blob: 18096a641fa83345b2f6550429330bfd376b2047 [file] [log] [blame]
/**
* @file tree_schema.c
* @author Radek Krejci <rkrejci@cesnet.cz>
* @brief Schema tree implementation
*
* Copyright (c) 2015 - 2018 CESNET, z.s.p.o.
*
* This source code is licensed under BSD 3-Clause License (the "License").
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*/
#define _GNU_SOURCE /* asprintf, strdup */
#include "tree_schema.h"
#include <assert.h>
#include <ctype.h>
#include <dirent.h>
#include <errno.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <unistd.h>
#include "common.h"
#include "compat.h"
#include "context.h"
#include "dict.h"
#include "in.h"
#include "in_internal.h"
#include "log.h"
#include "parser_internal.h"
#include "parser_schema.h"
#include "path.h"
#include "schema_compile.h"
#include "schema_compile_amend.h"
#include "schema_features.h"
#include "set.h"
#include "tree.h"
#include "tree_edit.h"
#include "tree_schema_internal.h"
#include "xpath.h"
/**
* @brief information about YANG statements
*/
struct stmt_info_s stmt_attr_info[] = {
[LY_STMT_NONE] = {NULL, NULL, 0},
[LY_STMT_ACTION] = {"action", "name", STMT_FLAG_ID},
[LY_STMT_ANYDATA] = {"anydata", "name", STMT_FLAG_ID},
[LY_STMT_ANYXML] = {"anyxml", "name", STMT_FLAG_ID},
[LY_STMT_ARGUMENT] = {"argument", "name", STMT_FLAG_ID},
[LY_STMT_ARG_TEXT] = {"text", NULL, 0},
[LY_STMT_ARG_VALUE] = {"value", NULL, 0},
[LY_STMT_AUGMENT] = {"augment", "target-node", STMT_FLAG_ID},
[LY_STMT_BASE] = {"base", "name", STMT_FLAG_ID},
[LY_STMT_BELONGS_TO] = {"belongs-to", "module", STMT_FLAG_ID},
[LY_STMT_BIT] = {"bit", "name", STMT_FLAG_ID},
[LY_STMT_CASE] = {"case", "name", STMT_FLAG_ID},
[LY_STMT_CHOICE] = {"choice", "name", STMT_FLAG_ID},
[LY_STMT_CONFIG] = {"config", "value", STMT_FLAG_ID},
[LY_STMT_CONTACT] = {"contact", "text", STMT_FLAG_YIN},
[LY_STMT_CONTAINER] = {"container", "name", STMT_FLAG_ID},
[LY_STMT_DEFAULT] = {"default", "value", 0},
[LY_STMT_DESCRIPTION] = {"description", "text", STMT_FLAG_YIN},
[LY_STMT_DEVIATE] = {"deviate", "value", STMT_FLAG_ID},
[LY_STMT_DEVIATION] = {"deviation", "target-node", STMT_FLAG_ID},
[LY_STMT_ENUM] = {"enum", "name", STMT_FLAG_ID},
[LY_STMT_ERROR_APP_TAG] = {"error-app-tag", "value", 0},
[LY_STMT_ERROR_MESSAGE] = {"error-message", "value", STMT_FLAG_YIN},
[LY_STMT_EXTENSION] = {"extension", "name", STMT_FLAG_ID},
[LY_STMT_EXTENSION_INSTANCE] = {NULL, NULL, 0},
[LY_STMT_FEATURE] = {"feature", "name", STMT_FLAG_ID},
[LY_STMT_FRACTION_DIGITS] = {"fraction-digits", "value", STMT_FLAG_ID},
[LY_STMT_GROUPING] = {"grouping", "name", STMT_FLAG_ID},
[LY_STMT_IDENTITY] = {"identity", "name", STMT_FLAG_ID},
[LY_STMT_IF_FEATURE] = {"if-feature", "name", 0},
[LY_STMT_IMPORT] = {"import", "module", STMT_FLAG_ID},
[LY_STMT_INCLUDE] = {"include", "module", STMT_FLAG_ID},
[LY_STMT_INPUT] = {"input", NULL, 0},
[LY_STMT_KEY] = {"key", "value", 0},
[LY_STMT_LEAF] = {"leaf", "name", STMT_FLAG_ID},
[LY_STMT_LEAF_LIST] = {"leaf-list", "name", STMT_FLAG_ID},
[LY_STMT_LENGTH] = {"length", "value", 0},
[LY_STMT_LIST] = {"list", "name", STMT_FLAG_ID},
[LY_STMT_MANDATORY] = {"mandatory", "value", STMT_FLAG_ID},
[LY_STMT_MAX_ELEMENTS] = {"max-elements", "value", STMT_FLAG_ID},
[LY_STMT_MIN_ELEMENTS] = {"min-elements", "value", STMT_FLAG_ID},
[LY_STMT_MODIFIER] = {"modifier", "value", STMT_FLAG_ID},
[LY_STMT_MODULE] = {"module", "name", STMT_FLAG_ID},
[LY_STMT_MUST] = {"must", "condition", 0},
[LY_STMT_NAMESPACE] = {"namespace", "uri", 0},
[LY_STMT_NOTIFICATION] = {"notification", "name", STMT_FLAG_ID},
[LY_STMT_ORDERED_BY] = {"ordered-by", "value", STMT_FLAG_ID},
[LY_STMT_ORGANIZATION] = {"organization", "text", STMT_FLAG_YIN},
[LY_STMT_OUTPUT] = {"output", NULL, 0},
[LY_STMT_PATH] = {"path", "value", 0},
[LY_STMT_PATTERN] = {"pattern", "value", 0},
[LY_STMT_POSITION] = {"position", "value", STMT_FLAG_ID},
[LY_STMT_PREFIX] = {"prefix", "value", STMT_FLAG_ID},
[LY_STMT_PRESENCE] = {"presence", "value", 0},
[LY_STMT_RANGE] = {"range", "value", 0},
[LY_STMT_REFERENCE] = {"reference", "text", STMT_FLAG_YIN},
[LY_STMT_REFINE] = {"refine", "target-node", STMT_FLAG_ID},
[LY_STMT_REQUIRE_INSTANCE] = {"require-instance", "value", STMT_FLAG_ID},
[LY_STMT_REVISION] = {"revision", "date", STMT_FLAG_ID},
[LY_STMT_REVISION_DATE] = {"revision-date", "date", STMT_FLAG_ID},
[LY_STMT_RPC] = {"rpc", "name", STMT_FLAG_ID},
[LY_STMT_STATUS] = {"status", "value", STMT_FLAG_ID},
[LY_STMT_SUBMODULE] = {"submodule", "name", STMT_FLAG_ID},
[LY_STMT_SYNTAX_LEFT_BRACE] = {"{", NULL, 0},
[LY_STMT_SYNTAX_RIGHT_BRACE] = {"}", NULL, 0},
[LY_STMT_SYNTAX_SEMICOLON] = {";", NULL, 0},
[LY_STMT_TYPE] = {"type", "name", STMT_FLAG_ID},
[LY_STMT_TYPEDEF] = {"typedef", "name", STMT_FLAG_ID},
[LY_STMT_UNIQUE] = {"unique", "tag", 0},
[LY_STMT_UNITS] = {"units", "name", 0},
[LY_STMT_USES] = {"uses", "name", STMT_FLAG_ID},
[LY_STMT_VALUE] = {"value", "value", STMT_FLAG_ID},
[LY_STMT_WHEN] = {"when", "condition", 0},
[LY_STMT_YANG_VERSION] = {"yang-version", "value", STMT_FLAG_ID},
[LY_STMT_YIN_ELEMENT] = {"yin-element", "value", STMT_FLAG_ID},
};
API const char *
ly_stmt2str(enum ly_stmt stmt)
{
if (stmt == LY_STMT_EXTENSION_INSTANCE) {
return "extension instance";
} else {
return stmt_attr_info[stmt].name;
}
}
const char * const ly_devmod_list[] = {
[LYS_DEV_NOT_SUPPORTED] = "not-supported",
[LYS_DEV_ADD] = "add",
[LYS_DEV_DELETE] = "delete",
[LYS_DEV_REPLACE] = "replace",
};
API LY_ERR
lysc_tree_dfs_full(const struct lysc_node *root, lysc_dfs_clb dfs_clb, void *data)
{
struct lysc_node *elem, *elem2;
const struct lysc_node_action *action;
const struct lysc_node_notif *notif;
LY_CHECK_ARG_RET(NULL, root, dfs_clb, LY_EINVAL);
LYSC_TREE_DFS_BEGIN(root, elem) {
/* schema node */
LY_CHECK_RET(dfs_clb(elem, data, &LYSC_TREE_DFS_continue));
LY_LIST_FOR(lysc_node_actions(elem), action) {
LYSC_TREE_DFS_BEGIN(action, elem2) {
/* action subtree */
LY_CHECK_RET(dfs_clb(elem2, data, &LYSC_TREE_DFS_continue));
LYSC_TREE_DFS_END(action, elem2);
}
}
LY_LIST_FOR(lysc_node_notifs(elem), notif) {
LYSC_TREE_DFS_BEGIN(notif, elem2) {
/* notification subtree */
LY_CHECK_RET(dfs_clb(elem2, data, &LYSC_TREE_DFS_continue));
LYSC_TREE_DFS_END(notif, elem2);
}
}
LYSC_TREE_DFS_END(root, elem);
}
return LY_SUCCESS;
}
API LY_ERR
lysc_module_dfs_full(const struct lys_module *mod, lysc_dfs_clb dfs_clb, void *data)
{
const struct lysc_node *root;
LY_CHECK_ARG_RET(NULL, mod, mod->compiled, dfs_clb, LY_EINVAL);
/* schema nodes */
LY_LIST_FOR(mod->compiled->data, root) {
LY_CHECK_RET(lysc_tree_dfs_full(root, dfs_clb, data));
}
/* RPCs */
LY_LIST_FOR((const struct lysc_node *)mod->compiled->rpcs, root) {
LY_CHECK_RET(lysc_tree_dfs_full(root, dfs_clb, data));
}
/* notifications */
LY_LIST_FOR((const struct lysc_node *)mod->compiled->notifs, root) {
LY_CHECK_RET(lysc_tree_dfs_full(root, dfs_clb, data));
}
return LY_SUCCESS;
}
static void
lys_getnext_into_case(const struct lysc_node_case *first_case, const struct lysc_node **last, const struct lysc_node **next)
{
for ( ; first_case; first_case = (const struct lysc_node_case *)first_case->next) {
if (first_case->child) {
/* there is something to return */
(*next) = first_case->child;
return;
}
}
/* no children in choice's cases, so go to the choice's sibling instead of into it */
(*last) = (*next);
(*next) = (*next)->next;
}
/**
* @brief Generic getnext function for ::lys_getnext() and ::lys_getnext_ext().
*
* Gets next schema tree (sibling) node element that can be instantiated in a data tree. Returned node can
* be from an augment. If the @p ext is provided, the function is locked inside the schema tree defined in the
* extension instance.
*
* ::lys_getnext_() is supposed to be called sequentially. In the first call, the \p last parameter is usually NULL
* and function starts returning i) the first \p parent's child or ii) the first top level element specified in the
* given extension (if provided) or iii) the first top level element of the \p module.
* Consequent calls suppose to provide the previously returned node as the \p last parameter and still the same
* \p parent and \p module parameters.
*
* Without options, the function is used to traverse only the schema nodes that can be paired with corresponding
* data nodes in a data tree. By setting some \p options the behavior can be modified to the extent that
* all the schema nodes are iteratively returned.
*
* @param[in] last Previously returned schema tree node, or NULL in case of the first call.
* @param[in] parent Parent of the subtree where the function starts processing.
* @param[in] module In case of iterating on top level elements, the \p parent is NULL and
* module must be specified.
* @param[in] ext The extension instance to provide a separate schema tree. To consider the top level elements in the tree,
* the \p parent must be NULL. Anyway, at least one of @p parent, @p module and @p ext parameters must be specified.
* @param[in] options [ORed options](@ref sgetnextflags).
* @return Next schema tree node that can be instantiated in a data tree, NULL in case there is no such element.
*/
static const struct lysc_node *
lys_getnext_(const struct lysc_node *last, const struct lysc_node *parent, const struct lysc_module *module,
const struct lysc_ext_instance *ext, uint32_t options)
{
const struct lysc_node *next = NULL;
ly_bool action_flag = 0, notif_flag = 0;
struct lysc_node **data_p = NULL;
LY_CHECK_ARG_RET(NULL, parent || module || ext, NULL);
next:
if (!last) {
/* first call */
/* get know where to start */
if (parent) {
/* schema subtree */
next = last = lysc_node_child(parent);
} else {
/* top level data */
if (ext) {
lysc_ext_substmt(ext, LY_STMT_CONTAINER /* matches all nodes */, (void **)&data_p, NULL);
next = last = data_p ? *data_p : NULL;
} else {
next = last = module->data;
}
}
if (!next) {
/* try to get action or notification */
goto repeat;
}
/* test if the next can be returned */
goto check;
} else if (last->nodetype & (LYS_RPC | LYS_ACTION)) {
action_flag = 1;
next = last->next;
} else if (last->nodetype == LYS_NOTIF) {
action_flag = notif_flag = 1;
next = last->next;
} else {
next = last->next;
}
repeat:
if (!next) {
/* possibly go back to parent */
data_p = NULL;
if (last && (last->parent != parent)) {
last = last->parent;
goto next;
} else if (!action_flag) {
action_flag = 1;
if (ext) {
lysc_ext_substmt(ext, LY_STMT_RPC /* matches also actions */, (void **)&data_p, NULL);
next = data_p ? *data_p : NULL;
} else if (parent) {
next = (struct lysc_node *)lysc_node_actions(parent);
} else {
next = (struct lysc_node *)module->rpcs;
}
} else if (!notif_flag) {
notif_flag = 1;
if (ext) {
lysc_ext_substmt(ext, LY_STMT_NOTIFICATION, (void **)&data_p, NULL);
next = data_p ? *data_p : NULL;
} else if (parent) {
next = (struct lysc_node *)lysc_node_notifs(parent);
} else {
next = (struct lysc_node *)module->notifs;
}
} else {
return NULL;
}
goto repeat;
}
check:
switch (next->nodetype) {
case LYS_RPC:
case LYS_ACTION:
case LYS_NOTIF:
case LYS_LEAF:
case LYS_ANYXML:
case LYS_ANYDATA:
case LYS_LIST:
case LYS_LEAFLIST:
break;
case LYS_CASE:
if (options & LYS_GETNEXT_WITHCASE) {
break;
} else {
/* go into */
lys_getnext_into_case((const struct lysc_node_case *)next, &last, &next);
}
goto repeat;
case LYS_CONTAINER:
if (!(next->flags & LYS_PRESENCE) && (options & LYS_GETNEXT_INTONPCONT)) {
if (lysc_node_child(next)) {
/* go into */
next = lysc_node_child(next);
} else {
last = next;
next = next->next;
}
goto repeat;
}
break;
case LYS_CHOICE:
if (options & LYS_GETNEXT_WITHCHOICE) {
break;
} else if ((options & LYS_GETNEXT_NOCHOICE) || !lysc_node_child(next)) {
next = next->next;
} else {
if (options & LYS_GETNEXT_WITHCASE) {
next = lysc_node_child(next);
} else {
/* go into */
lys_getnext_into_case(((struct lysc_node_choice *)next)->cases, &last, &next);
}
}
goto repeat;
case LYS_INPUT:
if (options & LYS_GETNEXT_OUTPUT) {
/* skip */
next = next->next;
} else {
/* go into */
next = lysc_node_child(next);
}
goto repeat;
case LYS_OUTPUT:
if (!(options & LYS_GETNEXT_OUTPUT)) {
/* skip */
next = next->next;
} else {
/* go into */
next = lysc_node_child(next);
}
goto repeat;
default:
/* we should not be here */
LOGINT(module ? module->mod->ctx : parent ? parent->module->ctx : ext->module->ctx);
return NULL;
}
return next;
}
API const struct lysc_node *
lys_getnext(const struct lysc_node *last, const struct lysc_node *parent, const struct lysc_module *module, uint32_t options)
{
return lys_getnext_(last, parent, module, NULL, options);
}
API const struct lysc_node *
lys_getnext_ext(const struct lysc_node *last, const struct lysc_node *parent, const struct lysc_ext_instance *ext, uint32_t options)
{
return lys_getnext_(last, parent, NULL, ext, options);
}
const struct lysc_node *
lysc_ext_find_node(const struct lysc_ext_instance *ext, const struct lys_module *module, const char *name, size_t name_len,
uint16_t nodetype, uint32_t options)
{
const struct lysc_node *node = NULL;
LY_CHECK_ARG_RET(NULL, ext, name, NULL);
if (!nodetype) {
nodetype = LYS_NODETYPE_MASK;
}
if (module && (module != ext->module)) {
return NULL;
}
while ((node = lys_getnext_ext(node, NULL, ext, options))) {
if (!(node->nodetype & nodetype)) {
continue;
}
if (name_len) {
if (!ly_strncmp(node->name, name, name_len)) {
return node;
}
} else {
if (!strcmp(node->name, name)) {
return node;
}
}
}
return NULL;
}
API const struct lysc_node *
lys_find_child(const struct lysc_node *parent, const struct lys_module *module, const char *name, size_t name_len,
uint16_t nodetype, uint32_t options)
{
const struct lysc_node *node = NULL;
LY_CHECK_ARG_RET(NULL, module, name, NULL);
if (!nodetype) {
nodetype = LYS_NODETYPE_MASK;
}
while ((node = lys_getnext(node, parent, module->compiled, options))) {
if (!(node->nodetype & nodetype)) {
continue;
}
if (node->module != module) {
continue;
}
if (name_len) {
if (!ly_strncmp(node->name, name, name_len)) {
return node;
}
} else {
if (!strcmp(node->name, name)) {
return node;
}
}
}
return NULL;
}
API LY_ERR
lys_find_xpath_atoms(const struct ly_ctx *ctx, const struct lysc_node *ctx_node, const char *xpath, uint32_t options,
struct ly_set **set)
{
LY_ERR ret = LY_SUCCESS;
struct lyxp_set xp_set;
struct lyxp_expr *exp = NULL;
uint32_t i;
LY_CHECK_ARG_RET(NULL, ctx || ctx_node, xpath, set, LY_EINVAL);
if (!(options & LYXP_SCNODE_ALL)) {
options = LYXP_SCNODE;
}
if (!ctx) {
ctx = ctx_node->module->ctx;
}
memset(&xp_set, 0, sizeof xp_set);
/* compile expression */
ret = lyxp_expr_parse(ctx, xpath, 0, 1, &exp);
LY_CHECK_GOTO(ret, cleanup);
/* atomize expression */
ret = lyxp_atomize(ctx, exp, NULL, LY_VALUE_JSON, NULL, ctx_node, &xp_set, options);
LY_CHECK_GOTO(ret, cleanup);
/* allocate return set */
ret = ly_set_new(set);
LY_CHECK_GOTO(ret, cleanup);
/* transform into ly_set */
(*set)->objs = malloc(xp_set.used * sizeof *(*set)->objs);
LY_CHECK_ERR_GOTO(!(*set)->objs, LOGMEM(ctx); ret = LY_EMEM, cleanup);
(*set)->size = xp_set.used;
for (i = 0; i < xp_set.used; ++i) {
if (xp_set.val.scnodes[i].type == LYXP_NODE_ELEM) {
ret = ly_set_add(*set, xp_set.val.scnodes[i].scnode, 1, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
}
cleanup:
lyxp_set_free_content(&xp_set);
lyxp_expr_free(ctx, exp);
return ret;
}
API LY_ERR
lys_find_expr_atoms(const struct lysc_node *ctx_node, const struct lys_module *cur_mod, const struct lyxp_expr *expr,
const struct lysc_prefix *prefixes, uint32_t options, struct ly_set **set)
{
LY_ERR ret = LY_SUCCESS;
struct lyxp_set xp_set = {0};
uint32_t i;
LY_CHECK_ARG_RET(NULL, cur_mod, expr, prefixes, set, LY_EINVAL);
if (!(options & LYXP_SCNODE_ALL)) {
options = LYXP_SCNODE;
}
/* atomize expression */
ret = lyxp_atomize(cur_mod->ctx, expr, cur_mod, LY_VALUE_SCHEMA_RESOLVED, (void *)prefixes, ctx_node, &xp_set, options);
LY_CHECK_GOTO(ret, cleanup);
/* allocate return set */
ret = ly_set_new(set);
LY_CHECK_GOTO(ret, cleanup);
/* transform into ly_set */
(*set)->objs = malloc(xp_set.used * sizeof *(*set)->objs);
LY_CHECK_ERR_GOTO(!(*set)->objs, LOGMEM(cur_mod->ctx); ret = LY_EMEM, cleanup);
(*set)->size = xp_set.used;
for (i = 0; i < xp_set.used; ++i) {
if ((xp_set.val.scnodes[i].type == LYXP_NODE_ELEM) && (xp_set.val.scnodes[i].in_ctx >= LYXP_SET_SCNODE_ATOM_NODE)) {
assert((xp_set.val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_NODE) ||
(xp_set.val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_VAL) ||
(xp_set.val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_CTX));
ret = ly_set_add(*set, xp_set.val.scnodes[i].scnode, 1, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
}
cleanup:
lyxp_set_free_content(&xp_set);
if (ret) {
ly_set_free(*set, NULL);
*set = NULL;
}
return ret;
}
API LY_ERR
lys_find_xpath(const struct ly_ctx *ctx, const struct lysc_node *ctx_node, const char *xpath, uint32_t options,
struct ly_set **set)
{
LY_ERR ret = LY_SUCCESS;
struct lyxp_set xp_set = {0};
struct lyxp_expr *exp = NULL;
uint32_t i;
LY_CHECK_ARG_RET(NULL, ctx || ctx_node, xpath, set, LY_EINVAL);
if (!(options & LYXP_SCNODE_ALL)) {
options = LYXP_SCNODE;
}
if (!ctx) {
ctx = ctx_node->module->ctx;
}
/* compile expression */
ret = lyxp_expr_parse(ctx, xpath, 0, 1, &exp);
LY_CHECK_GOTO(ret, cleanup);
/* atomize expression */
ret = lyxp_atomize(ctx, exp, NULL, LY_VALUE_JSON, NULL, ctx_node, &xp_set, options);
LY_CHECK_GOTO(ret, cleanup);
/* allocate return set */
ret = ly_set_new(set);
LY_CHECK_GOTO(ret, cleanup);
/* transform into ly_set */
(*set)->objs = malloc(xp_set.used * sizeof *(*set)->objs);
LY_CHECK_ERR_GOTO(!(*set)->objs, LOGMEM(ctx); ret = LY_EMEM, cleanup);
(*set)->size = xp_set.used;
for (i = 0; i < xp_set.used; ++i) {
if ((xp_set.val.scnodes[i].type == LYXP_NODE_ELEM) && (xp_set.val.scnodes[i].in_ctx == LYXP_SET_SCNODE_ATOM_CTX)) {
ret = ly_set_add(*set, xp_set.val.scnodes[i].scnode, 1, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
}
cleanup:
lyxp_set_free_content(&xp_set);
lyxp_expr_free(ctx, exp);
if (ret) {
ly_set_free(*set, NULL);
*set = NULL;
}
return ret;
}
API LY_ERR
lys_find_lypath_atoms(const struct ly_path *path, struct ly_set **set)
{
LY_ERR ret = LY_SUCCESS;
LY_ARRAY_COUNT_TYPE u, v;
LY_CHECK_ARG_RET(NULL, path, set, LY_EINVAL);
/* allocate return set */
LY_CHECK_RET(ly_set_new(set));
LY_ARRAY_FOR(path, u) {
/* add nodes from the path */
LY_CHECK_GOTO(ret = ly_set_add(*set, (void *)path[u].node, 0, NULL), cleanup);
if (path[u].pred_type == LY_PATH_PREDTYPE_LIST) {
LY_ARRAY_FOR(path[u].predicates, v) {
/* add all the keys in a predicate */
LY_CHECK_GOTO(ret = ly_set_add(*set, (void *)path[u].predicates[v].key, 0, NULL), cleanup);
}
}
}
cleanup:
if (ret) {
ly_set_free(*set, NULL);
*set = NULL;
}
return ret;
}
API LY_ERR
lys_find_path_atoms(const struct ly_ctx *ctx, const struct lysc_node *ctx_node, const char *path, ly_bool output,
struct ly_set **set)
{
LY_ERR ret = LY_SUCCESS;
uint8_t oper;
struct lyxp_expr *expr = NULL;
struct ly_path *p = NULL;
LY_CHECK_ARG_RET(ctx, ctx || ctx_node, path, set, LY_EINVAL);
if (!ctx) {
ctx = ctx_node->module->ctx;
}
/* parse */
ret = lyxp_expr_parse(ctx, path, strlen(path), 0, &expr);
LY_CHECK_GOTO(ret, cleanup);
/* compile */
oper = output ? LY_PATH_OPER_OUTPUT : LY_PATH_OPER_INPUT;
ret = ly_path_compile(ctx, NULL, ctx_node, NULL, expr, LY_PATH_LREF_FALSE, oper, LY_PATH_TARGET_MANY,
LY_VALUE_JSON, NULL, NULL, &p);
LY_CHECK_GOTO(ret, cleanup);
/* resolve */
ret = lys_find_lypath_atoms(p, set);
cleanup:
ly_path_free(ctx, p);
lyxp_expr_free(ctx, expr);
return ret;
}
API const struct lysc_node *
lys_find_path(const struct ly_ctx *ctx, const struct lysc_node *ctx_node, const char *path, ly_bool output)
{
const struct lysc_node *snode = NULL;
struct lyxp_expr *exp = NULL;
struct ly_path *p = NULL;
LY_ERR ret;
uint8_t oper;
LY_CHECK_ARG_RET(ctx, ctx || ctx_node, NULL);
if (!ctx) {
ctx = ctx_node->module->ctx;
}
/* parse */
ret = lyxp_expr_parse(ctx, path, strlen(path), 0, &exp);
LY_CHECK_GOTO(ret, cleanup);
/* compile */
oper = output ? LY_PATH_OPER_OUTPUT : LY_PATH_OPER_INPUT;
ret = ly_path_compile(ctx, NULL, ctx_node, NULL, exp, LY_PATH_LREF_FALSE, oper, LY_PATH_TARGET_MANY,
LY_VALUE_JSON, NULL, NULL, &p);
LY_CHECK_GOTO(ret, cleanup);
/* get last node */
snode = p[LY_ARRAY_COUNT(p) - 1].node;
cleanup:
ly_path_free(ctx, p);
lyxp_expr_free(ctx, exp);
return snode;
}
char *
lysc_path_until(const struct lysc_node *node, const struct lysc_node *parent, LYSC_PATH_TYPE pathtype, char *buffer,
size_t buflen)
{
const struct lysc_node *iter;
char *path = NULL;
int len = 0;
if (buffer) {
LY_CHECK_ARG_RET(node->module->ctx, buflen > 1, NULL);
buffer[0] = '\0';
}
switch (pathtype) {
case LYSC_PATH_LOG:
case LYSC_PATH_DATA:
for (iter = node; iter && (iter != parent) && (len >= 0); iter = iter->parent) {
char *s, *id;
const char *slash;
if ((pathtype == LYSC_PATH_DATA) && (iter->nodetype & (LYS_CHOICE | LYS_CASE | LYS_INPUT | LYS_OUTPUT))) {
/* schema-only node */
continue;
}
s = buffer ? strdup(buffer) : path;
id = strdup(iter->name);
if (parent && (iter->parent == parent)) {
slash = "";
} else {
slash = "/";
}
if (!iter->parent || (iter->parent->module != iter->module)) {
/* print prefix */
if (buffer) {
len = snprintf(buffer, buflen, "%s%s:%s%s", slash, iter->module->name, id, s ? s : "");
} else {
len = asprintf(&path, "%s%s:%s%s", slash, iter->module->name, id, s ? s : "");
}
} else {
/* prefix is the same as in parent */
if (buffer) {
len = snprintf(buffer, buflen, "%s%s%s", slash, id, s ? s : "");
} else {
len = asprintf(&path, "%s%s%s", slash, id, s ? s : "");
}
}
free(s);
free(id);
if (buffer && (buflen <= (size_t)len)) {
/* not enough space in buffer */
break;
}
}
if (len < 0) {
free(path);
path = NULL;
} else if (len == 0) {
if (buffer) {
strcpy(buffer, "/");
} else {
path = strdup("/");
}
}
break;
}
if (buffer) {
return buffer;
} else {
return path;
}
}
API char *
lysc_path(const struct lysc_node *node, LYSC_PATH_TYPE pathtype, char *buffer, size_t buflen)
{
return lysc_path_until(node, NULL, pathtype, buffer, buflen);
}
LY_ERR
_lys_set_implemented(struct lys_module *mod, const char **features, struct lys_glob_unres *unres)
{
LY_ERR ret = LY_SUCCESS, r;
uint32_t i;
if (mod->implemented) {
/* mod is already implemented, set the features */
r = lys_set_features(mod->parsed, features);
if (r == LY_EEXIST) {
/* no changes */
return LY_SUCCESS;
} else if (!r) {
/* mark the module as changed */
mod->to_compile = 1;
}
return r;
}
/* implement, ignore recompilation because it must always take place later */
r = lys_implement(mod, features, unres);
LY_CHECK_ERR_GOTO(r && (r != LY_ERECOMPILE), ret = r, cleanup);
if (mod->ctx->flags & LY_CTX_ALL_IMPLEMENTED) {
/* implement all the imports as well */
for (i = 0; i < unres->creating.count; ++i) {
mod = unres->creating.objs[i];
if (mod->implemented) {
continue;
}
r = lys_implement(mod, NULL, unres);
LY_CHECK_ERR_GOTO(r && (r != LY_ERECOMPILE), ret = r, cleanup);
}
}
cleanup:
return ret;
}
/**
* @brief Check whether it may be needed to (re)compile a module from a particular dependency set.
*
* Dependency set includes all modules that need to be (re)compiled in case any of the modules
* is (re)compiled. The reason is possible disabled nodes and updaing leafref targets to point
* to the newly compiled modules. Using the import relation, the dependency is reflexive
* because of possible foreign augments and deviations, which are compiled during the target
* module compilation.
*
* @param[in] mod Module to process.
* @param[in,out] ctx_set Set with all not-yet-processed modules.
* @param[in,out] dep_set Current dependency set to update.
* @param[out] nothing_to_compile Set if there is nothing to compile in the module.
* @return LY_ERR value.
*/
static LY_ERR
lys_unres_dep_sets_mod_r(struct lys_module *mod, struct ly_set *ctx_set, struct ly_set *dep_set, ly_bool *nothing_to_compile)
{
struct lys_module *mod2;
struct lysp_import *imports;
uint32_t i;
LY_ARRAY_COUNT_TYPE u, v;
ly_bool found;
if (nothing_to_compile) {
*nothing_to_compile = 0;
}
if (!ly_set_contains(ctx_set, mod, &i)) {
/* it was already processed */
return LY_SUCCESS;
}
/* remove it from the set, we are processing it now */
ly_set_rm_index(ctx_set, i, NULL);
if (mod->to_compile && mod->compiled && !lys_has_recompiled(mod)) {
/* it would be recompiled but there are no statements requiring recompilation */
mod->to_compile = 0;
return LY_SUCCESS;
}
/* add a new dependent module into the dep set */
LY_CHECK_RET(ly_set_add(dep_set, mod, 1, NULL));
if (!lys_has_compiled(mod)) {
/* nothing to compile */
if (nothing_to_compile) {
*nothing_to_compile = 1;
}
return LY_SUCCESS;
}
/* process imports of the module and submodules */
imports = mod->parsed->imports;
LY_ARRAY_FOR(imports, u) {
LY_CHECK_RET(lys_unres_dep_sets_mod_r(imports[u].module, ctx_set, dep_set, NULL));
}
LY_ARRAY_FOR(mod->parsed->includes, v) {
imports = mod->parsed->includes[v].submodule->imports;
LY_ARRAY_FOR(imports, u) {
LY_CHECK_RET(lys_unres_dep_sets_mod_r(imports[u].module, ctx_set, dep_set, NULL));
}
}
/* process modules and submodules importing this module */
for (i = 0; i < ctx_set->count; ++i) {
mod2 = ctx_set->objs[i];
found = 0;
imports = mod2->parsed->imports;
LY_ARRAY_FOR(imports, u) {
if (imports[u].module == mod) {
found = 1;
break;
}
}
if (!found) {
LY_ARRAY_FOR(mod2->parsed->includes, v) {
imports = mod2->parsed->includes[v].submodule->imports;
LY_ARRAY_FOR(imports, u) {
if (imports[u].module == mod) {
found = 1;
break;
}
}
if (found) {
break;
}
}
}
if (found) {
LY_CHECK_RET(lys_unres_dep_sets_mod_r(mod2, ctx_set, dep_set, NULL));
}
}
return LY_SUCCESS;
}
LY_ERR
lys_unres_dep_sets_to_compile(struct ly_ctx *ctx, struct ly_set *main_set, struct lys_module *mod)
{
LY_ERR ret = LY_SUCCESS;
struct lys_module *m;
struct ly_set *dep_set = NULL, *ctx_set = NULL;
uint32_t i;
ly_bool nothing_to_compile;
/* start with a duplicate set of modules that we will remove from */
LY_CHECK_GOTO(ret = ly_set_dup(&ctx->list, NULL, &ctx_set), cleanup);
while (ctx_set->count) {
/* create new dep set */
LY_CHECK_GOTO(ret = ly_set_new(&dep_set), cleanup);
if (mod) {
/* use the module create a dep set with the rest of its dependent modules */
LY_CHECK_GOTO(ret = lys_unres_dep_sets_mod_r(mod, ctx_set, dep_set, &nothing_to_compile), cleanup);
} else {
/* use first ctx mod to create a dep set with the rest of its dependent modules */
LY_CHECK_GOTO(ret = lys_unres_dep_sets_mod_r(ctx_set->objs[0], ctx_set, dep_set, &nothing_to_compile), cleanup);
}
/* check whether there is any module that will be (re)compiled */
for (i = 0; i < dep_set->count; ++i) {
m = dep_set->objs[i];
if (m->to_compile) {
break;
}
}
if (i < dep_set->count) {
/* if there is, all the implemented modules need to be recompiled */
for (i = 0; i < dep_set->count; ++i) {
m = dep_set->objs[i];
if (m->implemented) {
m->to_compile = 1;
}
}
}
if (dep_set->count) {
/* add the dep set into main set */
LY_CHECK_GOTO(ret = ly_set_add(main_set, dep_set, 1, NULL), cleanup);
} else {
ly_set_free(dep_set, NULL);
}
dep_set = NULL;
if (mod) {
/* we need dep set only for this module */
break;
}
}
cleanup:
ly_set_free(dep_set, NULL);
ly_set_free(ctx_set, NULL);
return ret;
}
void
lys_unres_glob_revert(struct ly_ctx *ctx, struct lys_glob_unres *unres)
{
uint32_t i, j, idx, prev_lo;
struct ly_set *dep_set;
struct lys_module *m;
LY_ERR ret;
for (i = 0; i < unres->implementing.count; ++i) {
m = unres->implementing.objs[i];
assert(m->implemented);
/* make the module correctly non-implemented again */
m->implemented = 0;
lys_precompile_augments_deviations_revert(ctx, m);
lysc_module_free(m->compiled);
m->compiled = NULL;
/* should not be made implemented */
m->to_compile = 0;
}
for (i = 0; i < unres->creating.count; ++i) {
m = unres->creating.objs[i];
/* remove the module from the context and free it */
ly_set_rm(&ctx->list, m, NULL);
lys_module_free(m);
if (unres->dep_sets.count) {
/* remove it also from dep sets, if created */
for (j = 0; j < unres->dep_sets.count; ++j) {
dep_set = unres->dep_sets.objs[j];
if (ly_set_contains(dep_set, m, &idx)) {
ly_set_rm_index(dep_set, idx, NULL);
break;
}
}
assert(j < unres->dep_sets.count);
}
}
if (unres->implementing.count) {
/* recompile previous context because some implemented modules are no longer implemented,
* we can reuse the current to_compile flags */
prev_lo = ly_log_options(0);
ret = ly_ctx_compile(ctx);
ly_log_options(prev_lo);
if (ret) {
LOGINT(ctx);
}
}
}
void
lys_unres_glob_erase(struct lys_glob_unres *unres)
{
uint32_t i;
for (i = 0; i < unres->dep_sets.count; ++i) {
ly_set_free(unres->dep_sets.objs[i], NULL);
}
ly_set_erase(&unres->dep_sets, NULL);
ly_set_erase(&unres->implementing, NULL);
ly_set_erase(&unres->creating, NULL);
assert(!unres->ds_unres.xpath.count);
assert(!unres->ds_unres.leafrefs.count);
assert(!unres->ds_unres.dflts.count);
assert(!unres->ds_unres.disabled.count);
}
API LY_ERR
lys_set_implemented(struct lys_module *mod, const char **features)
{
LY_ERR ret = LY_SUCCESS;
struct lys_glob_unres unres = {0};
LY_CHECK_ARG_RET(NULL, mod, LY_EINVAL);
/* implement */
ret = _lys_set_implemented(mod, features, &unres);
LY_CHECK_GOTO(ret, cleanup);
if (!(mod->ctx->flags & LY_CTX_EXPLICIT_COMPILE)) {
/* create dep set for the module and mark all the modules that will be (re)compiled */
LY_CHECK_GOTO(ret = lys_unres_dep_sets_to_compile(mod->ctx, &unres.dep_sets, mod), cleanup);
/* (re)compile the whole dep set */
LY_CHECK_GOTO(ret = lys_compile_dep_set_r(mod->ctx, unres.dep_sets.objs[0], &unres), cleanup);
}
cleanup:
if (ret) {
lys_unres_glob_revert(mod->ctx, &unres);
}
lys_unres_glob_erase(&unres);
return ret;
}
static LY_ERR
lys_resolve_import_include(struct lys_parser_ctx *pctx, struct lysp_module *pmod)
{
struct lysp_import *imp;
LY_ARRAY_COUNT_TYPE u, v;
pmod->parsing = 1;
LY_ARRAY_FOR(pmod->imports, u) {
imp = &pmod->imports[u];
if (!imp->module) {
LY_CHECK_RET(lys_parse_load(PARSER_CTX(pctx), imp->name, imp->rev[0] ? imp->rev : NULL,
pctx->new_mods, &imp->module));
}
/* check for importing the same module twice */
for (v = 0; v < u; ++v) {
if (imp->module == pmod->imports[v].module) {
LOGWRN(PARSER_CTX(pctx), "Single revision of the module \"%s\" imported twice.", imp->name);
}
}
}
LY_CHECK_RET(lysp_load_submodules(pctx, pmod));
pmod->parsing = 0;
return LY_SUCCESS;
}
LY_ERR
lys_parse_submodule(struct ly_ctx *ctx, struct ly_in *in, LYS_INFORMAT format, struct lys_parser_ctx *main_ctx,
LY_ERR (*custom_check)(const struct ly_ctx *, struct lysp_module *, struct lysp_submodule *, void *),
void *check_data, struct lysp_submodule **submodule)
{
LY_ERR ret;
struct lysp_submodule *submod = NULL, *latest_sp;
struct lys_yang_parser_ctx *yangctx = NULL;
struct lys_yin_parser_ctx *yinctx = NULL;
struct lys_parser_ctx *pctx;
LY_CHECK_ARG_RET(ctx, ctx, in, LY_EINVAL);
switch (format) {
case LYS_IN_YIN:
ret = yin_parse_submodule(&yinctx, ctx, main_ctx, in, &submod);
pctx = (struct lys_parser_ctx *)yinctx;
break;
case LYS_IN_YANG:
ret = yang_parse_submodule(&yangctx, ctx, main_ctx, in, &submod);
pctx = (struct lys_parser_ctx *)yangctx;
break;
default:
LOGERR(ctx, LY_EINVAL, "Invalid schema input format.");
ret = LY_EINVAL;
break;
}
LY_CHECK_GOTO(ret, error);
assert(submod);
/* make sure that the newest revision is at position 0 */
lysp_sort_revisions(submod->revs);
/* decide the latest revision */
latest_sp = (struct lysp_submodule *)ly_ctx_get_submodule2_latest(submod->mod, submod->name);
if (latest_sp) {
if (submod->revs) {
if (!latest_sp->revs) {
/* latest has no revision, so mod is anyway newer */
submod->latest_revision = latest_sp->latest_revision;
/* the latest_sp is zeroed later when the new module is being inserted into the context */
} else if (strcmp(submod->revs[0].date, latest_sp->revs[0].date) > 0) {
submod->latest_revision = latest_sp->latest_revision;
/* the latest_sp is zeroed later when the new module is being inserted into the context */
} else {
latest_sp = NULL;
}
} else {
latest_sp = NULL;
}
} else {
submod->latest_revision = 1;
}
if (custom_check) {
LY_CHECK_GOTO(ret = custom_check(ctx, NULL, submod, check_data), error);
}
if (latest_sp) {
latest_sp->latest_revision = 0;
}
lys_parser_fill_filepath(ctx, in, &submod->filepath);
/* resolve imports and includes */
LY_CHECK_GOTO(ret = lys_resolve_import_include(pctx, (struct lysp_module *)submod), error);
/* remap possibly changed and reallocated typedefs and groupings list back to the main context */
memcpy(&main_ctx->tpdfs_nodes, &pctx->tpdfs_nodes, sizeof main_ctx->tpdfs_nodes);
memcpy(&main_ctx->grps_nodes, &pctx->grps_nodes, sizeof main_ctx->grps_nodes);
if (format == LYS_IN_YANG) {
yang_parser_ctx_free(yangctx);
} else {
yin_parser_ctx_free(yinctx);
}
*submodule = submod;
return LY_SUCCESS;
error:
lysp_module_free((struct lysp_module *)submod);
if (format == LYS_IN_YANG) {
yang_parser_ctx_free(yangctx);
} else {
yin_parser_ctx_free(yinctx);
}
return ret;
}
/**
* @brief Add ietf-netconf metadata to the parsed module. Operation, filter, and select are added.
*
* @param[in] mod Parsed module to add to.
* @return LY_SUCCESS on success.
* @return LY_ERR on error.
*/
static LY_ERR
lys_parsed_add_internal_ietf_netconf(struct lysp_module *mod)
{
struct lysp_ext_instance *ext_p;
struct lysp_stmt *stmt;
struct lysp_import *imp;
/*
* 1) edit-config's operation
*/
LY_ARRAY_NEW_RET(mod->mod->ctx, mod->exts, ext_p, LY_EMEM);
LY_CHECK_ERR_RET(!ext_p, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "md_:annotation", 0, &ext_p->name));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "operation", 0, &ext_p->argument));
ext_p->format = LY_VALUE_SCHEMA;
ext_p->prefix_data = mod;
ext_p->flags = LYS_INTERNAL;
ext_p->parent_stmt = LY_STMT_MODULE;
ext_p->parent_stmt_index = 0;
ext_p->child = stmt = calloc(1, sizeof *ext_p->child);
LY_CHECK_ERR_RET(!stmt, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "type", 0, &stmt->stmt));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "enumeration", 0, &stmt->arg));
stmt->format = LY_VALUE_SCHEMA;
stmt->prefix_data = mod;
stmt->kw = LY_STMT_TYPE;
stmt->child = calloc(1, sizeof *stmt->child);
stmt = stmt->child;
LY_CHECK_ERR_RET(!stmt, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "enum", 0, &stmt->stmt));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "merge", 0, &stmt->arg));
stmt->format = LY_VALUE_SCHEMA;
stmt->prefix_data = mod;
stmt->kw = LY_STMT_ENUM;
stmt->next = calloc(1, sizeof *stmt->child);
stmt = stmt->next;
LY_CHECK_ERR_RET(!stmt, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "enum", 0, &stmt->stmt));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "replace", 0, &stmt->arg));
stmt->format = LY_VALUE_SCHEMA;
stmt->prefix_data = mod;
stmt->kw = LY_STMT_ENUM;
stmt->next = calloc(1, sizeof *stmt->child);
stmt = stmt->next;
LY_CHECK_ERR_RET(!stmt, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "enum", 0, &stmt->stmt));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "create", 0, &stmt->arg));
stmt->format = LY_VALUE_SCHEMA;
stmt->prefix_data = mod;
stmt->kw = LY_STMT_ENUM;
stmt->next = calloc(1, sizeof *stmt->child);
stmt = stmt->next;
LY_CHECK_ERR_RET(!stmt, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "enum", 0, &stmt->stmt));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "delete", 0, &stmt->arg));
stmt->format = LY_VALUE_SCHEMA;
stmt->prefix_data = mod;
stmt->kw = LY_STMT_ENUM;
stmt->next = calloc(1, sizeof *stmt->child);
stmt = stmt->next;
LY_CHECK_ERR_RET(!stmt, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "enum", 0, &stmt->stmt));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "remove", 0, &stmt->arg));
stmt->format = LY_VALUE_SCHEMA;
stmt->prefix_data = mod;
stmt->kw = LY_STMT_ENUM;
/*
* 2) filter's type
*/
LY_ARRAY_NEW_RET(mod->mod->ctx, mod->exts, ext_p, LY_EMEM);
LY_CHECK_ERR_RET(!ext_p, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "md_:annotation", 0, &ext_p->name));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "type", 0, &ext_p->argument));
ext_p->format = LY_VALUE_SCHEMA;
ext_p->prefix_data = mod;
ext_p->flags = LYS_INTERNAL;
ext_p->parent_stmt = LY_STMT_MODULE;
ext_p->parent_stmt_index = 0;
ext_p->child = stmt = calloc(1, sizeof *ext_p->child);
LY_CHECK_ERR_RET(!stmt, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "type", 0, &stmt->stmt));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "enumeration", 0, &stmt->arg));
stmt->format = LY_VALUE_SCHEMA;
stmt->prefix_data = mod;
stmt->kw = LY_STMT_TYPE;
stmt->child = calloc(1, sizeof *stmt->child);
stmt = stmt->child;
LY_CHECK_ERR_RET(!stmt, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "enum", 0, &stmt->stmt));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "subtree", 0, &stmt->arg));
stmt->format = LY_VALUE_SCHEMA;
stmt->prefix_data = mod;
stmt->kw = LY_STMT_ENUM;
stmt->next = calloc(1, sizeof *stmt->child);
stmt = stmt->next;
LY_CHECK_ERR_RET(!stmt, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "enum", 0, &stmt->stmt));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "xpath", 0, &stmt->arg));
stmt->format = LY_VALUE_SCHEMA;
stmt->prefix_data = mod;
stmt->kw = LY_STMT_ENUM;
/* if-feature for enum allowed only for YANG 1.1 modules */
if (mod->version >= LYS_VERSION_1_1) {
stmt->child = calloc(1, sizeof *stmt->child);
stmt = stmt->child;
LY_CHECK_ERR_RET(!stmt, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "if-feature", 0, &stmt->stmt));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "xpath", 0, &stmt->arg));
stmt->format = LY_VALUE_SCHEMA;
stmt->prefix_data = mod;
stmt->kw = LY_STMT_IF_FEATURE;
}
/*
* 3) filter's select
*/
LY_ARRAY_NEW_RET(mod->mod->ctx, mod->exts, ext_p, LY_EMEM);
LY_CHECK_ERR_RET(!ext_p, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "md_:annotation", 0, &ext_p->name));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "select", 0, &ext_p->argument));
ext_p->format = LY_VALUE_SCHEMA;
ext_p->prefix_data = mod;
ext_p->flags = LYS_INTERNAL;
ext_p->parent_stmt = LY_STMT_MODULE;
ext_p->parent_stmt_index = 0;
ext_p->child = stmt = calloc(1, sizeof *ext_p->child);
LY_CHECK_ERR_RET(!stmt, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "type", 0, &stmt->stmt));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "yang_:xpath1.0", 0, &stmt->arg));
stmt->format = LY_VALUE_SCHEMA;
stmt->prefix_data = mod;
stmt->kw = LY_STMT_TYPE;
/* create new imports for the used prefixes */
LY_ARRAY_NEW_RET(mod->mod->ctx, mod->imports, imp, LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "ietf-yang-metadata", 0, &imp->name));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "md_", 0, &imp->prefix));
imp->flags = LYS_INTERNAL;
LY_ARRAY_NEW_RET(mod->mod->ctx, mod->imports, imp, LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "ietf-yang-types", 0, &imp->name));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "yang_", 0, &imp->prefix));
imp->flags = LYS_INTERNAL;
return LY_SUCCESS;
}
/**
* @brief Add ietf-netconf-with-defaults "default" metadata to the parsed module.
*
* @param[in] mod Parsed module to add to.
* @return LY_SUCCESS on success.
* @return LY_ERR on error.
*/
static LY_ERR
lys_parsed_add_internal_ietf_netconf_with_defaults(struct lysp_module *mod)
{
struct lysp_ext_instance *ext_p;
struct lysp_stmt *stmt;
struct lysp_import *imp;
/* add new extension instance */
LY_ARRAY_NEW_RET(mod->mod->ctx, mod->exts, ext_p, LY_EMEM);
/* fill in the extension instance fields */
LY_CHECK_ERR_RET(!ext_p, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "md_:annotation", 0, &ext_p->name));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "default", 0, &ext_p->argument));
ext_p->format = LY_VALUE_SCHEMA;
ext_p->prefix_data = mod;
ext_p->flags = LYS_INTERNAL;
ext_p->parent_stmt = LY_STMT_MODULE;
ext_p->parent_stmt_index = 0;
ext_p->child = stmt = calloc(1, sizeof *ext_p->child);
LY_CHECK_ERR_RET(!stmt, LOGMEM(mod->mod->ctx), LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "type", 0, &stmt->stmt));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "boolean", 0, &stmt->arg));
stmt->format = LY_VALUE_SCHEMA;
stmt->prefix_data = mod;
stmt->kw = LY_STMT_TYPE;
/* create new import for the used prefix */
LY_ARRAY_NEW_RET(mod->mod->ctx, mod->imports, imp, LY_EMEM);
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "ietf-yang-metadata", 0, &imp->name));
LY_CHECK_RET(lydict_insert(mod->mod->ctx, "md_", 0, &imp->prefix));
imp->flags = LYS_INTERNAL;
return LY_SUCCESS;
}
LY_ERR
lys_parse_in(struct ly_ctx *ctx, struct ly_in *in, LYS_INFORMAT format,
LY_ERR (*custom_check)(const struct ly_ctx *ctx, struct lysp_module *mod, struct lysp_submodule *submod, void *data),
void *check_data, struct ly_set *new_mods, struct lys_module **module)
{
struct lys_module *mod = NULL, *latest, *mod_dup;
struct lysp_submodule *submod;
LY_ERR ret;
LY_ARRAY_COUNT_TYPE u;
struct lys_yang_parser_ctx *yangctx = NULL;
struct lys_yin_parser_ctx *yinctx = NULL;
struct lys_parser_ctx *pctx = NULL;
char *filename, *rev, *dot;
size_t len;
assert(ctx && in && new_mods);
if (module) {
*module = NULL;
}
mod = calloc(1, sizeof *mod);
LY_CHECK_ERR_RET(!mod, LOGMEM(ctx), LY_EMEM);
mod->ctx = ctx;
/* parse */
switch (format) {
case LYS_IN_YIN:
ret = yin_parse_module(&yinctx, in, mod, new_mods);
pctx = (struct lys_parser_ctx *)yinctx;
break;
case LYS_IN_YANG:
ret = yang_parse_module(&yangctx, in, mod, new_mods);
pctx = (struct lys_parser_ctx *)yangctx;
break;
default:
LOGERR(ctx, LY_EINVAL, "Invalid schema input format.");
ret = LY_EINVAL;
break;
}
LY_CHECK_GOTO(ret, free_mod_cleanup);
/* make sure that the newest revision is at position 0 */
lysp_sort_revisions(mod->parsed->revs);
if (mod->parsed->revs) {
LY_CHECK_GOTO(ret = lydict_insert(ctx, mod->parsed->revs[0].date, 0, &mod->revision), free_mod_cleanup);
}
/* decide the latest revision */
latest = (struct lys_module *)ly_ctx_get_module_latest(ctx, mod->name);
if (latest) {
if (mod->revision) {
if (!latest->revision) {
/* latest has no revision, so mod is anyway newer */
mod->latest_revision = latest->latest_revision;
/* the latest is zeroed later when the new module is being inserted into the context */
} else if (strcmp(mod->revision, latest->revision) > 0) {
mod->latest_revision = latest->latest_revision;
/* the latest is zeroed later when the new module is being inserted into the context */
} else {
latest = NULL;
}
} else {
latest = NULL;
}
} else {
mod->latest_revision = 1;
}
if (custom_check) {
LY_CHECK_GOTO(ret = custom_check(ctx, mod->parsed, NULL, check_data), free_mod_cleanup);
}
/* check whether it is not already in the context in the same revision */
mod_dup = (struct lys_module *)ly_ctx_get_module(ctx, mod->name, mod->revision);
if (mod_dup) {
/* nothing to do */
LOGVRB("Module \"%s@%s\" is already present in the context.", mod_dup->name,
mod_dup->revision ? mod_dup->revision : "<none>");
goto free_mod_cleanup;
}
switch (in->type) {
case LY_IN_FILEPATH:
/* check that name and revision match filename */
filename = strrchr(in->method.fpath.filepath, '/');
if (!filename) {
filename = in->method.fpath.filepath;
} else {
filename++;
}
rev = strchr(filename, '@');
dot = strrchr(filename, '.');
/* name */
len = strlen(mod->name);
if (strncmp(filename, mod->name, len) ||
((rev && (rev != &filename[len])) || (!rev && (dot != &filename[len])))) {
LOGWRN(ctx, "File name \"%s\" does not match module name \"%s\".", filename, mod->name);
}
if (rev) {
len = dot - ++rev;
if (!mod->parsed->revs || (len != LY_REV_SIZE - 1) || strncmp(mod->parsed->revs[0].date, rev, len)) {
LOGWRN(ctx, "File name \"%s\" does not match module revision \"%s\".", filename,
mod->parsed->revs ? mod->parsed->revs[0].date : "none");
}
}
break;
case LY_IN_FD:
case LY_IN_FILE:
case LY_IN_MEMORY:
/* nothing special to do */
break;
case LY_IN_ERROR:
LOGINT(ctx);
ret = LY_EINT;
goto free_mod_cleanup;
}
lys_parser_fill_filepath(ctx, in, &mod->filepath);
if (latest) {
latest->latest_revision = 0;
}
/* add internal data in case specific modules were parsed */
if (!strcmp(mod->name, "ietf-netconf")) {
LY_CHECK_GOTO(ret = lys_parsed_add_internal_ietf_netconf(mod->parsed), free_mod_cleanup);
} else if (!strcmp(mod->name, "ietf-netconf-with-defaults")) {
LY_CHECK_GOTO(ret = lys_parsed_add_internal_ietf_netconf_with_defaults(mod->parsed), free_mod_cleanup);
}
/* add the module into newly created module set, will also be freed from there on any error */
LY_CHECK_GOTO(ret = ly_set_add(new_mods, mod, 1, NULL), free_mod_cleanup);
/* add into context */
ret = ly_set_add(&ctx->list, mod, 1, NULL);
LY_CHECK_GOTO(ret, cleanup);
ctx->change_count++;
/* resolve includes and all imports */
LY_CHECK_GOTO(ret = lys_resolve_import_include(pctx, mod->parsed), cleanup);
/* check name collisions */
LY_CHECK_GOTO(ret = lysp_check_dup_typedefs(pctx, mod->parsed), cleanup);
/* TODO groupings */
LY_CHECK_GOTO(ret = lysp_check_dup_features(pctx, mod->parsed), cleanup);
LY_CHECK_GOTO(ret = lysp_check_dup_identities(pctx, mod->parsed), cleanup);
/* compile features */
LY_CHECK_GOTO(ret = lys_compile_feature_iffeatures(mod->parsed), cleanup);
/* pre-compile identities of the module and any submodules */
LY_CHECK_GOTO(ret = lys_identity_precompile(NULL, ctx, mod->parsed, mod->parsed->identities, &mod->identities), cleanup);
LY_ARRAY_FOR(mod->parsed->includes, u) {
submod = mod->parsed->includes[u].submodule;
ret = lys_identity_precompile(NULL, ctx, (struct lysp_module *)submod, submod->identities, &mod->identities);
LY_CHECK_GOTO(ret, cleanup);
}
/* success */
goto cleanup;
free_mod_cleanup:
lys_module_free(mod);
if (ret) {
mod = NULL;
} else {
/* return the existing module */
assert(mod_dup);
mod = mod_dup;
}
cleanup:
if (pctx) {
ly_set_erase(&pctx->tpdfs_nodes, NULL);
}
if (format == LYS_IN_YANG) {
yang_parser_ctx_free(yangctx);
} else {
yin_parser_ctx_free(yinctx);
}
if (!ret && module) {
*module = mod;
}
return ret;
}
static LYS_INFORMAT
lys_parse_get_format(const struct ly_in *in, LYS_INFORMAT format)
{
if (!format && (in->type == LY_IN_FILEPATH)) {
/* unknown format - try to detect it from filename's suffix */
const char *path = in->method.fpath.filepath;
size_t len = strlen(path);
/* ignore trailing whitespaces */
for ( ; len > 0 && isspace(path[len - 1]); len--) {}
if ((len >= LY_YANG_SUFFIX_LEN + 1) &&
!strncmp(&path[len - LY_YANG_SUFFIX_LEN], LY_YANG_SUFFIX, LY_YANG_SUFFIX_LEN)) {
format = LYS_IN_YANG;
} else if ((len >= LY_YIN_SUFFIX_LEN + 1) &&
!strncmp(&path[len - LY_YIN_SUFFIX_LEN], LY_YIN_SUFFIX, LY_YIN_SUFFIX_LEN)) {
format = LYS_IN_YIN;
} /* else still unknown */
}
return format;
}
API LY_ERR
lys_parse(struct ly_ctx *ctx, struct ly_in *in, LYS_INFORMAT format, const char **features, const struct lys_module **module)
{
LY_ERR ret = LY_SUCCESS;
struct lys_module *mod;
struct lys_glob_unres unres = {0};
if (module) {
*module = NULL;
}
LY_CHECK_ARG_RET(NULL, ctx, in, LY_EINVAL);
format = lys_parse_get_format(in, format);
LY_CHECK_ARG_RET(ctx, format, LY_EINVAL);
/* remember input position */
in->func_start = in->current;
/* parse */
ret = lys_parse_in(ctx, in, format, NULL, NULL, &unres.creating, &mod);
LY_CHECK_GOTO(ret, cleanup);
/* implement */
ret = _lys_set_implemented(mod, features, &unres);
LY_CHECK_GOTO(ret, cleanup);
if (!(ctx->flags & LY_CTX_EXPLICIT_COMPILE)) {
/* create dep set for the module and mark all the modules that will be (re)compiled */
LY_CHECK_GOTO(ret = lys_unres_dep_sets_to_compile(ctx, &unres.dep_sets, mod), cleanup);
/* (re)compile the whole dep set */
LY_CHECK_GOTO(ret = lys_compile_dep_set_r(ctx, unres.dep_sets.objs[0], &unres), cleanup);
}
cleanup:
if (ret) {
lys_unres_glob_revert(ctx, &unres);
} else if (module) {
*module = mod;
}
lys_unres_glob_erase(&unres);
return ret;
}
API LY_ERR
lys_parse_mem(struct ly_ctx *ctx, const char *data, LYS_INFORMAT format, const struct lys_module **module)
{
LY_ERR ret;
struct ly_in *in = NULL;
LY_CHECK_ARG_RET(ctx, data, format != LYS_IN_UNKNOWN, LY_EINVAL);
LY_CHECK_ERR_RET(ret = ly_in_new_memory(data, &in), LOGERR(ctx, ret, "Unable to create input handler."), ret);
ret = lys_parse(ctx, in, format, NULL, module);
ly_in_free(in, 0);
return ret;
}
API LY_ERR
lys_parse_fd(struct ly_ctx *ctx, int fd, LYS_INFORMAT format, const struct lys_module **module)
{
LY_ERR ret;
struct ly_in *in = NULL;
LY_CHECK_ARG_RET(ctx, fd > -1, format != LYS_IN_UNKNOWN, LY_EINVAL);
LY_CHECK_ERR_RET(ret = ly_in_new_fd(fd, &in), LOGERR(ctx, ret, "Unable to create input handler."), ret);
ret = lys_parse(ctx, in, format, NULL, module);
ly_in_free(in, 0);
return ret;
}
API LY_ERR
lys_parse_path(struct ly_ctx *ctx, const char *path, LYS_INFORMAT format, const struct lys_module **module)
{
LY_ERR ret;
struct ly_in *in = NULL;
LY_CHECK_ARG_RET(ctx, path, format != LYS_IN_UNKNOWN, LY_EINVAL);
LY_CHECK_ERR_RET(ret = ly_in_new_filepath(path, 0, &in),
LOGERR(ctx, ret, "Unable to create input handler for filepath %s.", path), ret);
ret = lys_parse(ctx, in, format, NULL, module);
ly_in_free(in, 0);
return ret;
}
API LY_ERR
lys_search_localfile(const char * const *searchpaths, ly_bool cwd, const char *name, const char *revision,
char **localfile, LYS_INFORMAT *format)
{
LY_ERR ret = LY_EMEM;
size_t len, flen, match_len = 0, dir_len;
ly_bool implicit_cwd = 0;
char *wd, *wn = NULL;
DIR *dir = NULL;
struct dirent *file;
char *match_name = NULL;
LYS_INFORMAT format_aux, match_format = 0;
struct ly_set *dirs;
struct stat st;
LY_CHECK_ARG_RET(NULL, localfile, LY_EINVAL);
/* start to fill the dir fifo with the context's search path (if set)
* and the current working directory */
LY_CHECK_RET(ly_set_new(&dirs));
len = strlen(name);
if (cwd) {
wd = get_current_dir_name();
if (!wd) {
LOGMEM(NULL);
goto cleanup;
} else {
/* add implicit current working directory (./) to be searched,
* this directory is not searched recursively */
ret = ly_set_add(dirs, wd, 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
implicit_cwd = 1;
}
}
if (searchpaths) {
for (uint64_t i = 0; searchpaths[i]; i++) {
/* check for duplicities with the implicit current working directory */
if (implicit_cwd && !strcmp(dirs->objs[0], searchpaths[i])) {
implicit_cwd = 0;
continue;
}
wd = strdup(searchpaths[i]);
if (!wd) {
LOGMEM(NULL);
goto cleanup;
} else {
ret = ly_set_add(dirs, wd, 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
}
}
wd = NULL;
/* start searching */
while (dirs->count) {
free(wd);
free(wn); wn = NULL;
dirs->count--;
wd = (char *)dirs->objs[dirs->count];
dirs->objs[dirs->count] = NULL;
LOGVRB("Searching for \"%s\" in \"%s\".", name, wd);
if (dir) {
closedir(dir);
}
dir = opendir(wd);
dir_len = strlen(wd);
if (!dir) {
LOGWRN(NULL, "Unable to open directory \"%s\" for searching (sub)modules (%s).", wd, strerror(errno));
} else {
while ((file = readdir(dir))) {
if (!strcmp(".", file->d_name) || !strcmp("..", file->d_name)) {
/* skip . and .. */
continue;
}
free(wn);
if (asprintf(&wn, "%s/%s", wd, file->d_name) == -1) {
LOGMEM(NULL);
goto cleanup;
}
if (stat(wn, &st) == -1) {
LOGWRN(NULL, "Unable to get information about \"%s\" file in \"%s\" when searching for (sub)modules (%s)",
file->d_name, wd, strerror(errno));
continue;
}
if (S_ISDIR(st.st_mode) && (dirs->count || !implicit_cwd)) {
/* we have another subdirectory in searchpath to explore,
* subdirectories are not taken into account in current working dir (dirs->set.g[0]) */
ret = ly_set_add(dirs, wn, 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
/* continue with the next item in current directory */
wn = NULL;
continue;
} else if (!S_ISREG(st.st_mode)) {
/* not a regular file (note that we see the target of symlinks instead of symlinks */
continue;
}
/* here we know that the item is a file which can contain a module */
if (strncmp(name, file->d_name, len) ||
((file->d_name[len] != '.') && (file->d_name[len] != '@'))) {
/* different filename than the module we search for */
continue;
}
/* get type according to filename suffix */
flen = strlen(file->d_name);
if ((flen >= LY_YANG_SUFFIX_LEN + 1) &&
!strcmp(&file->d_name[flen - LY_YANG_SUFFIX_LEN], LY_YANG_SUFFIX)) {
format_aux = LYS_IN_YANG;
} else if ((flen >= LY_YIN_SUFFIX_LEN + 1) &&
!strcmp(&file->d_name[flen - LY_YIN_SUFFIX_LEN], LY_YIN_SUFFIX)) {
format_aux = LYS_IN_YIN;
} else {
/* not supportde suffix/file format */
continue;
}
if (revision) {
/* we look for the specific revision, try to get it from the filename */
if (file->d_name[len] == '@') {
/* check revision from the filename */
if (strncmp(revision, &file->d_name[len + 1], strlen(revision))) {
/* another revision */
continue;
} else {
/* exact revision */
free(match_name);
match_name = wn;
wn = NULL;
match_len = dir_len + 1 + len;
match_format = format_aux;
goto success;
}
} else {
/* continue trying to find exact revision match, use this only if not found */
free(match_name);
match_name = wn;
wn = NULL;
match_len = dir_len + 1 + len;
match_format = format_aux;
continue;
}
} else {
/* remember the revision and try to find the newest one */
if (match_name) {
if ((file->d_name[len] != '@') ||
lysp_check_date(NULL, &file->d_name[len + 1],
flen - ((format_aux == LYS_IN_YANG) ? LY_YANG_SUFFIX_LEN : LY_YIN_SUFFIX_LEN) - len - 1, NULL)) {
continue;
} else if ((match_name[match_len] == '@') &&
(strncmp(&match_name[match_len + 1], &file->d_name[len + 1], LY_REV_SIZE - 1) >= 0)) {
continue;
}
free(match_name);
}
match_name = wn;
wn = NULL;
match_len = dir_len + 1 + len;
match_format = format_aux;
continue;
}
}
}
}
success:
(*localfile) = match_name;
match_name = NULL;
if (format) {
(*format) = match_format;
}
ret = LY_SUCCESS;
cleanup:
free(wn);
free(wd);
if (dir) {
closedir(dir);
}
free(match_name);
ly_set_free(dirs, free);
return ret;
}