NULL, op_tree, !dep_tree || !dep_tree->parent, (data_type == LYD_TYPE_RPC_YANG) ||
(data_type == LYD_TYPE_NOTIF_YANG) || (data_type == LYD_TYPE_REPLY_YANG), LY_EINVAL);
if (diff) {
*diff = NULL;
}
if (data_type == LYD_TYPE_RPC_YANG) {
int_opts = LYD_INTOPT_RPC | LYD_INTOPT_ACTION;
} else if (data_type == LYD_TYPE_NOTIF_YANG) {
int_opts = LYD_INTOPT_NOTIF;
} else {
int_opts = LYD_INTOPT_REPLY;
}
if (op_tree->schema && (op_tree->schema->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF))) {
/* we have the operation/notification, adjust the pointers */
op_node = op_tree;
while (op_tree->parent) {
op_tree = lyd_parent(op_tree);
}
} else {
/* find the operation/notification */
while (op_tree->parent) {
op_tree = lyd_parent(op_tree);
}
LYD_TREE_DFS_BEGIN(op_tree, op_node) {
if (!op_node->schema) {
return lyd_parse_opaq_error(op_node);
} else if (op_node->flags & LYD_EXT) {
/* fully validate the rest using the extension instance callback */
LY_CHECK_RET(lyd_validate_nested_ext(op_node, &ext_val));
rc = lyd_validate_unres((struct lyd_node **)&dep_tree, NULL, data_type, NULL, 0, NULL, NULL, &ext_val,
0, diff);
ly_set_erase(&ext_val, free);
return rc;
}
if ((int_opts & (LYD_INTOPT_RPC | LYD_INTOPT_ACTION | LYD_INTOPT_REPLY)) &&
(op_node->schema->nodetype & (LYS_RPC | LYS_ACTION))) {
break;
} else if ((int_opts & LYD_INTOPT_NOTIF) && (op_node->schema->nodetype == LYS_NOTIF)) {
break;
}
LYD_TREE_DFS_END(op_tree, op_node);
}
}
if (int_opts & (LYD_INTOPT_RPC | LYD_INTOPT_ACTION | LYD_INTOPT_REPLY)) {
if (!op_node || !(op_node->schema->nodetype & (LYS_RPC | LYS_ACTION))) {
LOGERR(LYD_CTX(op_tree), LY_EINVAL, "No RPC/action to validate found.");
return LY_EINVAL;
}
} else {
if (!op_node || (op_node->schema->nodetype != LYS_NOTIF)) {
LOGERR(LYD_CTX(op_tree), LY_EINVAL, "No notification to validate found.");
return LY_EINVAL;
}
}
/* validate */
return _lyd_validate_op(op_tree, op_node, dep_tree, data_type, int_opts, 1, NULL, NULL, NULL, NULL, diff);
}