blob: 8b454bbffff5601d0df385e70270a77c22fcf2a0 [file] [log] [blame]
/**
* @file printer_tree.c
* @author Adam Piecek <piecek@cesnet.cz>
* @brief RFC tree printer for libyang data structure
*
* Copyright (c) 2015 - 2021 CESNET, z.s.p.o.
*
* This source code is licensed under BSD 3-Clause License (the "License").
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*
* @section TRP_DESIGN Design
*
* @code
* +---------+ +---------+ +---------+
* output | trp | | trb | | tro |
* <---+ Print +<---+ Browse +<-->+ Obtain |
* | | | | | |
* +---------+ +----+----+ +---------+
* ^
* |
* +----+----+
* | trm |
* | Manager |
* | |
* +----+----+
* ^
* | input
* +
* @endcode
*
* @subsection TRP_GLOSSARY Glossary
*
* @subsubsection TRP_trm trm
* Manager functions are at the peak of abstraction. They are
* able to print individual sections of the YANG tree diagram
* (eg module, notifications, rpcs ...) and they call
* Browse functions (@ref TRP_trb).
*
* @subsubsection TRP_trb trb
* Browse functions contain a general algorithm (Preorder DFS)
* for traversing the tree. It does not matter what data type
* the tree contains (@ref lysc_node or @ref lysp_node), because it
* requires a ready-made getter functions for traversing the tree
* (@ref trt_fp_all) and transformation function to its own node
* data type (@ref trt_node). These getter functions are generally
* referred to as @ref TRP_tro. Browse functions can repeatedly
* traverse nodes in the tree, for example, to calculate the alignment
* gap before the nodes \<type\> in the YANG Tree Diagram.
* The obtained @ref trt_node is passed to the @ref TRP_trp functions
* to print the Tree diagram.
*
* @subsubsection TRP_tro tro
* Functions that provide an extra wrapper for the libyang library.
* The Obtain functions are further specialized according to whether
* they operate on lysp_tree (@ref TRP_trop) or lysc_tree
* (@ref TRP_troc). If they are general algorithms, then they have the
* prefix \b tro_. The Obtain functions provide information to
* @ref TRP_trb functions for printing the Tree diagram.
*
* @subsubsection TRP_trop trop
* Functions for Obtaining information from Parsed schema tree.
*
* @subsubsection TRP_troc troc
* Functions for Obtaining information from Compiled schema tree.
*
* @subsubsection TRP_trp trp
* Print functions take care of the printing YANG diagram. They can
* also split one node into multiple lines if the node does not fit
* on one line.
*
* @subsubsection TRP_trt trt
* Data type marking in the printer_tree module.
*
* @subsubsection TRP_trg trg
* General functions.
*
* @subsection TRP_ADJUSTMENTS Adjustments
* It is assumed that the changes are likely to take place mainly for
* @ref TRP_tro, @ref TRP_trop or @ref TRP_troc functions because
* they are the only ones dependent on libyang implementation.
* In special cases, changes will also need to be made to the
* @ref TRP_trp functions if a special algorithm is needed to print
* (right now this is prepared for printing list's keys
* and if-features).
*/
#include <assert.h>
#include <string.h>
#include "common.h"
#include "compat.h"
#include "out_internal.h"
#include "plugins_exts.h"
#include "plugins_types.h"
#include "printer_internal.h"
#include "printer_schema.h"
#include "tree_schema_internal.h"
#include "xpath.h"
/**
* @brief List of available actions.
*/
typedef enum {
TRD_PRINT = 0, /**< Normal behavior. It just prints. */
TRD_CHAR_COUNT /**< Characters will be counted instead of printing. */
} trt_ly_out_clb_arg_flag;
/**
* @brief Structure is passed as 'writeclb' argument
* to the ::ly_out_new_clb().
*/
struct ly_out_clb_arg {
trt_ly_out_clb_arg_flag mode; /**< flag specifying which action to take. */
struct ly_out *out; /**< The ly_out pointer delivered to the printer tree module via the main interface. */
size_t counter; /**< Counter of printed characters. */
LY_ERR last_error; /**< The last error that occurred. If no error has occurred, it will be ::LY_SUCCESS. */
};
/**
* @brief Initialize struct ly_out_clb_arg with default settings.
*/
#define TRP_INIT_LY_OUT_CLB_ARG(MODE, OUT, COUNTER, LAST_ERROR) \
(struct ly_out_clb_arg) { \
.mode = MODE, .out = OUT, \
.counter = COUNTER, .last_error = LAST_ERROR \
}
/**********************************************************************
* Print getters
*********************************************************************/
/**
* @brief Callback functions that prints special cases.
*
* It just groups together tree context with trt_fp_print.
*/
struct trt_cf_print {
const struct trt_tree_ctx *ctx; /**< Context of libyang tree. */
void (*pf)(const struct trt_tree_ctx *, struct ly_out *); /**< Pointing to function which printing list's keys or features. */
};
/**
* @brief Callback functions for printing special cases.
*
* Functions with the suffix 'trp' can print most of the text on
* output, just by setting the pointer to the string. But in some
* cases, it's not that simple, because its entire string is fragmented
* in memory. For example, for printing list's keys or if-features.
* However, this depends on how the libyang library is implemented.
* This implementation of the printer_tree module goes through
* a lysp tree, but if it goes through a lysc tree, these special cases
* would be different.
* Functions must print including spaces or delimiters between names.
*/
struct trt_fp_print {
void (*print_features_names)(const struct trt_tree_ctx *, struct ly_out *); /**< Print list of features without {}? wrapper. */
void (*print_keys)(const struct trt_tree_ctx *, struct ly_out *); /**< Print list's keys without [] wrapper. */
};
/**
* @brief Package which only groups getter function.
*/
struct trt_pck_print {
const struct trt_tree_ctx *tree_ctx; /**< Context of libyang tree. */
struct trt_fp_print fps; /**< Print function. */
};
/**
* @brief Initialize struct trt_pck_print by parameters.
*/
#define TRP_INIT_PCK_PRINT(TREE_CTX, FP_PRINT) \
(struct trt_pck_print) {.tree_ctx = TREE_CTX, .fps = FP_PRINT}
/**********************************************************************
* Indent
*********************************************************************/
/**
* @brief Constants which are defined in the RFC or are observable
* from the pyang tool.
*/
typedef enum {
TRD_INDENT_EMPTY = 0, /**< If the node is a case node, there is no space before the \<name\>. */
TRD_INDENT_LONG_LINE_BREAK = 2, /**< The new line should be indented so that it starts below \<name\> with
a whitespace offset of at least two characters. */
TRD_INDENT_LINE_BEGIN = 2, /**< Indent below the keyword (module, augment ...). */
TRD_INDENT_BTW_SIBLINGS = 2, /**< Indent between | and | characters. */
TRD_INDENT_BEFORE_KEYS = 1, /**< "..."___\<keys\>. */
TRD_INDENT_BEFORE_TYPE = 4, /**< "..."___\<type\>, but if mark is set then indent == 3. */
TRD_INDENT_BEFORE_IFFEATURES = 1 /**< "..."___\<iffeatures\>. */
} trt_cnf_indent;
/**
* @brief Type of indent in node.
*/
typedef enum {
TRD_INDENT_IN_NODE_NORMAL = 0, /**< Node fits on one line. */
TRD_INDENT_IN_NODE_DIVIDED, /**< The node must be split into multiple rows. */
TRD_INDENT_IN_NODE_FAILED /**< Cannot be crammed into one line. The condition for the maximum line length is violated. */
} trt_indent_in_node_type;
/** Constant to indicate the need to break a line. */
#define TRD_LINEBREAK -1
/**
* @brief Records the alignment between the individual
* elements of the node.
*
* @see trp_default_indent_in_node, trp_try_normal_indent_in_node
*/
struct trt_indent_in_node {
trt_indent_in_node_type type; /**< Type of indent in node. */
int16_t btw_name_opts; /**< Indent between node name and \<opts\>. */
int16_t btw_opts_type; /**< Indent between \<opts\> and \<type\>. */
int16_t btw_type_iffeatures; /**< Indent between type and features. Ignored if \<type\> missing. */
};
/**
* @brief Type of wrappers to be printed.
*/
typedef enum {
TRD_WRAPPER_TOP = 0, /**< Related to the module. */
TRD_WRAPPER_BODY /**< Related to e.g. Augmentations or Groupings */
} trd_wrapper_type;
/**
* @brief For resolving sibling symbol ('|') placement.
*
* Bit indicates where the sibling symbol must be printed.
* This place is in multiples of ::TRD_INDENT_BTW_SIBLINGS.
*
* @see TRP_INIT_WRAPPER_TOP, TRP_INIT_WRAPPER_BODY,
* trp_wrapper_set_mark, trp_wrapper_set_shift,
* trp_wrapper_if_last_sibling, trp_wrapper_eq, trp_print_wrapper
*/
struct trt_wrapper {
trd_wrapper_type type; /**< Location of the wrapper. */
uint64_t bit_marks1; /**< The set bits indicate where the '|' character is to be printed.
It follows that the maximum immersion of the printable node is 64. */
uint32_t actual_pos; /**< Actual position in bit_marks. */
};
/**
* @brief Get wrapper related to the module section.
*
* @code
* module: <module-name>
* +--<node>
* |
* @endcode
*/
#define TRP_INIT_WRAPPER_TOP \
(struct trt_wrapper) { \
.type = TRD_WRAPPER_TOP, .actual_pos = 0, .bit_marks1 = 0 \
}
/**
* @brief Get wrapper related to subsection
* e.g. Augmenations or Groupings.
*
* @code
* module: <module-name>
* +--<node>
*
* augment <target-node>:
* +--<node>
* @endcode
*/
#define TRP_INIT_WRAPPER_BODY \
(struct trt_wrapper) { \
.type = TRD_WRAPPER_BODY, .actual_pos = 0, .bit_marks1 = 0 \
}
/**
* @brief Package which only groups wrapper and indent in node.
*/
struct trt_pck_indent {
struct trt_wrapper wrapper; /**< Coded " | | " sequence. */
struct trt_indent_in_node in_node; /**< Indent in node. */
};
/**
* @brief Initialize struct trt_pck_indent by parameters.
*/
#define TRP_INIT_PCK_INDENT(WRAPPER, INDENT_IN_NODE) \
(struct trt_pck_indent){ \
.wrapper = WRAPPER, .in_node = INDENT_IN_NODE \
}
/**********************************************************************
* flags
*********************************************************************/
#define TRD_FLAGS_TYPE_EMPTY "--"
#define TRD_FLAGS_TYPE_RW "rw"
#define TRD_FLAGS_TYPE_RO "ro"
#define TRD_FLAGS_TYPE_RPC_INPUT_PARAMS "-w"
#define TRD_FLAGS_TYPE_USES_OF_GROUPING "-u"
#define TRD_FLAGS_TYPE_RPC "-x"
#define TRD_FLAGS_TYPE_NOTIF "-n"
#define TRD_FLAGS_TYPE_MOUNT_POINT "mp"
/**********************************************************************
* node_name and opts
*********************************************************************/
#define TRD_NODE_NAME_PREFIX_CHOICE "("
#define TRD_NODE_NAME_PREFIX_CASE ":("
#define TRD_NODE_NAME_TRIPLE_DOT "..."
/**
* @brief Type of the node.
*
* Used mainly to complete the correct \<opts\> next to or
* around the \<name\>.
*/
typedef enum {
TRD_NODE_ELSE = 0, /**< For some node which does not require special treatment. \<name\> */
TRD_NODE_CASE, /**< For case node. :(\<name\>) */
TRD_NODE_CHOICE, /**< For choice node. (\<name\>) */
TRD_NODE_TRIPLE_DOT /**< For collapsed sibling nodes and their children. Special case which doesn't belong here very well. */
} trt_node_type;
#define TRD_NODE_OPTIONAL "?" /**< For an optional leaf, anydata, or anyxml. \<name\>? */
#define TRD_NODE_CONTAINER "!" /**< For a presence container. \<name\>! */
#define TRD_NODE_LISTLEAFLIST "*" /**< For a leaf-list or list. \<name\>* */
/**
* @brief Type of node and his name.
*
* @see TRP_EMPTY_NODE_NAME, TRP_NODE_NAME_IS_EMPTY,
* trp_print_node_name, trp_mark_is_used, trp_print_opts_keys
*/
struct trt_node_name {
trt_node_type type; /**< Type of the node relevant for printing. */
ly_bool keys; /**< Set to 1 if [\<keys\>] are to be printed. Valid for some types only. */
const char *module_prefix; /**< If the node is augmented into the tree from another module,
so this is the prefix of that module. */
const char *str; /**< Name of the node. */
const char *add_opts; /**< Additional opts symbol from plugin. */
const char *opts; /**< The \<opts\> symbol. */
};
/**
* @brief Create struct trt_node_name as empty.
*/
#define TRP_EMPTY_NODE_NAME \
(struct trt_node_name) { \
.type = TRD_NODE_ELSE, .keys = 0, .module_prefix = NULL, .str = NULL, .opts = NULL, .add_opts = NULL \
}
/**
* @brief Check if struct trt_node_name is empty.
*/
#define TRP_NODE_NAME_IS_EMPTY(NODE_NAME) \
!NODE_NAME.str
/**********************************************************************
* type
*********************************************************************/
/**
* @brief Type of the \<type\>
*/
typedef enum {
TRD_TYPE_NAME = 0, /**< Type is just a name that does not require special treatment. */
TRD_TYPE_TARGET, /**< Should have a form "-> TARGET", where TARGET is the leafref path. */
TRD_TYPE_LEAFREF, /**< This type is set automatically by the 'trp' algorithm.
So set type as ::TRD_TYPE_TARGET. */
TRD_TYPE_EMPTY /**< Type is not used at all. */
} trt_type_type;
/**
* @brief \<type\> in the \<node\>.
*
* @see TRP_EMPTY_TRT_TYPE, TRP_TRT_TYPE_IS_EMPTY, trp_print_type
*/
struct trt_type {
trt_type_type type; /**< Type of the \<type\>. */
const char *str; /**< Path or name of the type. */
};
/**
* @brief Create empty struct trt_type.
*/
#define TRP_EMPTY_TRT_TYPE \
(struct trt_type) {.type = TRD_TYPE_EMPTY, .str = NULL}
/**
* @brief Check if struct trt_type is empty.
*/
#define TRP_TRT_TYPE_IS_EMPTY(TYPE_OF_TYPE) \
TYPE_OF_TYPE.type == TRD_TYPE_EMPTY
/**
* @brief Initialize struct trt_type by parameters.
*/
#define TRP_INIT_TRT_TYPE(TYPE_OF_TYPE, STRING) \
(struct trt_type) {.type = TYPE_OF_TYPE, .str = STRING}
/**
* @brief If-feature type.
*/
typedef enum {
TRD_IFF_NON_PRESENT = 0, /**< iffeatures are not present. */
TRD_IFF_PRESENT, /**< iffeatures are present and will be printed by
trt_fp_print.print_features_names callback */
TRD_IFF_OVERR /**< iffeatures are override by plugin */
} trt_iffeatures_type;
/**
* @brief \<if-features\>.
*/
struct trt_iffeatures {
trt_iffeatures_type type; /**< Type of iffeature. */
char *str; /**< iffeatures string ready to print. Set if TRD_IFF_OVERR is set. */
};
/**
* @brief Create empty iffeatures.
*/
#define TRP_EMPTY_TRT_IFFEATURES \
(struct trt_iffeatures) {.type = TRD_IFF_NON_PRESENT}
/**
* @brief Check if iffeatures is empty.
*
* @param[in] IFF_TYPE value from trt_iffeatures.type.
* @return 1 if is empty.
*/
#define TRP_EMPTY_TRT_IFFEATURES_IS_EMPTY(IFF_TYPE) \
(IFF_TYPE == TRD_IFF_NON_PRESENT)
/**********************************************************************
* node
*********************************************************************/
/**
* @brief \<node\> data for printing.
*
* It contains RFC's:
* \<status\>--\<flags\> \<name\>\<opts\> \<type\> \<if-features\>.
* Item \<opts\> is moved to part struct trt_node_name.
* For printing [\<keys\>] and if-features is required special
* functions which prints them.
*
* @see TRP_EMPTY_NODE, trp_node_is_empty, trp_node_body_is_empty,
* trp_print_node_up_to_name, trp_print_divided_node_up_to_name,
* trp_print_node
*/
struct trt_node {
const char *status; /**< \<status\>. */
const char *flags; /**< \<flags\>. */
struct trt_node_name name; /**< \<node\> with \<opts\> mark or [\<keys\>]. */
struct trt_type type; /**< \<type\> contains the name of the type or type for leafref. */
struct trt_iffeatures iffeatures; /**< \<if-features\>. */
ly_bool last_one; /**< Information about whether the node is the last. */
};
/**
* @brief Create struct trt_node as empty.
*/
#define TRP_EMPTY_NODE \
(struct trt_node) { \
.status = NULL, \
.flags = NULL, \
.name = TRP_EMPTY_NODE_NAME, \
.type = TRP_EMPTY_TRT_TYPE, \
.iffeatures = TRP_EMPTY_TRT_IFFEATURES, \
.last_one = 1 \
}
/**
* @brief Package which only groups indent and node.
*/
struct trt_pair_indent_node {
struct trt_indent_in_node indent;
struct trt_node node;
};
/**
* @brief Initialize struct trt_pair_indent_node by parameters.
*/
#define TRP_INIT_PAIR_INDENT_NODE(INDENT_IN_NODE, NODE) \
(struct trt_pair_indent_node) { \
.indent = INDENT_IN_NODE, .node = NODE \
}
/**********************************************************************
* statement
*********************************************************************/
#define TRD_KEYWORD_MODULE "module"
#define TRD_KEYWORD_SUBMODULE "submodule"
#define TRD_KEYWORD_AUGMENT "augment"
#define TRD_KEYWORD_RPC "rpcs"
#define TRD_KEYWORD_NOTIF "notifications"
#define TRD_KEYWORD_GROUPING "grouping"
/**
* @brief Main sign of the tree nodes.
*
* @see TRP_EMPTY_KEYWORD_STMT, TRP_KEYWORD_STMT_IS_EMPTY
* trt_print_keyword_stmt_begin, trt_print_keyword_stmt_str,
* trt_print_keyword_stmt_end, trp_print_keyword_stmt
*/
struct trt_keyword_stmt {
const char *section_name; /**< String containing section name. */
const char *argument; /**< Name or path located begind section name. */
ly_bool has_node; /**< Flag if section has any nodes. */
};
/**
* @brief Create struct trt_keyword_stmt as empty.
*/
#define TRP_EMPTY_KEYWORD_STMT \
(struct trt_keyword_stmt) {.section_name = NULL, .argument = NULL, .has_node = 0}
/**********************************************************************
* Modify getters
*********************************************************************/
struct trt_parent_cache;
/**
* @brief Functions that change the state of the tree_ctx structure.
*
* The 'trop' or 'troc' functions are set here, which provide data
* for the 'trp' printing functions and are also called from the
* 'trb' browsing functions when walking through a tree. These callback
* functions need to be checked or reformulated if changes to the
* libyang library affect the printing tree. For all, if the value
* cannot be returned, its empty version obtained by relevant TRP_EMPTY
* macro is returned.
*/
struct trt_fp_modify_ctx {
ly_bool (*parent)(struct trt_tree_ctx *); /**< Jump to parent node. Return true if parent exists. */
struct trt_node (*first_sibling)(struct trt_parent_cache, struct trt_tree_ctx *); /**< Jump on the first of the siblings. */
struct trt_node (*next_sibling)(struct trt_parent_cache, struct trt_tree_ctx *); /**< Jump to next sibling of the current node. */
struct trt_node (*next_child)(struct trt_parent_cache, struct trt_tree_ctx *); /**< Jump to the child of the current node. */
};
/**
* @brief Create modify functions for compiled tree.
*/
#define TRP_TRT_FP_MODIFY_COMPILED \
(struct trt_fp_modify_ctx) { \
.parent = troc_modi_parent, \
.first_sibling = troc_modi_first_sibling, \
.next_sibling = troc_modi_next_sibling, \
.next_child = troc_modi_next_child, \
}
/**
* @brief Create modify functions for parsed tree.
*/
#define TRP_TRT_FP_MODIFY_PARSED \
(struct trt_fp_modify_ctx) { \
.parent = trop_modi_parent, \
.first_sibling = trop_modi_first_sibling, \
.next_sibling = trop_modi_next_sibling, \
.next_child = trop_modi_next_child, \
}
/**********************************************************************
* Read getters
*********************************************************************/
/**
* @brief Functions that do not change the state of the tree_structure.
*
* For details see trt_fp_modify_ctx.
*/
struct trt_fp_read {
struct trt_keyword_stmt (*module_name)(const struct trt_tree_ctx *); /**< Get name of the module. */
struct trt_node (*node)(struct trt_parent_cache, struct trt_tree_ctx *); /**< Get current node. */
ly_bool (*if_sibling_exists)(const struct trt_tree_ctx *); /**< Check if node's sibling exists. */
ly_bool (*if_parent_exists)(const struct trt_tree_ctx *); /**< Check if node's parent exists. */
};
/**
* @brief Create read functions for compiled tree.
*/
#define TRP_TRT_FP_READ_COMPILED \
(struct trt_fp_read) { \
.module_name = tro_read_module_name, \
.node = troc_read_node, \
.if_sibling_exists = troc_read_if_sibling_exists, \
.if_parent_exists = tro_read_if_sibling_exists \
}
/**
* @brief Create read functions for parsed tree.
*/
#define TRP_TRT_FP_READ_PARSED \
(struct trt_fp_read) { \
.module_name = tro_read_module_name, \
.node = trop_read_node, \
.if_sibling_exists = trop_read_if_sibling_exists, \
.if_parent_exists = tro_read_if_sibling_exists \
}
/**********************************************************************
* All getters
*********************************************************************/
/**
* @brief A set of all necessary functions that must be provided
* for the printer.
*/
struct trt_fp_all {
struct trt_fp_modify_ctx modify; /**< Function pointers which modify state of trt_tree_ctx. */
struct trt_fp_read read; /**< Function pointers which only reads state of trt_tree_ctx. */
struct trt_fp_print print; /**< Functions pointers for printing special items in node. */
};
/**********************************************************************
* Printer context
*********************************************************************/
/**
* @brief Main structure for @ref TRP_trp part.
*/
struct trt_printer_ctx {
struct ly_out *out; /**< Handler to printing. */
struct trt_fp_all fp; /**< @ref TRP_tro functions callbacks. */
size_t max_line_length; /**< The maximum number of characters that can be
printed on one line, including the last. */
};
/**********************************************************************
* Tro functions
*********************************************************************/
/**
* @brief The name of the section to which the node belongs.
*/
typedef enum {
TRD_SECT_MODULE = 0, /**< The node belongs to the "module: <module_name>:" label. */
TRD_SECT_AUGMENT, /**< The node belongs to some "augment <target-node>:" label. */
TRD_SECT_RPCS, /**< The node belongs to the "rpcs:" label. */
TRD_SECT_NOTIF, /**< The node belongs to the "notifications:" label. */
TRD_SECT_GROUPING, /**< The node belongs to some "grouping <grouping-name>:" label. */
TRD_SECT_PLUG_DATA /**< The node belongs to some plugin section. */
} trt_actual_section;
/**
* @brief Types of nodes that have some effect on their children.
*/
typedef enum {
TRD_ANCESTOR_ELSE = 0, /**< Everything not listed. */
TRD_ANCESTOR_RPC_INPUT, /**< ::LYS_INPUT */
TRD_ANCESTOR_RPC_OUTPUT, /**< ::LYS_OUTPUT */
TRD_ANCESTOR_NOTIF /**< ::LYS_NOTIF */
} trt_ancestor_type;
/**
* @brief Saved information when browsing the tree downwards.
*
* This structure helps prevent frequent retrieval of information
* from the tree. Functions @ref TRP_trb are designed to preserve
* this structures during their recursive calls. This functions do not
* interfere in any way with this data. This structure
* is used by @ref TRP_trop functions which, thanks to this
* structure, can return a node with the correct data. The word
* \b parent is in the structure name, because this data refers to
* the last parent and at the same time the states of its
* ancestors data. Only the function jumping on the child
* (next_child(...)) creates this structure, because the pointer
* to the current node moves down the tree. It's like passing
* the genetic code to children. Some data must be inherited and
* there are two approaches to this problem. Either it will always
* be determined which inheritance states belong to the current node
* (which can lead to regular travel to the root node) or
* the inheritance states will be stored during the recursive calls.
* So the problem was solved by the second option. Why does
* the structure contain this data? Because it walks through
* the lysp tree. For walks through the lysc tree is trt_parent_cache
* useless.
*
* @see TRO_EMPTY_PARENT_CACHE, tro_parent_cache_for_child
*/
struct trt_parent_cache {
trt_ancestor_type ancestor; /**< Some types of nodes have a special effect on their children. */
uint16_t lys_status; /**< Inherited status CURR, DEPRC, OBSLT. */
uint16_t lys_config; /**< Inherited config W or R. */
const struct lysp_node_list *last_list; /**< The last ::LYS_LIST passed. */
};
/**
* @brief Return trt_parent_cache filled with default values.
*/
#define TRP_EMPTY_PARENT_CACHE \
(struct trt_parent_cache) { \
.ancestor = TRD_ANCESTOR_ELSE, .lys_status = LYS_STATUS_CURR, \
.lys_config = LYS_CONFIG_W, .last_list = NULL \
}
/**
* @brief Node override from plugin.
*/
struct lyplg_ext_sprinter_tree_node_override {
const char *flags; /**< Override for \<flags\>. */
const char *add_opts; /**< Additional symbols for \<opts\>. */
};
/**
* @brief Context for plugin extension.
*/
struct trt_plugin_ctx {
struct lyspr_tree_ctx *ctx; /**< Pointer to main context. */
struct lyspr_tree_schema *schema; /**< Current schema to print. */
ly_bool filtered; /**< Flag if current node is filtered. */
struct lyplg_ext_sprinter_tree_node_override node_overr; /**< Current node override. */
ly_bool last_schema; /**< Flag if schema is last. */
ly_bool last_error; /**< Last error from plugin. */
};
/**
* @brief Main structure for browsing the libyang tree
*/
struct trt_tree_ctx {
ly_bool lysc_tree; /**< The lysc nodes are used for browsing through the tree.
It is assumed that once set, it does not change.
If it is true then trt_tree_ctx.pn and
trt_tree_ctx.tpn are not used.
If it is false then trt_tree_ctx.cn is not used. */
trt_actual_section section; /**< To which section pn points. */
const struct lysp_module *pmod; /**< Parsed YANG schema tree. */
const struct lysc_module *cmod; /**< Compiled YANG schema tree. */
const struct lysp_node *pn; /**< Actual pointer to parsed node. */
const struct lysp_node *tpn; /**< Pointer to actual top-node. */
const struct lysc_node *cn; /**< Actual pointer to compiled node. */
LY_ERR last_error; /**< Error value during printing. */
struct trt_plugin_ctx plugin_ctx; /**< Context for plugin. */
};
/**
* @brief Create empty node override.
*/
#define TRP_TREE_CTX_EMPTY_NODE_OVERR \
(struct lyplg_ext_sprinter_tree_node_override) { \
.flags = NULL, \
.add_opts = NULL, \
}
/**
* @brief Check if lysp node is available from
* the current compiled node.
*
* Use only if trt_tree_ctx.lysc_tree is set to true.
*/
#define TRP_TREE_CTX_LYSP_NODE_PRESENT(CN) \
(CN->priv)
/**
* @brief Get lysp_node from trt_tree_ctx.cn.
*
* Use only if :TRP_TREE_CTX_LYSP_NODE_PRESENT returns true
* for that node.
*/
#define TRP_TREE_CTX_GET_LYSP_NODE(CN) \
((const struct lysp_node *)CN->priv)
/** Getter function for ::trop_node_charptr(). */
typedef const char *(*trt_get_charptr_func)(const struct lysp_node *pn);
/**
* @brief Simple getter functions for lysp and lysc nodes.
*
* This structure is useful if we have a general algorithm
* (tro function) that can be used for both lysc and lysp nodes.
* Thanks to this structure, we prevent code redundancy.
* We don't have to write basically the same algorithm twice
* for lysp and lysc trees.
*/
struct tro_getters {
uint16_t (*nodetype)(const void *); /**< Get nodetype. */
const void *(*next)(const void *); /**< Get sibling. */
const void *(*parent)(const void *); /**< Get parent. */
const void *(*child)(const void *); /**< Get child. */
const void *(*actions)(const void *); /**< Get actions. */
const void *(*action_input)(const void *); /**< Get input action from action node. */
const void *(*action_output)(const void *); /**< Get output action from action node. */
const void *(*notifs)(const void *); /**< Get notifs. */
};
/**********************************************************************
* Definition of the general Trg functions
*********************************************************************/
/**
* @brief Print a substring but limited to the maximum length.
* @param[in] str is pointer to source.
* @param[in] len is number of characters to be printed.
* @param[in,out] out is output handler.
* @return str parameter shifted by len.
*/
static const char *
trg_print_substr(const char *str, size_t len, struct ly_out *out)
{
for (size_t i = 0; i < len; i++) {
ly_print_(out, "%c", str[0]);
str++;
}
return str;
}
/**
* @brief Pointer is not NULL and does not point to an empty string.
* @param[in] str is pointer to string to be checked.
* @return 1 if str pointing to non empty string otherwise 0.
*/
static ly_bool
trg_charptr_has_data(const char *str)
{
return (str) && (str[0] != '\0');
}
/**
* @brief Check if @p word in @p src is present where words are
* delimited by @p delim.
* @param[in] src is source where words are separated by @p delim.
* @param[in] word to be searched.
* @param[in] delim is delimiter between @p words in @p src.
* @return 1 if src contains @p word otherwise 0.
*/
static ly_bool
trg_word_is_present(const char *src, const char *word, char delim)
{
const char *hit;
if ((!src) || (src[0] == '\0') || (!word)) {
return 0;
}
hit = strstr(src, word);
if (hit) {
/* word was founded at the begin of src
* OR it match somewhere after delim
*/
if ((hit == src) || (hit[-1] == delim)) {
/* end of word was founded at the end of src
* OR end of word was match somewhere before delim
*/
char delim_or_end = (hit + strlen(word))[0];
if ((delim_or_end == '\0') || (delim_or_end == delim)) {
return 1;
}
}
/* after -> hit is just substr and it's not the whole word */
/* jump to the next word */
for ( ; (src[0] != '\0') && (src[0] != delim); src++) {}
/* skip delim */
src = src[0] == '\0' ? src : src + 1;
/* continue with searching */
return trg_word_is_present(src, word, delim);
} else {
return 0;
}
}
/**********************************************************************
* Definition of printer functions
*********************************************************************/
/**
* @brief Write callback for ::ly_out_new_clb().
*
* @param[in] user_data is type of struct ly_out_clb_arg.
* @param[in] buf contains input characters
* @param[in] count is number of characters in buf.
* @return Number of printed bytes.
* @return Negative value in case of error.
*/
static ssize_t
trp_ly_out_clb_func(void *user_data, const void *buf, size_t count)
{
LY_ERR erc = LY_SUCCESS;
struct ly_out_clb_arg *data = (struct ly_out_clb_arg *)user_data;
switch (data->mode) {
case TRD_PRINT:
erc = ly_write_(data->out, buf, count);
break;
case TRD_CHAR_COUNT:
data->counter = data->counter + count;
break;
default:
break;
}
if (erc != LY_SUCCESS) {
data->last_error = erc;
return -1;
} else {
return count;
}
}
/**
* @brief Check that indent in node can be considered as equivalent.
* @param[in] first is the first indent in node.
* @param[in] second is the second indent in node.
* @return 1 if indents are equivalent otherwise 0.
*/
static ly_bool
trp_indent_in_node_are_eq(struct trt_indent_in_node first, struct trt_indent_in_node second)
{
const ly_bool a = first.type == second.type;
const ly_bool b = first.btw_name_opts == second.btw_name_opts;
const ly_bool c = first.btw_opts_type == second.btw_opts_type;
const ly_bool d = first.btw_type_iffeatures == second.btw_type_iffeatures;
return a && b && c && d;
}
/**
* @brief Setting space character because node is last sibling.
* @param[in] wr is wrapper over which the shift operation
* is to be performed.
* @return New shifted wrapper.
*/
static struct trt_wrapper
trp_wrapper_set_shift(struct trt_wrapper wr)
{
assert(wr.actual_pos < 64);
/* +--<node>
* +--<node>
*/
wr.actual_pos++;
return wr;
}
/**
* @brief Setting '|' symbol because node is divided or
* it is not last sibling.
* @param[in] wr is source of wrapper.
* @return New wrapper which is marked at actual position and shifted.
*/
static struct trt_wrapper
trp_wrapper_set_mark(struct trt_wrapper wr)
{
assert(wr.actual_pos < 64);
wr.bit_marks1 |= 1U << wr.actual_pos;
return trp_wrapper_set_shift(wr);
}
/**
* @brief Setting ' ' symbol if node is last sibling otherwise set '|'.
* @param[in] wr is actual wrapper.
* @param[in] last_one is flag. Value 1 saying if the node is the last
* and has no more siblings.
* @return New wrapper for the actual node.
*/
static struct trt_wrapper
trp_wrapper_if_last_sibling(struct trt_wrapper wr, ly_bool last_one)
{
return last_one ? trp_wrapper_set_shift(wr) : trp_wrapper_set_mark(wr);
}
/**
* @brief Test if the wrappers are equivalent.
* @param[in] first is the first wrapper.
* @param[in] second is the second wrapper.
* @return 1 if the wrappers are equivalent otherwise 0.
*/
static ly_bool
trp_wrapper_eq(struct trt_wrapper first, struct trt_wrapper second)
{
const ly_bool a = first.type == second.type;
const ly_bool b = first.bit_marks1 == second.bit_marks1;
const ly_bool c = first.actual_pos == second.actual_pos;
return a && b && c;
}
/**
* @brief Print " | " sequence on line.
* @param[in] wr is wrapper to be printed.
* @param[in,out] out is output handler.
*/
static void
trp_print_wrapper(struct trt_wrapper wr, struct ly_out *out)
{
uint32_t lb;
if (wr.type == TRD_WRAPPER_TOP) {
lb = TRD_INDENT_LINE_BEGIN;
} else if (wr.type == TRD_WRAPPER_BODY) {
lb = TRD_INDENT_LINE_BEGIN * 2;
} else {
lb = TRD_INDENT_LINE_BEGIN;
}
ly_print_(out, "%*c", lb, ' ');
if (trp_wrapper_eq(wr, TRP_INIT_WRAPPER_TOP)) {
return;
}
for (uint32_t i = 0; i < wr.actual_pos; i++) {
/** Test if the bit on the index is set. */
if ((wr.bit_marks1 >> i) & 1U) {
ly_print_(out, "|");
} else {
ly_print_(out, " ");
}
if (i != wr.actual_pos) {
ly_print_(out, "%*c", TRD_INDENT_BTW_SIBLINGS, ' ');
}
}
}
/**
* @brief Check if struct trt_node is empty.
* @param[in] node is item to test.
* @return 1 if node is considered empty otherwise 0.
*/
static ly_bool
trp_node_is_empty(const struct trt_node *node)
{
const ly_bool a = TRP_EMPTY_TRT_IFFEATURES_IS_EMPTY(node->iffeatures.type);
const ly_bool b = TRP_TRT_TYPE_IS_EMPTY(node->type);
const ly_bool c = TRP_NODE_NAME_IS_EMPTY(node->name);
const ly_bool d = node->flags == NULL;
const ly_bool e = node->status == NULL;
return a && b && c && d && e;
}
/**
* @brief Check if [\<keys\>], \<type\> and
* \<iffeatures\> are empty/not_set.
* @param[in] node is item to test.
* @return 1 if node has no \<keys\> \<type\> or \<iffeatures\>
* otherwise 0.
*/
static ly_bool
trp_node_body_is_empty(const struct trt_node *node)
{
const ly_bool a = TRP_EMPTY_TRT_IFFEATURES_IS_EMPTY(node->iffeatures.type);
const ly_bool b = TRP_TRT_TYPE_IS_EMPTY(node->type);
const ly_bool c = !node->name.keys;
return a && b && c;
}
/**
* @brief Print entire struct trt_node_name structure.
* @param[in] node_name is item to print.
* @param[in,out] out is output handler.
*/
static void
trp_print_node_name(struct trt_node_name node_name, struct ly_out *out)
{
const char *mod_prefix;
const char *colon;
const char trd_node_name_suffix_choice[] = ")";
const char trd_node_name_suffix_case[] = ")";
if (TRP_NODE_NAME_IS_EMPTY(node_name)) {
return;
}
if (node_name.module_prefix) {
mod_prefix = node_name.module_prefix;
colon = ":";
} else {
mod_prefix = "";
colon = "";
}
switch (node_name.type) {
case TRD_NODE_ELSE:
ly_print_(out, "%s%s%s", mod_prefix, colon, node_name.str);
break;
case TRD_NODE_CASE:
ly_print_(out, "%s%s%s%s%s", TRD_NODE_NAME_PREFIX_CASE, mod_prefix, colon, node_name.str, trd_node_name_suffix_case);
break;
case TRD_NODE_CHOICE:
ly_print_(out, "%s%s%s%s%s", TRD_NODE_NAME_PREFIX_CHOICE, mod_prefix, colon, node_name.str, trd_node_name_suffix_choice);
break;
case TRD_NODE_TRIPLE_DOT:
ly_print_(out, "%s", TRD_NODE_NAME_TRIPLE_DOT);
break;
default:
break;
}
if (node_name.add_opts) {
ly_print_(out, "%s", node_name.add_opts);
}
if (node_name.opts) {
ly_print_(out, "%s", node_name.opts);
}
}
/**
* @brief Check if mark (?, !, *, /, @) is implicitly contained in
* struct trt_node_name.
* @param[in] node_name is structure containing the 'mark'.
* @return 1 if contain otherwise 0.
*/
static ly_bool
trp_mark_is_used(struct trt_node_name node_name)
{
if (TRP_NODE_NAME_IS_EMPTY(node_name)) {
return 0;
} else if (node_name.keys) {
return 0;
}
switch (node_name.type) {
case TRD_NODE_ELSE:
case TRD_NODE_CASE:
return 0;
default:
if (node_name.add_opts || node_name.opts) {
return 1;
} else {
return 0;
}
}
}
/**
* @brief Print opts keys.
* @param[in] node_name contains type of the node with his name.
* @param[in] btw_name_opts is number of spaces between name and [keys].
* @param[in] cf is basically a pointer to the function that prints
* the keys.
* @param[in,out] out is output handler.
*/
static void
trp_print_opts_keys(struct trt_node_name node_name, int16_t btw_name_opts, struct trt_cf_print cf, struct ly_out *out)
{
if (!node_name.keys) {
return;
}
/* <name><mark>___<keys>*/
if (btw_name_opts > 0) {
ly_print_(out, "%*c", btw_name_opts, ' ');
}
ly_print_(out, "[");
cf.pf(cf.ctx, out);
ly_print_(out, "]");
}
/**
* @brief Print entire struct trt_type structure.
* @param[in] type is item to print.
* @param[in,out] out is output handler.
*/
static void
trp_print_type(struct trt_type type, struct ly_out *out)
{
if (TRP_TRT_TYPE_IS_EMPTY(type)) {
return;
}
switch (type.type) {
case TRD_TYPE_NAME:
ly_print_(out, "%s", type.str);
break;
case TRD_TYPE_TARGET:
ly_print_(out, "-> %s", type.str);
break;
case TRD_TYPE_LEAFREF:
ly_print_(out, "leafref");
default:
break;
}
}
/**
* @brief Print all iffeatures of node
*
* @param[in] iff is iffeatures to print.
* @param[in] cf is basically a pointer to the function that prints the list of features.
* @param[in,out] out is output handler.
*/
static void
trp_print_iffeatures(struct trt_iffeatures iff, struct trt_cf_print cf, struct ly_out *out)
{
if (iff.type == TRD_IFF_PRESENT) {
ly_print_(out, "{");
cf.pf(cf.ctx, out);
ly_print_(out, "}?");
} else if (iff.type == TRD_IFF_OVERR) {
ly_print_(out, "%s", iff.str);
}
}
/**
* @brief Print just \<status\>--\<flags\> \<name\> with opts mark.
* @param[in] node contains items to print.
* @param[in] out is output handler.
*/
static void
trp_print_node_up_to_name(const struct trt_node *node, struct ly_out *out)
{
if (node->name.type == TRD_NODE_TRIPLE_DOT) {
trp_print_node_name(node->name, out);
return;
}
/* <status>--<flags> */
ly_print_(out, "%s", node->status);
ly_print_(out, "--");
/* If the node is a case node, there is no space before the <name>
* also case node has no flags.
*/
if (node->flags && (node->name.type != TRD_NODE_CASE)) {
ly_print_(out, "%s", node->flags);
ly_print_(out, " ");
}
/* <name> */
trp_print_node_name(node->name, out);
}
/**
* @brief Print alignment (spaces) instead of
* \<status\>--\<flags\> \<name\> for divided node.
* @param[in] node contains items to print.
* @param[in] out is output handler.
*/
static void
trp_print_divided_node_up_to_name(const struct trt_node *node, struct ly_out *out)
{
uint32_t space = strlen(node->flags);
if (node->name.type == TRD_NODE_CASE) {
/* :(<name> */
space += strlen(TRD_NODE_NAME_PREFIX_CASE);
} else if (node->name.type == TRD_NODE_CHOICE) {
/* (<name> */
space += strlen(TRD_NODE_NAME_PREFIX_CHOICE);
} else {
/* _<name> */
space += strlen(" ");
}
/* <name>
* __
*/
space += TRD_INDENT_LONG_LINE_BREAK;
ly_print_(out, "%*c", space, ' ');
}
/**
* @brief Print struct trt_node structure.
* @param[in] node is item to print.
* @param[in] pck package of functions for
* printing [\<keys\>] and \<iffeatures\>.
* @param[in] indent is the indent in node.
* @param[in,out] out is output handler.
*/
static void
trp_print_node(const struct trt_node *node, struct trt_pck_print pck, struct trt_indent_in_node indent, struct ly_out *out)
{
ly_bool triple_dot;
ly_bool divided;
struct trt_cf_print cf_print_keys;
struct trt_cf_print cf_print_iffeatures;
if (trp_node_is_empty(node)) {
return;
}
/* <status>--<flags> <name><opts> <type> <if-features> */
triple_dot = node->name.type == TRD_NODE_TRIPLE_DOT;
divided = indent.type == TRD_INDENT_IN_NODE_DIVIDED;
if (triple_dot) {
trp_print_node_name(node->name, out);
return;
} else if (!divided) {
trp_print_node_up_to_name(node, out);
} else {
trp_print_divided_node_up_to_name(node, out);
}
/* <opts> */
/* <name>___<opts>*/
cf_print_keys.ctx = pck.tree_ctx;
cf_print_keys.pf = pck.fps.print_keys;
trp_print_opts_keys(node->name, indent.btw_name_opts, cf_print_keys, out);
/* <opts>__<type> */
if (indent.btw_opts_type > 0) {
ly_print_(out, "%*c", indent.btw_opts_type, ' ');
}
/* <type> */
trp_print_type(node->type, out);
/* <type>__<iffeatures> */
if (indent.btw_type_iffeatures > 0) {
ly_print_(out, "%*c", indent.btw_type_iffeatures, ' ');
}
/* <iffeatures> */
cf_print_iffeatures.ctx = pck.tree_ctx;
cf_print_iffeatures.pf = pck.fps.print_features_names;
trp_print_iffeatures(node->iffeatures, cf_print_iffeatures, out);
}
/**
* @brief Print keyword based on trt_keyword_stmt.type.
* @param[in] ks is keyword statement to print.
* @param[in,out] out is output handler
*/
static void
trt_print_keyword_stmt_begin(struct trt_keyword_stmt ks, struct ly_out *out)
{
if (!strcmp(ks.section_name, TRD_KEYWORD_MODULE) ||
!strcmp(ks.section_name, TRD_KEYWORD_SUBMODULE)) {
ly_print_(out, "%s: ", ks.section_name);
return;
}
ly_print_(out, "%*c", TRD_INDENT_LINE_BEGIN, ' ');
if (ks.argument) {
ly_print_(out, "%s ", ks.section_name);
} else {
ly_print_(out, "%s", ks.section_name);
}
}
/**
* @brief Print trt_keyword_stmt.str which is string of name or path.
* @param[in] ks is keyword statement structure.
* @param[in] mll is max line length.
* @param[in,out] out is output handler.
*/
static void
trt_print_keyword_stmt_str(struct trt_keyword_stmt ks, size_t mll, struct ly_out *out)
{
uint32_t ind_initial;
uint32_t ind_divided;
/* flag if path must be splitted to more lines */
ly_bool linebreak_was_set;
/* flag if at least one subpath was printed */
ly_bool subpath_printed;
/* the sum of the sizes of the substrings on the current line */
uint32_t how_far;
/* pointer to start of the subpath */
const char *sub_ptr;
/* size of subpath from sub_ptr */
size_t sub_len;
if ((!ks.argument) || (ks.argument[0] == '\0')) {
return;
}
/* module name cannot be splitted */
if (!strcmp(ks.section_name, TRD_KEYWORD_MODULE) || !strcmp(ks.section_name, TRD_KEYWORD_SUBMODULE)) {
ly_print_(out, "%s", ks.argument);
return;
}
/* after -> for trd_keyword_stmt_body do */
/* set begin indentation */
ind_initial = TRD_INDENT_LINE_BEGIN + strlen(ks.section_name) + 1;
ind_divided = ind_initial + TRD_INDENT_LONG_LINE_BREAK;
linebreak_was_set = 0;
subpath_printed = 0;
how_far = 0;
sub_ptr = ks.argument;
sub_len = 0;
while (sub_ptr[0] != '\0') {
uint32_t ind;
/* skip slash */
const char *tmp = sub_ptr[0] == '/' ? sub_ptr + 1 : sub_ptr;
/* get position of the end of substr */
tmp = strchr(tmp, '/');
/* set correct size if this is a last substring */
sub_len = !tmp ? strlen(sub_ptr) : (size_t)(tmp - sub_ptr);
/* actualize sum of the substring's sizes on the current line */
how_far += sub_len;
/* correction due to colon character if it this is last substring */
how_far = *(sub_ptr + sub_len) == '\0' ? how_far + 1 : how_far;
/* choose indentation which depends on
* whether the string is printed on multiple lines or not
*/
ind = linebreak_was_set ? ind_divided : ind_initial;
if (ind + how_far <= mll) {
/* printing before max line length */
sub_ptr = trg_print_substr(sub_ptr, sub_len, out);
subpath_printed = 1;
} else {
/* printing on new line */
if (subpath_printed == 0) {
/* first subpath is too long
* but print it at first line anyway
*/
sub_ptr = trg_print_substr(sub_ptr, sub_len, out);
subpath_printed = 1;
continue;
}
ly_print_(out, "\n");
ly_print_(out, "%*c", ind_divided, ' ');
linebreak_was_set = 1;
sub_ptr = trg_print_substr(sub_ptr, sub_len, out);
how_far = sub_len;
subpath_printed = 1;
}
}
}
/**
* @brief Print separator based on trt_keyword_stmt.type
* @param[in] ks is keyword statement structure.
* @param[in,out] out is output handler.
*/
static void
trt_print_keyword_stmt_end(struct trt_keyword_stmt ks, struct ly_out *out)
{
if (!strcmp(ks.section_name, TRD_KEYWORD_MODULE) || !strcmp(ks.section_name, TRD_KEYWORD_SUBMODULE)) {
return;
} else if (ks.has_node) {
ly_print_(out, ":");
}
}
/**
* @brief Print entire struct trt_keyword_stmt structure.
* @param[in] ks is item to print.
* @param[in] mll is max line length.
* @param[in,out] out is output handler.
*/
static void
trp_print_keyword_stmt(struct trt_keyword_stmt ks, size_t mll, struct ly_out *out)
{
assert(ks.section_name);
trt_print_keyword_stmt_begin(ks, out);
trt_print_keyword_stmt_str(ks, mll, out);
trt_print_keyword_stmt_end(ks, out);
}
/**********************************************************************
* Main trp functions
*********************************************************************/
/**
* @brief Printing one line including wrapper and node
* which can be incomplete (divided).
* @param[in] node is \<node\> representation.
* @param[in] pck contains special printing functions callback.
* @param[in] indent contains wrapper and indent in node numbers.
* @param[in,out] out is output handler.
*/
static void
trp_print_line(const struct trt_node *node, struct trt_pck_print pck, struct trt_pck_indent indent, struct ly_out *out)
{
trp_print_wrapper(indent.wrapper, out);
trp_print_node(node, pck, indent.in_node, out);
}
/**
* @brief Printing one line including wrapper and
* \<status\>--\<flags\> \<name\>\<option_mark\>.
* @param[in] node is \<node\> representation.
* @param[in] wr is wrapper for printing indentation before node.
* @param[in] out is output handler.
*/
static void
trp_print_line_up_to_node_name(const struct trt_node *node, struct trt_wrapper wr, struct ly_out *out)
{
trp_print_wrapper(wr, out);
trp_print_node_up_to_name(node, out);
}
/**
* @brief Check if leafref target must be change to string 'leafref'
* because his target string is too long.
* @param[in] node containing leafref target.
* @param[in] wr is wrapper for printing indentation before node.
* @param[in] mll is max line length.
* @param[in] out is output handler.
* @return true if leafref must be changed to string 'leafref'.
*/
static ly_bool
trp_leafref_target_is_too_long(const struct trt_node *node, struct trt_wrapper wr, size_t mll, struct ly_out *out)
{
size_t type_len;
struct ly_out_clb_arg *data;
if (node->type.type != TRD_TYPE_TARGET) {
return 0;
}
/* set ly_out to counting characters */
data = out->method.clb.arg;
data->counter = 0;
data->mode = TRD_CHAR_COUNT;
/* count number of printed bytes */
trp_print_wrapper(wr, out);
ly_print_(out, "%*c", TRD_INDENT_BTW_SIBLINGS, ' ');
trp_print_divided_node_up_to_name(node, out);
data->mode = TRD_PRINT;
type_len = strlen(node->type.str);
return data->counter + type_len > mll;
}
/**
* @brief Get default indent in node based on node values.
* @param[in] node is \<node\> representation.
* @return Default indent in node assuming that the node
* will not be divided.
*/
static struct trt_indent_in_node
trp_default_indent_in_node(const struct trt_node *node)
{
struct trt_indent_in_node ret;
uint32_t opts_len = 0;
ret.type = TRD_INDENT_IN_NODE_NORMAL;
/* btw_name_opts */
ret.btw_name_opts = node->name.keys ? TRD_INDENT_BEFORE_KEYS : 0;
/* btw_opts_type */
if (!(TRP_TRT_TYPE_IS_EMPTY(node->type))) {
if (trp_mark_is_used(node->name)) {
opts_len += node->name.add_opts ? strlen(node->name.add_opts) : 0;
opts_len += node->name.opts ? strlen(node->name.opts) : 0;
ret.btw_opts_type = TRD_INDENT_BEFORE_TYPE > opts_len ? 1 : TRD_INDENT_BEFORE_TYPE - opts_len;
} else {
ret.btw_opts_type = TRD_INDENT_BEFORE_TYPE;
}
} else {
ret.btw_opts_type = 0;
}
/* btw_type_iffeatures */
ret.btw_type_iffeatures = node->iffeatures.type == TRD_IFF_PRESENT ? TRD_INDENT_BEFORE_IFFEATURES : 0;
return ret;
}
/**
* @brief Setting linebreaks in trt_indent_in_node.
*
* The order where the linebreak tag can be placed is from the end.
*
* @param[in] indent containing alignment lengths
* or already linebreak marks.
* @return indent with a newly placed linebreak tag.
* @return .type set to TRD_INDENT_IN_NODE_FAILED if it is not possible
* to place a more linebreaks.
*/
static struct trt_indent_in_node
trp_indent_in_node_place_break(struct trt_indent_in_node indent)
{
/* somewhere must be set a line break in node */
struct trt_indent_in_node ret = indent;
/* gradually break the node from the end */
if ((indent.btw_type_iffeatures != TRD_LINEBREAK) && (indent.btw_type_iffeatures != 0)) {
ret.btw_type_iffeatures = TRD_LINEBREAK;
} else if ((indent.btw_opts_type != TRD_LINEBREAK) && (indent.btw_opts_type != 0)) {
ret.btw_opts_type = TRD_LINEBREAK;
} else if ((indent.btw_name_opts != TRD_LINEBREAK) && (indent.btw_name_opts != 0)) {
/* set line break between name and opts */
ret.btw_name_opts = TRD_LINEBREAK;
} else {
/* it is not possible to place a more line breaks,
* unfortunately the max_line_length constraint is violated
*/
ret.type = TRD_INDENT_IN_NODE_FAILED;
}
return ret;
}
/**
* @brief Set the first half of the node based on the linebreak mark.
*
* Items in the second half of the node will be empty.
*
* @param[in,out] innod contains information in which part of the \<node\>
* the first half ends. Set first half of the node, indent is unchanged.
*/
static void
trp_first_half_node(struct trt_pair_indent_node *innod)
{
if (innod->indent.btw_name_opts == TRD_LINEBREAK) {
innod->node.type = TRP_EMPTY_TRT_TYPE;
innod->node.iffeatures = TRP_EMPTY_TRT_IFFEATURES;
} else if (innod->indent.btw_opts_type == TRD_LINEBREAK) {
innod->node.type = TRP_EMPTY_TRT_TYPE;
innod->node.iffeatures = TRP_EMPTY_TRT_IFFEATURES;
} else if (innod->indent.btw_type_iffeatures == TRD_LINEBREAK) {
innod->node.iffeatures = TRP_EMPTY_TRT_IFFEATURES;
}
}
/**
* @brief Set the second half of the node based on the linebreak mark.
*
* Items in the first half of the node will be empty.
* Indentations belonging to the first node will be reset to zero.
*
* @param[in,out] innod contains information in which part of the \<node\>
* the second half starts. Set second half of the node, indent is newly set.
*/
static void
trp_second_half_node(struct trt_pair_indent_node *innod)
{
if (innod->indent.btw_name_opts < 0) {
/* Logically, the information up to token <opts> should
* be deleted, but the the trp_print_node function needs it to
* create the correct indent.
*/
innod->indent.btw_name_opts = 0;
innod->indent.btw_opts_type = TRP_TRT_TYPE_IS_EMPTY(innod->node.type) ? 0 : TRD_INDENT_BEFORE_TYPE;
innod->indent.btw_type_iffeatures = innod->node.iffeatures.type == TRD_IFF_NON_PRESENT ? 0 : TRD_INDENT_BEFORE_IFFEATURES;
} else if (innod->indent.btw_opts_type == TRD_LINEBREAK) {
innod->indent.btw_name_opts = 0;
innod->indent.btw_opts_type = 0;
innod->indent.btw_type_iffeatures = innod->node.iffeatures.type == TRD_IFF_NON_PRESENT ? 0 : TRD_INDENT_BEFORE_IFFEATURES;
} else if (innod->indent.btw_type_iffeatures == TRD_LINEBREAK) {
innod->node.type = TRP_EMPTY_TRT_TYPE;
innod->indent.btw_name_opts = 0;
innod->indent.btw_opts_type = 0;
innod->indent.btw_type_iffeatures = 0;
}
}
/**
* @brief Get the correct alignment for the node.
*
* This function is recursively called itself. It's like a backend
* function for a function ::trp_try_normal_indent_in_node().
*
* @param[in] pck contains speciall callback functions for printing.
* @param[in] wrapper contains information about '|' context.
* @param[in] mll is max line length.
* @param[in,out] cnt counting number of characters to print.
* @param[in,out] out is output handler.
* @param[in,out] innod pair of node and indentation numbers of that node.
*/
static void
trp_try_normal_indent_in_node_(struct trt_pck_print pck, struct trt_wrapper wrapper, size_t mll, size_t *cnt,
struct ly_out *out, struct trt_pair_indent_node *innod)
{
trp_print_line(&innod->node, pck, TRP_INIT_PCK_INDENT(wrapper, innod->indent), out);
if (*cnt <= mll) {
/* success */
return;
} else {
innod->indent = trp_indent_in_node_place_break(innod->indent);
if (innod->indent.type != TRD_INDENT_IN_NODE_FAILED) {
/* erase information in node due to line break */
trp_first_half_node(innod);
/* check if line fits, recursive call */
*cnt = 0;
trp_try_normal_indent_in_node_(pck, wrapper, mll, cnt, out, innod);
/* make sure that the result will be with the status divided
* or eventually with status failed */
innod->indent.type = innod->indent.type == TRD_INDENT_IN_NODE_FAILED ? TRD_INDENT_IN_NODE_FAILED : TRD_INDENT_IN_NODE_DIVIDED;
}
return;
}
}
/**
* @brief Get the correct alignment for the node.
*
* @param[in] node is \<node\> representation.
* @param[in] pck contains speciall callback functions for printing.
* @param[in] indent contains wrapper and indent in node numbers.
* @param[in] mll is max line length.
* @param[in,out] out is output handler.
* @param[out] innod If the node does not fit in the line, some indent variable has negative value as a line break sign
* and therefore ::TRD_INDENT_IN_NODE_DIVIDED is set.
* If the node fits into the line, all indent variables values has non-negative number and therefore
* ::TRD_INDENT_IN_NODE_NORMAL is set.
* If the node does not fit into the line, all indent variables has negative or zero values, function failed
* and therefore ::TRD_INDENT_IN_NODE_FAILED is set.
*/
static void
trp_try_normal_indent_in_node(const struct trt_node *node, struct trt_pck_print pck, struct trt_pck_indent indent,
size_t mll, struct ly_out *out, struct trt_pair_indent_node *innod)
{
struct ly_out_clb_arg *data;
*innod = TRP_INIT_PAIR_INDENT_NODE(indent.in_node, *node);
/* set ly_out to counting characters */
data = out->method.clb.arg;
data->counter = 0;
data->mode = TRD_CHAR_COUNT;
trp_try_normal_indent_in_node_(pck, indent.wrapper, mll, &data->counter, out, innod);
data->mode = TRD_PRINT;
}
/**
* @brief Auxiliary function for ::trp_print_entire_node()
* that prints split nodes.
* @param[in] node is node representation.
* @param[in] ppck contains speciall callback functions for printing.
* @param[in] ipck contains wrapper and indent in node numbers.
* @param[in] mll is max line length.
* @param[in,out] out is output handler.
*/
static void
trp_print_divided_node(const struct trt_node *node, struct trt_pck_print ppck, struct trt_pck_indent ipck, size_t mll, struct ly_out *out)
{
ly_bool entire_node_was_printed;
struct trt_pair_indent_node innod;
trp_try_normal_indent_in_node(node, ppck, ipck, mll, out, &innod);
if (innod.indent.type == TRD_INDENT_IN_NODE_FAILED) {
/* nothing can be done, continue as usual */
innod.indent.type = TRD_INDENT_IN_NODE_DIVIDED;
}
trp_print_line(&innod.node, ppck, TRP_INIT_PCK_INDENT(ipck.wrapper, innod.indent), out);
entire_node_was_printed = trp_indent_in_node_are_eq(ipck.in_node, innod.indent);
if (!entire_node_was_printed) {
ly_print_(out, "\n");
/* continue with second half node */
innod.node = *node;
trp_second_half_node(&innod);
/* continue with printing node */
trp_print_divided_node(&innod.node, ppck, TRP_INIT_PCK_INDENT(ipck.wrapper, innod.indent), mll, out);
} else {
return;
}
}
/**
* @brief Printing of the wrapper and the whole node,
* which can be divided into several lines.
* @param[in] node_p is node representation.
* @param[in] ppck contains speciall callback functions for printing.
* @param[in] ipck contains wrapper and indent in node numbers.
* @param[in] mll is max line length.
* @param[in,out] out is output handler.
*/
static void
trp_print_entire_node(const struct trt_node *node_p, struct trt_pck_print ppck, struct trt_pck_indent ipck, size_t mll,
struct ly_out *out)
{
struct trt_pair_indent_node innod;
struct trt_pck_indent tmp;
struct trt_node node;
node = *node_p;
if (trp_leafref_target_is_too_long(&node, ipck.wrapper, mll, out)) {
node.type.type = TRD_TYPE_LEAFREF;
}
/* check if normal indent is possible */
trp_try_normal_indent_in_node(&node, ppck, ipck, mll, out, &innod);
if (innod.indent.type == TRD_INDENT_IN_NODE_NORMAL) {
/* node fits to one line */
trp_print_line(&node, ppck, ipck, out);
} else if (innod.indent.type == TRD_INDENT_IN_NODE_DIVIDED) {
/* node will be divided */
/* print first half */
tmp = TRP_INIT_PCK_INDENT(ipck.wrapper, innod.indent);
/* pretend that this is normal node */
tmp.in_node.type = TRD_INDENT_IN_NODE_NORMAL;
trp_print_line(&innod.node, ppck, tmp, out);
ly_print_(out, "\n");
/* continue with second half on new line */
innod.node = node;
trp_second_half_node(&innod);
tmp = TRP_INIT_PCK_INDENT(trp_wrapper_if_last_sibling(ipck.wrapper, node.last_one), innod.indent);
trp_print_divided_node(&innod.node, ppck, tmp, mll, out);
} else if (innod.indent.type == TRD_INDENT_IN_NODE_FAILED) {
/* node name is too long */
trp_print_line_up_to_node_name(&node, ipck.wrapper, out);
if (trp_node_body_is_empty(&node)) {
return;
} else {
ly_print_(out, "\n");
innod.node = node;
trp_second_half_node(&innod);
innod.indent.type = TRD_INDENT_IN_NODE_DIVIDED;
tmp = TRP_INIT_PCK_INDENT(trp_wrapper_if_last_sibling(ipck.wrapper, node.last_one), innod.indent);
trp_print_divided_node(&innod.node, ppck, tmp, mll, out);
}
}
}
/**
* @brief Check if parent-stmt is valid for printing extensinon.
*
* @param[in] lysc_tree flag if ext is from compiled tree.
* @param[in] ext Extension to check.
* @return 1 if extension is valid.
*/
static ly_bool
trp_ext_parent_is_valid(ly_bool lysc_tree, void *ext)
{
enum ly_stmt parent_stmt;
if (lysc_tree) {
parent_stmt = ((struct lysc_ext_instance *)ext)->parent_stmt;
} else {
parent_stmt = ((struct lysp_ext_instance *)ext)->parent_stmt;
}
if ((parent_stmt & LY_STMT_OP_MASK) || (parent_stmt & LY_STMT_DATA_NODE_MASK) ||
(parent_stmt & LY_STMT_SUBMODULE) || parent_stmt & LY_STMT_MODULE) {
return 1;
} else {
return 0;
}
}
/**
* @brief Check if printer_tree can use node extension.
*
* @param[in] lysc_tree Flag if @p node is compiled.
* @param[in] node to check. Its type is lysc_node or lysp_node.
* @return Pointer to extension instance which printer_tree can used.
*/
static void *
trp_ext_is_present(ly_bool lysc_tree, const void *node)
{
const struct lysp_node *pn;
const struct lysc_node *cn;
LY_ARRAY_COUNT_TYPE i;
void *ret = NULL;
if (!node) {
return NULL;
}
if (lysc_tree) {
cn = (const struct lysc_node *)node;
LY_ARRAY_FOR(cn->exts, i) {
if (!(cn->exts && cn->exts->def->plugin && cn->exts->def->plugin->printer_ctree)) {
continue;
}
if (!trp_ext_parent_is_valid(1, &cn->exts[i])) {
continue;
}
ret = &cn->exts[i];
break;
}
} else {
pn = (const struct lysp_node *)node;
LY_ARRAY_FOR(pn->exts, i) {
if (!(pn->exts && pn->exts->record->plugin.printer_ptree)) {
continue;
}
if (!trp_ext_parent_is_valid(0, &pn->exts[i])) {
continue;
}
ret = &pn->exts[i];
break;
}
}
return ret;
}
/**
* @brief Check if printer_tree can use node extension.
*
* @param[in] tc Context with current node.
* @return 1 if some extension for printer_tree is valid.
*/
static ly_bool
trp_ext_is_present_in_node(struct trt_tree_ctx *tc)
{
if (tc->lysc_tree && trp_ext_is_present(tc->lysc_tree, tc->cn)) {
return 1;
} else if (trp_ext_is_present(tc->lysc_tree, tc->pn)) {
return 1;
}
return 0;
}
/**
* @brief Release allocated memory and set pointers to NULL.
*
* @param[in,out] overr is override structure to release.
* @param[out] filtered is flag to reset.
*/
static void
trp_ext_free_node_override(struct lyplg_ext_sprinter_tree_node_override *overr, ly_bool *filtered)
{
*filtered = 0;
overr->flags = NULL;
overr->add_opts = NULL;
}
/**
* @brief Release private plugin data.
*
* @param[in,out] plug_ctx is plugin context.
*/
static void
trp_ext_free_plugin_ctx(struct lyspr_tree_ctx *plug_ctx)
{
LY_ARRAY_FREE(plug_ctx->schemas);
if (plug_ctx->free_plugin_priv) {
plug_ctx->free_plugin_priv(plug_ctx->plugin_priv);
}
}
/**********************************************************************
* trop and troc getters
*********************************************************************/
/**
* @brief Get nodetype.
* @param[in] node is any lysp_node.
*/
static uint16_t
trop_nodetype(const void *node)
{
return ((const struct lysp_node *)node)->nodetype;
}
/**
* @brief Get sibling.
* @param[in] node is any lysp_node.
*/
static const void *
trop_next(const void *node)
{
return ((const struct lysp_node *)node)->next;
}
/**
* @brief Get parent.
* @param[in] node is any lysp_node.
*/
static const void *
trop_parent(const void *node)
{
return ((const struct lysp_node *)node)->parent;
}
/**
* @brief Try to get child.
* @param[in] node is any lysp_node.
*/
static const void *
trop_child(const void *node)
{
return lysp_node_child(node);
}
/**
* @brief Try to get action.
* @param[in] node is any lysp_node.
*/
static const void *
trop_actions(const void *node)
{
return lysp_node_actions(node);
}
/**
* @brief Try to get action.
* @param[in] node must be of type lysp_node_action.
*/
static const void *
trop_action_input(const void *node)
{
return &((const struct lysp_node_action *)node)->input;
}
/**
* @brief Try to get action.
* @param[in] node must be of type lysp_node_action.
*/
static const void *
trop_action_output(const void *node)
{
return &((const struct lysp_node_action *)node)->output;
}
/**
* @brief Try to get action.
* @param[in] node is any lysp_node.
*/
static const void *
trop_notifs(const void *node)
{
return lysp_node_notifs(node);
}
/**
* @brief Fill struct tro_getters with @ref TRP_trop getters
* which are adapted to lysp nodes.
*/
static struct tro_getters
trop_init_getters(void)
{
return (struct tro_getters) {
.nodetype = trop_nodetype,
.next = trop_next,
.parent = trop_parent,
.child = trop_child,
.actions = trop_actions,
.action_input = trop_action_input,
.action_output = trop_action_output,
.notifs = trop_notifs
};
}
/**
* @brief Get nodetype.
* @param[in] node is any lysc_node.
*/
static uint16_t
troc_nodetype(const void *node)
{
return ((const struct lysc_node *)node)->nodetype;
}
/**
* @brief Get sibling.
* @param[in] node is any lysc_node.
*/
static const void *
troc_next(const void *node)
{
return ((const struct lysc_node *)node)->next;
}
/**
* @brief Get parent.
* @param[in] node is any lysc_node.
*/
static const void *
troc_parent(const void *node)
{
return ((const struct lysc_node *)node)->parent;
}
/**
* @brief Try to get child.
* @param[in] node is any lysc_node.
*/
static const void *
troc_child(const void *node)
{
return lysc_node_child(node);
}
/**
* @brief Try to get action.
* @param[in] node is any lysc_node.
*/
static const void *
troc_actions(const void *node)
{
return lysc_node_actions(node);
}
/**
* @brief Try to get action.
* @param[in] node must be of type lysc_node_action.
*/
static const void *
troc_action_input(const void *node)
{
return &((const struct lysc_node_action *)node)->input;
}
/**
* @brief Try to get action.
* @param[in] node must be of type lysc_node_action.
*/
static const void *
troc_action_output(const void *node)
{
return &((const struct lysc_node_action *)node)->output;
}
/**
* @brief Try to get action.
* @param[in] node is any lysc_node.
*/
static const void *
troc_notifs(const void *node)
{
return lysc_node_notifs(node);
}
/**
* @brief Fill struct tro_getters with @ref TRP_troc getters
* which are adapted to lysc nodes.
*/
static struct tro_getters
troc_init_getters(void)
{
return (struct tro_getters) {
.nodetype = troc_nodetype,
.next = troc_next,
.parent = troc_parent,
.child = troc_child,
.actions = troc_actions,
.action_input = troc_action_input,
.action_output = troc_action_output,
.notifs = troc_notifs
};
}
/**********************************************************************
* tro functions
*********************************************************************/
/**
* @brief Call override function for @p node.
*
* @param[in] lysc_tree if @p node is compiled.
* @param[in] node to create override.
* @param[in] erase_node_overr if override structure must be reseted.
* @param[in,out] plc current plugin context.
* @return pointer to override structure or NULL. Override structure in @p plc is updated too.
*/
static struct lyplg_ext_sprinter_tree_node_override *
tro_set_node_overr(ly_bool lysc_tree, const void *node, ly_bool erase_node_overr, struct trt_plugin_ctx *plc)
{
LY_ERR rc = LY_SUCCESS;
struct lyplg_ext_sprinter_tree_node_override *no;
struct lyspr_tree_ctx *plug_ctx;
struct lysc_ext_instance *ce;
struct lysp_ext_instance *pe;
if (erase_node_overr) {
trp_ext_free_node_override(&plc->node_overr, &plc->filtered);
}
no = &plc->node_overr;
if (!plc->ctx && lysc_tree && (ce = trp_ext_is_present(lysc_tree, node))) {
rc = ce->def->plugin->printer_ctree(ce, NULL, &no->flags, &no->add_opts);
} else if (!plc->ctx && (pe = trp_ext_is_present(lysc_tree, node))) {
rc = pe->record->plugin.printer_ptree(pe, NULL, &no->flags, &no->add_opts);
} else if (plc->ctx) {
if (plc->schema && plc->schema->compiled && plc->schema->cn_overr) {
rc = plc->schema->cn_overr(node, plc->ctx->plugin_priv, &plc->filtered, &no->flags, &no->add_opts);
} else if (plc->schema && plc->schema->pn_overr) {
rc = plc->schema->pn_overr(node, plc->ctx->plugin_priv, &plc->filtered, &no->flags, &no->add_opts);
} else {
no = NULL;
}
if (trp_ext_is_present(lysc_tree, node)) {
plug_ctx = plc->ctx;
plc->ctx = NULL;
tro_set_node_overr(lysc_tree, node, 0, plc);
plc->ctx = plug_ctx;
}
} else {
no = NULL;
}
if (rc) {
plc->last_error = rc;
no = NULL;
}
return no;
}
/**
* @brief Get next sibling of the current node.
*
* This is a general algorithm that is able to
* work with lysp_node or lysc_node.
*
* @param[in] node points to lysp_node or lysc_node.
* @param[in] tc current tree context.
* @return next sibling node.
*/
static const void *
tro_next_sibling(const void *node, const struct trt_tree_ctx *tc)
{
struct tro_getters get;
struct trt_plugin_ctx plugin_ctx;
const void *tmp, *parent, *sibl;
assert(node);
get = tc->lysc_tree ? troc_init_getters() : trop_init_getters();
if (get.nodetype(node) & (LYS_RPC | LYS_ACTION)) {
if ((tmp = get.next(node))) {
/* next action exists */
sibl = tmp;
} else if ((parent = get.parent(node))) {
/* maybe if notif exists as sibling */
sibl = get.notifs(parent);
} else {
sibl = NULL;
}
} else if (get.nodetype(node) & LYS_INPUT) {
if ((parent = get.parent(node))) {
/* if output action has data */
if (get.child(get.action_output(parent))) {
/* then next sibling is output action */
sibl = get.action_output(parent);
} else {
/* input action cannot have siblings other
* than output action.
*/
sibl = NULL;
}
} else {
/* there is no way how to get output action */
sibl = NULL;
}
} else if (get.nodetype(node) & LYS_OUTPUT) {
/* output action cannot have siblings */
sibl = NULL;
} else if (get.nodetype(node) & LYS_NOTIF) {
/* must have as a sibling only notif */
sibl = get.next(node);
} else {
/* for rest of nodes */
if ((tmp = get.next(node))) {
/* some sibling exists */
sibl = tmp;
} else if ((parent = get.parent(node))) {
/* Action and notif are siblings too.
* They can be reached through parent.
*/
if ((tmp = get.actions(parent))) {
/* next sibling is action */
sibl = tmp;
} else if ((tmp = get.notifs(parent))) {
/* next sibling is notif */
sibl = tmp;
} else {
/* sibling not exists */
sibl = NULL;
}
} else {
/* sibling not exists */
sibl = NULL;
}
}
plugin_ctx = tc->plugin_ctx;
if (sibl && tro_set_node_overr(tc->lysc_tree, sibl, 1, &plugin_ctx) && plugin_ctx.filtered) {
return tro_next_sibling(sibl, tc);
}
return sibl;
}
/**
* @brief Get child of the current node.
*
* This is a general algorithm that is able to
* work with lysp_node or lysc_node.
*
* @param[in] node points to lysp_node or lysc_node.
* @param[in] tc current tree context.
* @return child node.
*/
static const void *
tro_next_child(const void *node, const struct trt_tree_ctx *tc)
{
struct tro_getters get;
struct trt_plugin_ctx plugin_ctx;
const void *tmp, *child;
assert(node);
get = tc->lysc_tree ? troc_init_getters() : trop_init_getters();
if (get.nodetype(node) & (LYS_ACTION | LYS_RPC)) {
if (get.child(get.action_input(node))) {
/* go to LYS_INPUT */
child = get.action_input(node);
} else if (get.child(get.action_output(node))) {
/* go to LYS_OUTPUT */
child = get.action_output(node);
} else {
/* input action and output action have no data */
child = NULL;
}
} else {
if ((tmp = get.child(node))) {
child = tmp;
} else {
/* current node can't have children or has no children */
/* but maybe has some actions or notifs */
if ((tmp = get.actions(node))) {
child = tmp;
} else if ((tmp = get.notifs(node))) {
child = tmp;
} else {
child = NULL;
}
}
}
plugin_ctx = tc->plugin_ctx;
if (child && tro_set_node_overr(tc->lysc_tree, child, 1, &plugin_ctx) && plugin_ctx.filtered) {
return tro_next_sibling(child, tc);
}
return child;
}
/**
* @brief Get new trt_parent_cache if we apply the transfer
* to the child node in the tree.
* @param[in] ca is parent cache for current node.
* @param[in] tc contains current tree node.
* @return Cache for the current node.
*/
static struct trt_parent_cache
tro_parent_cache_for_child(struct trt_parent_cache ca, const struct trt_tree_ctx *tc)
{
struct trt_parent_cache ret = TRP_EMPTY_PARENT_CACHE;
if (!tc->lysc_tree) {
const struct lysp_node *pn = tc->pn;
ret.ancestor =
pn->nodetype & (LYS_INPUT) ? TRD_ANCESTOR_RPC_INPUT :
pn->nodetype & (LYS_OUTPUT) ? TRD_ANCESTOR_RPC_OUTPUT :
pn->nodetype & (LYS_NOTIF) ? TRD_ANCESTOR_NOTIF :
ca.ancestor;
ret.lys_status =
pn->flags & (LYS_STATUS_CURR | LYS_STATUS_DEPRC | LYS_STATUS_OBSLT) ? pn->flags :
ca.lys_status;
ret.lys_config =
ca.ancestor == TRD_ANCESTOR_RPC_INPUT ? 0 : /* because <flags> will be -w */
ca.ancestor == TRD_ANCESTOR_RPC_OUTPUT ? LYS_CONFIG_R :
pn->flags & (LYS_CONFIG_R | LYS_CONFIG_W) ? pn->flags :
ca.lys_config;
ret.last_list =
pn->nodetype & (LYS_LIST) ? (struct lysp_node_list *)pn :
ca.last_list;
}
return ret;
}
/**
* @brief Transformation of the Schema nodes flags to
* Tree diagram \<status\>.
* @param[in] flags is node's flags obtained from the tree.
*/
static char *
tro_flags2status(uint16_t flags)
{
return flags & LYS_STATUS_OBSLT ? "o" :
flags & LYS_STATUS_DEPRC ? "x" :
"+";
}
/**
* @brief Transformation of the Schema nodes flags to Tree diagram
* \<flags\> but more specifically 'ro' or 'rw'.
* @param[in] flags is node's flags obtained from the tree.
*/
static char *
tro_flags2config(uint16_t flags)
{
return flags & LYS_CONFIG_R ? TRD_FLAGS_TYPE_RO :
flags & LYS_CONFIG_W ? TRD_FLAGS_TYPE_RW :
TRD_FLAGS_TYPE_EMPTY;
}
/**
* @brief Print current node's iffeatures.
* @param[in] tc is tree context.
* @param[in,out] out is output handler.
*/
static void
tro_print_features_names(const struct trt_tree_ctx *tc, struct ly_out *out)
{
const struct lysp_qname *iffs;
if (tc->lysc_tree) {
assert(TRP_TREE_CTX_LYSP_NODE_PRESENT(tc->cn));
iffs = TRP_TREE_CTX_GET_LYSP_NODE(tc->cn)->iffeatures;
} else {
iffs = tc->pn->iffeatures;
}
LY_ARRAY_COUNT_TYPE i;
LY_ARRAY_FOR(iffs, i) {
if (i == 0) {
ly_print_(out, "%s", iffs[i].str);
} else {
ly_print_(out, ",%s", iffs[i].str);
}
}
}
/**
* @brief Print current list's keys.
*
* Well, actually printing keys in the lysp_tree is trivial,
* because char* points to all keys. However, special functions have
* been reserved for this, because in principle the list of elements
* can have more implementations.
*
* @param[in] tc is tree context.
* @param[in,out] out is output handler.
*/
static void
tro_print_keys(const struct trt_tree_ctx *tc, struct ly_out *out)
{
const struct lysp_node_list *list;
if (tc->lysc_tree) {
assert(TRP_TREE_CTX_LYSP_NODE_PRESENT(tc->cn));
list = (const struct lysp_node_list *)TRP_TREE_CTX_GET_LYSP_NODE(tc->cn);
} else {
list = (const struct lysp_node_list *)tc->pn;
}
assert(list->nodetype & LYS_LIST);
if (trg_charptr_has_data(list->key)) {
ly_print_(out, "%s", list->key);
}
}
/**
* @brief Get address of the current node.
* @param[in] tc contains current node.
* @return Address of lysc_node or lysp_node, or NULL.
*/
static const void *
tro_tree_ctx_get_node(const struct trt_tree_ctx *tc)
{
return tc->lysc_tree ?
(const void *)tc->cn :
(const void *)tc->pn;
}
/**
* @brief Get address of current node's child.
* @param[in,out] tc contains current node.
*/
static const void *
tro_tree_ctx_get_child(const struct trt_tree_ctx *tc)
{
if (!tro_tree_ctx_get_node(tc)) {
return NULL;
}
if (tc->lysc_tree) {
return lysc_node_child(tc->cn);
} else {
return lysp_node_child(tc->pn);
}
}
/**
* @brief Get rpcs section if exists.
* @param[in,out] tc is tree context.
* @return Section representation if it exists. The @p tc is modified
* and his pointer points to the first node in rpcs section.
* @return Empty section representation otherwise.
*/
static struct trt_keyword_stmt
tro_modi_get_rpcs(struct trt_tree_ctx *tc)
{
assert(tc);
const void *actions;
struct trt_keyword_stmt ret = {0};
if (tc->lysc_tree) {
actions = tc->cmod->rpcs;
if (actions) {
tc->cn = actions;
}
} else {
actions = tc->pmod->rpcs;
if (actions) {
tc->pn = actions;
tc->tpn = tc->pn;
}
}
if (actions) {
tc->section = TRD_SECT_RPCS;
ret.section_name = TRD_KEYWORD_RPC;
ret.has_node = tro_tree_ctx_get_node(tc) ? 1 : 0;
}
return ret;
}
/**
* @brief Get notification section if exists
* @param[in,out] tc is tree context.
* @return Section representation if it exists.
* The @p tc is modified and his pointer points to the
* first node in notification section.
* @return Empty section representation otherwise.
*/
static struct trt_keyword_stmt
tro_modi_get_notifications(struct trt_tree_ctx *tc)
{
assert(tc);
const void *notifs;
struct trt_keyword_stmt ret = {0};
if (tc->lysc_tree) {
notifs = tc->cmod->notifs;
if (notifs) {
tc->cn = notifs;
}
} else {
notifs = tc->pmod->notifs;
if (notifs) {
tc->pn = notifs;
tc->tpn = tc->pn;
}
}
if (notifs) {
tc->section = TRD_SECT_NOTIF;
ret.section_name = TRD_KEYWORD_NOTIF;
ret.has_node = tro_tree_ctx_get_node(tc) ? 1 : 0;
}
return ret;
}
static struct trt_keyword_stmt
tro_get_ext_section(struct trt_tree_ctx *tc, void *ext, struct lyspr_tree_ctx *plug_ctx)
{
struct trt_keyword_stmt ret = {0};
struct lysc_ext_instance *ce = NULL;
struct lysp_ext_instance *pe = NULL;
if (tc->lysc_tree) {
ce = ext;
ret.section_name = ce->def->name;
ret.argument = ce->argument;
ret.has_node = plug_ctx->schemas->ctree ? 1 : 0;
} else {
pe = ext;
ret.section_name = pe->def->name;
ret.argument = pe->argument;
ret.has_node = plug_ctx->schemas->ptree ? 1 : 0;
}
return ret;
}
/**
* @brief Get name of the module.
* @param[in] tc is context of the tree.
*/
static struct trt_keyword_stmt
tro_read_module_name(const struct trt_tree_ctx *tc)
{
assert(tc);
struct trt_keyword_stmt ret;
ret.section_name = !tc->lysc_tree && tc->pmod->is_submod ?
TRD_KEYWORD_SUBMODULE :
TRD_KEYWORD_MODULE;
ret.argument = !tc->lysc_tree ?
LYSP_MODULE_NAME(tc->pmod) :
tc->cmod->mod->name;
ret.has_node = tro_tree_ctx_get_node(tc) ? 1 : 0;
return ret;
}
static ly_bool
tro_read_if_sibling_exists(const struct trt_tree_ctx *tc)
{
const void *parent;
if (tc->lysc_tree) {
parent = troc_parent(tc->cn);
} else {
parent = trop_parent(tc->pn);
}
return parent ? 1 : 0;
}
/**
* @brief Create implicit "case" node as parent of @p node.
* @param[in] node child of implicit case node.
* @param[out] case_node created case node.
*/
static void
tro_create_implicit_case_node(const struct trt_node *node, struct trt_node *case_node)
{
case_node->status = node->status;
case_node->flags = TRD_FLAGS_TYPE_EMPTY;
case_node->name.type = TRD_NODE_CASE;
case_node->name.keys = node->name.keys;
case_node->name.module_prefix = node->name.module_prefix;
case_node->name.str = node->name.str;
case_node->name.opts = node->name.opts;
case_node->name.add_opts = node->name.add_opts;
case_node->type = TRP_EMPTY_TRT_TYPE;
case_node->iffeatures = TRP_EMPTY_TRT_IFFEATURES;
case_node->last_one = node->last_one;
}
/**********************************************************************
* Definition of trop reading functions
*********************************************************************/
/**
* @brief Check if list statement has keys.
* @param[in] pn is pointer to the list.
* @return 1 if has keys, otherwise 0.
*/
static ly_bool
trop_list_has_keys(const struct lysp_node *pn)
{
return trg_charptr_has_data(((const struct lysp_node_list *)pn)->key);
}
/**
* @brief Check if it contains at least one feature.
* @param[in] pn is current node.
* @return 1 if has if-features, otherwise 0.
*/
static ly_bool
trop_node_has_iffeature(const struct lysp_node *pn)
{
LY_ARRAY_COUNT_TYPE u;
const struct lysp_qname *iffs;
ly_bool ret = 0;
iffs = pn->iffeatures;
LY_ARRAY_FOR(iffs, u) {
ret = 1;
break;
}
return ret;
}
/**
* @brief Find out if leaf is also the key in last list.
* @param[in] pn is pointer to leaf.
* @param[in] ca_last_list is pointer to last visited list.
* Obtained from trt_parent_cache.
* @return 1 if leaf is also the key, otherwise 0.
*/
static ly_bool
trop_leaf_is_key(const struct lysp_node *pn, const struct lysp_node_list *ca_last_list)
{
const struct lysp_node_leaf *leaf = (const struct lysp_node_leaf *)pn;
const struct lysp_node_list *list = ca_last_list;
if (!list) {
return 0;
}
return trg_charptr_has_data(list->key) ?
trg_word_is_present(list->key, leaf->name, ' ') : 0;
}
/**
* @brief Check if container's type is presence.
* @param[in] pn is pointer to container.
* @return 1 if container has presence statement, otherwise 0.
*/
static ly_bool
trop_container_has_presence(const struct lysp_node *pn)
{
return trg_charptr_has_data(((struct lysp_node_container *)pn)->presence);
}
/**
* @brief Get leaflist's path without lysp_node type control.
* @param[in] pn is pointer to the leaflist.
*/
static const char *
trop_leaflist_refpath(const struct lysp_node *pn)
{
const struct lysp_node_leaflist *list = (const struct lysp_node_leaflist *)pn;
return list->type.path ? list->type.path->expr : NULL;
}
/**
* @brief Get leaflist's type name without lysp_node type control.
* @param[in] pn is pointer to the leaflist.
*/
static const char *
trop_leaflist_type_name(const struct lysp_node *pn)
{
const struct lysp_node_leaflist *list = (const struct lysp_node_leaflist *)pn;
return list->type.name;
}
/**
* @brief Get leaf's path without lysp_node type control.
* @param[in] pn is pointer to the leaf node.
*/
static const char *
trop_leaf_refpath(const struct lysp_node *pn)
{
const struct lysp_node_leaf *leaf = (const struct lysp_node_leaf *)pn;
return leaf->type.path ? leaf->type.path->expr : NULL;
}
/**
* @brief Get leaf's type name without lysp_node type control.
* @param[in] pn is pointer to the leaf's type name.
*/
static const char *
trop_leaf_type_name(const struct lysp_node *pn)
{
const struct lysp_node_leaf *leaf = (const struct lysp_node_leaf *)pn;
return leaf->type.name;
}
/**
* @brief Get pointer to data using node type specification
* and getter function.
*
* @param[in] flags is node type specification.
* If it is the correct node, the getter function is called.
* @param[in] f is getter function which provides the desired
* char pointer from the structure.
* @param[in] pn pointer to node.
* @return NULL if node has wrong type or getter function return
* pointer to NULL.
* @return Pointer to desired char pointer obtained from the node.
*/
static const char *
trop_node_charptr(uint16_t flags, trt_get_charptr_func f, const struct lysp_node *pn)
{
if (pn->nodetype & flags) {
const char *ret = f(pn);
return trg_charptr_has_data(ret) ? ret : NULL;
} else {
return NULL;
}
}
/**
* @brief Resolve \<status\> of the current node.
* @param[in] nodetype is node's type obtained from the tree.
* @param[in] flags is node's flags obtained from the tree.
* @param[in] ca_lys_status is inherited status obtained from trt_parent_cache.
* @return The status type.
*/
static char *
trop_resolve_status(uint16_t nodetype, uint16_t flags, uint16_t ca_lys_status)
{
if (nodetype & (LYS_INPUT | LYS_OUTPUT)) {
/* LYS_INPUT and LYS_OUTPUT is special case */
return tro_flags2status(ca_lys_status);
/* if ancestor's status is deprc or obslt
* and also node's status is not set
*/
} else if ((ca_lys_status & (LYS_STATUS_DEPRC | LYS_STATUS_OBSLT)) && !(flags & (LYS_STATUS_CURR | LYS_STATUS_DEPRC | LYS_STATUS_OBSLT))) {
/* get ancestor's status */
return tro_flags2status(ca_lys_status);
} else {
/* else get node's status */
return tro_flags2status(flags);
}
}
/**
* @brief Resolve \<flags\> of the current node.
* @param[in] nodetype is node's type obtained from the tree.
* @param[in] flags is node's flags obtained from the tree.
* @param[in] ca_ancestor is ancestor type obtained from trt_parent_cache.
* @param[in] ca_lys_config is inherited config item obtained from trt_parent_cache.
* @param[in] no Override structure for flags.
* @return The flags type.
*/
static const char *
trop_resolve_flags(uint16_t nodetype, uint16_t flags, trt_ancestor_type ca_ancestor, uint16_t ca_lys_config,
struct lyplg_ext_sprinter_tree_node_override *no)
{
if (no && no->flags) {
return no->flags;
} else if ((nodetype & LYS_INPUT) || (ca_ancestor == TRD_ANCESTOR_RPC_INPUT)) {
return TRD_FLAGS_TYPE_RPC_INPUT_PARAMS;
} else if ((nodetype & LYS_OUTPUT) || (ca_ancestor == TRD_ANCESTOR_RPC_OUTPUT)) {
return TRD_FLAGS_TYPE_RO;
} else if (ca_ancestor == TRD_ANCESTOR_NOTIF) {
return TRD_FLAGS_TYPE_RO;
} else if (nodetype & LYS_NOTIF) {
return TRD_FLAGS_TYPE_NOTIF;
} else if (nodetype & LYS_USES) {
return TRD_FLAGS_TYPE_USES_OF_GROUPING;
} else if (nodetype & (LYS_RPC | LYS_ACTION)) {
return TRD_FLAGS_TYPE_RPC;
} else if (!(flags & (LYS_CONFIG_R | LYS_CONFIG_W))) {
/* config is not set. Look at ancestor's config */
return tro_flags2config(ca_lys_config);
} else {
return tro_flags2config(flags);
}
}
/**
* @brief Resolve node type of the current node.
* @param[in] pn is pointer to the current node in the tree.
* @param[in] ca_last_list is pointer to the last visited list. Obtained from the trt_parent_cache.
* @param[out] type Resolved type of node.
* @param[out] opts Resolved opts of node.
*/
static void
trop_resolve_node_opts(const struct lysp_node *pn, const struct lysp_node_list *ca_last_list, trt_node_type *type,
const char **opts)
{
if (pn->nodetype & (LYS_INPUT | LYS_OUTPUT)) {
*type = TRD_NODE_ELSE;
} else if (pn->nodetype & LYS_CASE) {
*type = TRD_NODE_CASE;
} else if ((pn->nodetype & LYS_CHOICE) && !(pn->flags & LYS_MAND_TRUE)) {
*type = TRD_NODE_CHOICE;
*opts = TRD_NODE_OPTIONAL;
} else if (pn->nodetype & LYS_CHOICE) {
*type = TRD_NODE_CHOICE;
} else if ((pn->nodetype & LYS_CONTAINER) && (trop_container_has_presence(pn))) {
*opts = TRD_NODE_CONTAINER;
} else if (pn->nodetype & (LYS_LIST | LYS_LEAFLIST)) {
*opts = TRD_NODE_LISTLEAFLIST;
} else if ((pn->nodetype & (LYS_ANYDATA | LYS_ANYXML)) && !(pn->flags & LYS_MAND_TRUE)) {
*opts = TRD_NODE_OPTIONAL;
} else if ((pn->nodetype & LYS_LEAF) && !(pn->flags & LYS_MAND_TRUE) && (!trop_leaf_is_key(pn, ca_last_list))) {
*opts = TRD_NODE_OPTIONAL;
} else {
*type = TRD_NODE_ELSE;
}
}
/**
* @brief Resolve \<type\> of the current node.
* @param[in] pn is current node.
* @return Resolved type.
*/
static struct trt_type
trop_resolve_type(const struct lysp_node *pn)
{
const char *tmp = NULL;
if (!pn) {
return TRP_EMPTY_TRT_TYPE;
} else if ((tmp = trop_node_charptr(LYS_LEAFLIST, trop_leaflist_refpath, pn))) {
return TRP_INIT_TRT_TYPE(TRD_TYPE_TARGET, tmp);
} else if ((tmp = trop_node_charptr(LYS_LEAFLIST, trop_leaflist_type_name, pn))) {
return TRP_INIT_TRT_TYPE(TRD_TYPE_NAME, tmp);
} else if ((tmp = trop_node_charptr(LYS_LEAF, trop_leaf_refpath, pn))) {
return TRP_INIT_TRT_TYPE(TRD_TYPE_TARGET, tmp);
} else if ((tmp = trop_node_charptr(LYS_LEAF, trop_leaf_type_name, pn))) {
return TRP_INIT_TRT_TYPE(TRD_TYPE_NAME, tmp);
} else if (pn->nodetype == LYS_ANYDATA) {
return TRP_INIT_TRT_TYPE(TRD_TYPE_NAME, "anydata");
} else if (pn->nodetype & LYS_ANYXML) {
return TRP_INIT_TRT_TYPE(TRD_TYPE_NAME, "anyxml");
} else {
return TRP_EMPTY_TRT_TYPE;
}
}
/**
* @brief Resolve iffeatures.
*
* @param[in] pn is current parsed node.
* @return Resolved iffeatures.
*/
static struct trt_iffeatures
trop_resolve_iffeatures(const struct lysp_node *pn)
{
struct trt_iffeatures iff;
if (pn && trop_node_has_iffeature(pn)) {
iff.type = TRD_IFF_PRESENT;
iff.str = NULL;
} else {
iff.type = TRD_IFF_NON_PRESENT;
iff.str = NULL;
}
return iff;
}
/**
* @brief Transformation of current lysp_node to struct trt_node.
* @param[in] ca contains stored important data
* when browsing the tree downwards.
* @param[in] tc is context of the tree.
*/
static struct trt_node
trop_read_node(struct trt_parent_cache ca, struct trt_tree_ctx *tc)
{
const struct lysp_node *pn;
struct trt_node ret;
struct lyplg_ext_sprinter_tree_node_override *no;
assert(tc && tc->pn && tc->pn->nodetype != LYS_UNKNOWN);
no = tro_set_node_overr(tc->lysc_tree, tc->pn, 1, &tc->plugin_ctx);
pn = tc->pn;
ret = TRP_EMPTY_NODE;
/* <status> */
ret.status = trop_resolve_status(pn->nodetype, pn->flags, ca.lys_status);
/* <flags> */
ret.flags = trop_resolve_flags(pn->nodetype, pn->flags, ca.ancestor, ca.lys_config, no);
/* set type of the node */
trop_resolve_node_opts(pn, ca.last_list, &ret.name.type, &ret.name.opts);
ret.name.add_opts = no && no->add_opts ? no->add_opts : NULL;
ret.name.keys = (tc->pn->nodetype & LYS_LIST) && trop_list_has_keys(tc->pn);
/* The parsed tree is not compiled, so no node can be augmented
* from another module. This means that nodes from the parsed tree
* will never have the prefix.
*/
ret.name.module_prefix = NULL;
/* set node's name */
ret.name.str = pn->name;
/* <type> */
ret.type = trop_resolve_type(pn);
/* <iffeature> */
ret.iffeatures = trop_resolve_iffeatures(pn);
ret.last_one = !tro_next_sibling(pn, tc);
return ret;
}
/**
* @brief Find out if the current node has siblings.
* @param[in] tc is context of the tree.
* @return 1 if sibling exists otherwise 0.
*/
static ly_bool
trop_read_if_sibling_exists(const struct trt_tree_ctx *tc)
{
return tro_next_sibling(tc->pn, tc) != NULL;
}
/**********************************************************************
* Modify trop getters
*********************************************************************/
/**
* @brief Change current node pointer to its parent
* but only if parent exists.
* @param[in,out] tc is tree context.
* Contains pointer to the current node.
* @return 1 if the node had parents and the change was successful.
* @return 0 if the node did not have parents.
* The pointer to the current node did not change.
*/
static ly_bool
trop_modi_parent(struct trt_tree_ctx *tc)
{
assert(tc && tc->pn);
/* If no parent exists, stay in actual node. */
if ((tc->pn != tc->tpn) && (tc->pn->parent)) {
tc->pn = tc->pn->parent;
return 1;
} else {
return 0;
}
}
/**
* @brief Change the current node pointer to its child
* but only if exists.
* @param[in] ca contains inherited data from ancestors.
* @param[in,out] tc is context of the tree.
* Contains pointer to the current node.
* @return Non-empty \<node\> representation of the current
* node's child. The @p tc is modified.
* @return Empty \<node\> representation if child don't exists.
* The @p tc is not modified.
*/
static struct trt_node
trop_modi_next_child(struct trt_parent_cache ca, struct trt_tree_ctx *tc)
{
const struct lysp_node *tmp;
assert(tc && tc->pn);
if ((tmp = tro_next_child(tc->pn, tc))) {
tc->pn = tmp;
return trop_read_node(ca, tc);
} else {
return TRP_EMPTY_NODE;
}
}
/**
* @brief Change the pointer to the current node to its next sibling
* only if exists.
* @param[in] ca contains inherited data from ancestors.
* @param[in,out] tc is tree context.
* Contains pointer to the current node.
* @return Non-empty \<node\> representation if sibling exists.
* The @p tc is modified.
* @return Empty \<node\> representation otherwise.
* The @p tc is not modified.
*/
static struct trt_node
trop_modi_next_sibling(struct trt_parent_cache ca, struct trt_tree_ctx *tc)
{
const struct lysp_node *pn;
assert(tc && tc->pn);
pn = tro_next_sibling(tc->pn, tc);
if (pn) {
if ((tc->tpn == tc->pn) && (tc->section != TRD_SECT_PLUG_DATA)) {
tc->tpn = pn;
}
tc->pn = pn;
return trop_read_node(ca, tc);
} else {
return TRP_EMPTY_NODE;
}
}
/**
* @brief Change the current node pointer to the first child of node's
* parent. If current node is already first sibling/child then nothing
* will change.
* @param[in] ca Settings of parent.
* @param[in,out] tc is tree context.
* @return node for printing.
*/
static struct trt_node
trop_modi_first_sibling(struct trt_parent_cache ca, struct trt_tree_ctx *tc)
{
struct trt_node node;
assert(tc && tc->pn);
if (trop_modi_parent(tc)) {
node = trop_modi_next_child(ca, tc);
} else if (tc->plugin_ctx.schema) {
tc->pn = tc->plugin_ctx.schema->ptree;
tc->tpn = tc->pn;
node = trop_read_node(ca, tc);
} else {
/* current node is top-node */
switch (tc->section) {
case TRD_SECT_MODULE:
tc->pn = tc->pmod->data;
tc->tpn = tc->pn;
break;
case TRD_SECT_AUGMENT:
tc->pn = (const struct lysp_node *)tc->pmod->augments;
tc->tpn = tc->pn;
break;
case TRD_SECT_RPCS:
tc->pn = (const struct lysp_node *)tc->pmod->rpcs;
tc->tpn = tc->pn;
break;
case TRD_SECT_NOTIF:
tc->pn = (const struct lysp_node *)tc->pmod->notifs;
tc->tpn = tc->pn;
break;
case TRD_SECT_GROUPING:
tc->pn = (const struct lysp_node *)tc->pmod->groupings;
tc->tpn = tc->pn;
break;
case TRD_SECT_PLUG_DATA:
/* Nothing to do. */
break;
default:
assert(0);
}
node = trop_read_node(ca, tc);
}
if (tc->plugin_ctx.filtered) {
node = trop_modi_next_sibling(ca, tc);
}
return node;
}
/**
* @brief Get next (or first) augment section if exists.
* @param[in,out] tc is tree context. It is modified and his current
* node is set to the lysp_node_augment.
* @return Section's representation if (next augment) section exists.
* @return Empty section structure otherwise.
*/
static struct trt_keyword_stmt
trop_modi_next_augment(struct trt_tree_ctx *tc)
{
assert(tc);
const struct lysp_node_augment *augs;
struct trt_keyword_stmt ret = {0};
/* if next_augment func was called for the first time */
if (tc->section != TRD_SECT_AUGMENT) {
tc->section = TRD_SECT_AUGMENT;
augs = tc->pmod->augments;
} else {
/* get augment sibling from top-node pointer */
augs = (const struct lysp_node_augment *)tc->tpn->next;
}
if (augs) {
tc->pn = &augs->node;
tc->tpn = tc->pn;
ret.section_name = TRD_KEYWORD_AUGMENT;
ret.argument = augs->nodeid;
ret.has_node = tro_tree_ctx_get_node(tc) ? 1 : 0;
}
return ret;
}
/**
* @brief Get next (or first) grouping section if exists
* @param[in,out] tc is tree context. It is modified and his current
* node is set to the lysp_node_grp.
* @return The next (or first) section representation if it exists.
* @return Empty section representation otherwise.
*/
static struct trt_keyword_stmt
trop_modi_next_grouping(struct trt_tree_ctx *tc)
{
assert(tc);
const struct lysp_node_grp *grps;
struct trt_keyword_stmt ret = {0};
if (tc->section != TRD_SECT_GROUPING) {
tc->section = TRD_SECT_GROUPING;
grps = tc->pmod->groupings;
} else {
grps = (const struct lysp_node_grp *)tc->tpn->next;
}
if (grps) {
tc->pn = &grps->node;
tc->tpn = tc->pn;
ret.section_name = TRD_KEYWORD_GROUPING;
ret.argument = grps->name;
ret.has_node = tro_tree_ctx_get_child(tc) ? 1 : 0;
}
return ret;
}
/**********************************************************************
* Definition of troc reading functions
*********************************************************************/
/**
* @copydoc trop_read_if_sibling_exists
*/
static ly_bool
troc_read_if_sibling_exists(const struct trt_tree_ctx *tc)
{
return tro_next_sibling(tc->cn, tc) != NULL;
}
/**
* @brief Resolve \<flags\> of the current node.
*
* Use this function only if trt_tree_ctx.lysc_tree is true.
*
* @param[in] nodetype is current lysc_node.nodetype.
* @param[in] flags is current lysc_node.flags.
* @param[in] no Override structure for flags.
* @return The flags type.
*/
static const char *
troc_resolve_flags(uint16_t nodetype, uint16_t flags, struct lyplg_ext_sprinter_tree_node_override *no)
{
if (no && no->flags) {
return no->flags;
} else if ((nodetype & LYS_INPUT) || (flags & LYS_IS_INPUT)) {
return TRD_FLAGS_TYPE_RPC_INPUT_PARAMS;
} else if ((nodetype & LYS_OUTPUT) || (flags & LYS_IS_OUTPUT)) {
return TRD_FLAGS_TYPE_RO;
} else if (nodetype & LYS_IS_NOTIF) {
return TRD_FLAGS_TYPE_RO;
} else if (nodetype & LYS_NOTIF) {
return TRD_FLAGS_TYPE_NOTIF;
} else if (nodetype & LYS_USES) {
return TRD_FLAGS_TYPE_USES_OF_GROUPING;
} else if (nodetype & (LYS_RPC | LYS_ACTION)) {
return TRD_FLAGS_TYPE_RPC;
} else {
return tro_flags2config(flags);
}
}
/**
* @brief Resolve node type of the current node.
*
* Use this function only if trt_tree_ctx.lysc_tree is true.
*
* @param[in] nodetype is current lysc_node.nodetype.
* @param[in] flags is current lysc_node.flags.
* @param[out] type Resolved type of node.
* @param[out] opts Resolved opts.
*/
static void
troc_resolve_node_opts(uint16_t nodetype, uint16_t flags, trt_node_type *type, const char **opts)
{
if (nodetype & (LYS_INPUT | LYS_OUTPUT)) {
*type = TRD_NODE_ELSE;
} else if (nodetype & LYS_CASE) {
*type = TRD_NODE_CASE;
} else if ((nodetype & LYS_CHOICE) && !(flags & LYS_MAND_TRUE)) {
*type = TRD_NODE_CHOICE;
*opts = TRD_NODE_OPTIONAL;
} else if (nodetype & LYS_CHOICE) {
*type = TRD_NODE_CHOICE;
} else if ((nodetype & LYS_CONTAINER) && (flags & LYS_PRESENCE)) {
*opts = TRD_NODE_CONTAINER;
} else if (nodetype & (LYS_LIST | LYS_LEAFLIST)) {
*opts = TRD_NODE_LISTLEAFLIST;
} else if ((nodetype & (LYS_ANYDATA | LYS_ANYXML)) && !(flags & LYS_MAND_TRUE)) {
*opts = TRD_NODE_OPTIONAL;
} else if ((nodetype & LYS_LEAF) && !(flags & (LYS_MAND_TRUE | LYS_KEY))) {
*opts = TRD_NODE_OPTIONAL;
} else {
*type = TRD_NODE_ELSE;
}
}
/**
* @brief Resolve prefix (\<prefix\>:\<name\>) of node that has been
* placed from another module via an augment statement.
*
* @param[in] cn is current compiled node.
* @param[in] current_compiled_module is module whose nodes are
* currently being printed.
* @return Prefix of foreign module or NULL.
*/
static const char *
troc_resolve_node_prefix(const struct lysc_node *cn, const struct lysc_module *current_compiled_module)
{
const struct lys_module *node_module;
const char *ret = NULL;
node_module = cn->module;
if (!node_module || !current_compiled_module) {
return NULL;
} else if (node_module->compiled != current_compiled_module) {
ret = node_module->prefix;
}
return ret;
}
/**
* @brief Transformation of current lysc_node to struct trt_node.
* @param[in] ca is not used.
* @param[in] tc is context of the tree.
*/
static struct trt_node
troc_read_node(struct trt_parent_cache ca, struct trt_tree_ctx *tc)
{
(void) ca;
const struct lysc_node *cn;
struct trt_node ret;
struct lyplg_ext_sprinter_tree_node_override *no;
assert(tc && tc->cn);
no = tro_set_node_overr(tc->lysc_tree, tc->cn, 1, &tc->plugin_ctx);
cn = tc->cn;
ret = TRP_EMPTY_NODE;
/* <status> */
ret.status = tro_flags2status(cn->flags);
/* <flags> */
ret.flags = troc_resolve_flags(cn->nodetype, cn->flags, no);
/* set type of the node */
troc_resolve_node_opts(cn->nodetype, cn->flags, &ret.name.type, &ret.name.opts);
ret.name.add_opts = no && no->add_opts ? no->add_opts : NULL;
ret.name.keys = (cn->nodetype & LYS_LIST) && !(cn->flags & LYS_KEYLESS);
/* <prefix> */
ret.name.module_prefix = troc_resolve_node_prefix(cn, tc->cmod);
/* set node's name */
ret.name.str = cn->name;
/* <type> */
ret.type = trop_resolve_type(TRP_TREE_CTX_GET_LYSP_NODE(cn));
/* <iffeature> */
ret.iffeatures = trop_resolve_iffeatures(TRP_TREE_CTX_GET_LYSP_NODE(cn));
ret.last_one = !tro_next_sibling(cn, tc);
return ret;
}
/**********************************************************************
* Modify troc getters
*********************************************************************/
/**
* @copydoc ::trop_modi_parent()
*/
static ly_bool
troc_modi_parent(struct trt_tree_ctx *tc)
{
assert(tc && tc->cn);
/* If no parent exists, stay in actual node. */
if (tc->cn->parent) {
tc->cn = tc->cn->parent;
return 1;
} else {
return 0;
}
}
/**
* @copydoc ::trop_modi_next_sibling()
*/
static struct trt_node
troc_modi_next_sibling(struct trt_parent_cache ca, struct trt_tree_ctx *tc)
{
const struct lysc_node *cn;
assert(tc && tc->cn);
cn = tro_next_sibling(tc->cn, tc);
/* if next sibling exists */
if (cn) {
/* update trt_tree_ctx */
tc->cn = cn;
return troc_read_node(ca, tc);
} else {
return TRP_EMPTY_NODE;
}
}
/**
* @copydoc trop_modi_next_child()
*/
static struct trt_node
troc_modi_next_child(struct trt_parent_cache ca, struct trt_tree_ctx *tc)
{
const struct lysc_node *tmp;
assert(tc && tc->cn);
if ((tmp = tro_next_child(tc->cn, tc))) {
tc->cn = tmp;
return troc_read_node(ca, tc);
} else {
return TRP_EMPTY_NODE;
}
}
/**
* @copydoc ::trop_modi_first_sibling()
*/
static struct trt_node
troc_modi_first_sibling(struct trt_parent_cache ca, struct trt_tree_ctx *tc)
{
struct trt_node node;
assert(tc && tc->cn);
if (troc_modi_parent(tc)) {
node = troc_modi_next_child(ca, tc);
} else if (tc->plugin_ctx.schema) {
tc->cn = tc->plugin_ctx.schema->ctree;
node = troc_read_node(ca, tc);
} else {
/* current node is top-node */
switch (tc->section) {
case TRD_SECT_MODULE:
tc->cn = tc->cmod->data;
break;
case TRD_SECT_RPCS:
tc->cn = (const struct lysc_node *)tc->cmod->rpcs;
break;
case TRD_SECT_NOTIF:
tc->cn = (const struct lysc_node *)tc->cmod->notifs;
break;
case TRD_SECT_PLUG_DATA:
/* nothing to do */
break;
default:
assert(0);
}
node = troc_read_node(ca, tc);
}
if (tc->plugin_ctx.filtered) {
node = troc_modi_next_sibling(ca, tc);
}
return node;
}
/**********************************************************************
* Definition of tree browsing functions
*********************************************************************/
static uint32_t
trb_gap_to_opts(const struct trt_node *node)
{
uint32_t len = 0;
if (node->name.keys) {
return 0;
}
if (node->flags) {
len += strlen(node->flags);
/* space between flags and name */
len += 1;
} else {
/* space between -- and name */
len += 1;
}
switch (node->name.type) {
case TRD_NODE_CASE:
/* ':' is already counted. Plus parentheses. */
len += 2;
break;
case TRD_NODE_CHOICE:
/* Plus parentheses. */
len += 2;
break;
default:
break;
}
if (node->name.module_prefix) {
len += strlen(node->name.module_prefix);
}
if (node->name.str) {
len += strlen(node->name.str);
}
if (node->name.add_opts) {
len += strlen(node->name.add_opts);
}
if (node->name.opts) {
len += strlen(node->name.opts);
}
return len;
}
static uint32_t
trb_gap_to_type(const struct trt_node *node)
{
uint32_t len, opts_len;
if (node->name.keys) {
return 0;
}
len = trb_gap_to_opts(node);
/* Gap between opts and type. */
opts_len = 0;
opts_len += node->name.add_opts ? strlen(node->name.add_opts) : 0;
opts_len += node->name.opts ? strlen(node->name.opts) : 0;
if (opts_len >= TRD_INDENT_BEFORE_TYPE) {
/* At least one space should be there. */
len += 1;
} else if (node->name.add_opts || node->name.opts) {
len += TRD_INDENT_BEFORE_TYPE - opts_len;
} else {
len += TRD_INDENT_BEFORE_TYPE;
}
return len;
}
/**
* @brief Calculate the trt_indent_in_node.btw_opts_type indent size
* for a particular node.
* @param[in] node for which we get btw_opts_type.
* @param[in] max_gap_before_type is the maximum value of btw_opts_type
* that it can have.
* @return Indent between \<opts\> and \<type\> for node.
*/
static int16_t
trb_calc_btw_opts_type(const struct trt_node *node, int16_t max_gap_before_type)
{
uint32_t to_opts_len;
to_opts_len = trb_gap_to_opts(node);
if (to_opts_len == 0) {
return 1;
} else {
return max_gap_before_type - to_opts_len;
}
}
/**
* @brief Print node.
*
* This function is wrapper for ::trp_print_entire_node().
* But difference is that take @p max_gap_before_type which will be
* used to set the unified alignment.
*
* @param[in] node to print.
* @param[in] max_gap_before_type is number of indent before \<type\>.
* @param[in] wr is wrapper for printing indentation before node.
* @param[in] pc contains mainly functions for printing.
* @param[in] tc is tree context.
*/
static void
trb_print_entire_node(const struct trt_node *node, uint32_t max_gap_before_type, struct trt_wrapper wr,
struct trt_printer_ctx *pc, struct trt_tree_ctx *tc)
{
struct trt_indent_in_node ind = trp_default_indent_in_node(node);
if ((max_gap_before_type > 0) && (node->type.type != TRD_TYPE_EMPTY)) {
/* print actual node with unified indent */
ind.btw_opts_type = trb_calc_btw_opts_type(node, max_gap_before_type);
}
/* after -> print actual node with default indent */
trp_print_entire_node(node, TRP_INIT_PCK_PRINT(tc, pc->fp.print),
TRP_INIT_PCK_INDENT(wr, ind), pc->max_line_length, pc->out);
}
/**
* @brief Check if parent of the current node is the last
* of his siblings.
*
* To mantain stability use this function only if the current node is
* the first of the siblings.
* Side-effect -> current node is set to the first sibling
* if node has a parent otherwise no side-effect.
*
* @param[in] fp contains all @ref TRP_tro callback functions.
* @param[in,out] tc is tree context.
* @return 1 if parent is last sibling otherwise 0.
*/
static ly_bool
trb_node_is_last_sibling(const struct trt_fp_all *fp, struct trt_tree_ctx *tc)
{
if (fp->read.if_parent_exists(tc)) {
return !fp->read.if_sibling_exists(tc);
} else {
return !fp->read.if_sibling_exists(tc) && tc->plugin_ctx.last_schema;
}
}
/**
* @brief For all siblings find maximal space from '--' to \<type\>.
*
* Side-effect -> Current node is set to the first sibling.
*
* @param[in] ca contains inherited data from ancestors.
* @param[in] pc contains mainly functions for printing.
* @param[in,out] tc is tree context.
* @return max space.
*/
static uint32_t
trb_max_gap_to_type(struct trt_parent_cache ca, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc)
{
struct trt_node node;
int32_t maxlen, len;
maxlen = 0;
for (node = pc->fp.modify.first_sibling(ca, tc);
!trp_node_is_empty(&node);
node = pc->fp.modify.next_sibling(ca, tc)) {
len = trb_gap_to_type(&node);
maxlen = maxlen < len ? len : maxlen;
}
pc->fp.modify.first_sibling(ca, tc);
return maxlen;
}
/**
* @brief Find out if it is possible to unify
* the alignment before \<type\>.
*
* The goal is for all node siblings to have the same alignment
* for \<type\> as if they were in a column. All siblings who cannot
* adapt because they do not fit on the line at all are ignored.
* Side-effect -> Current node is set to the first sibling.
*
* @param[in] ca contains inherited data from ancestors.
* @param[in] pc contains mainly functions for printing.
* @param[in,out] tc is tree context.
* @return positive number indicating the maximum number of spaces
* before \<type\> if the length of the flags, node name and opts is 0. To calculate
* the trt_indent_in_node.btw_opts_type indent size for a particular
* node, use the ::trb_calc_btw_opts_type().
*/
static uint32_t
trb_try_unified_indent(struct trt_parent_cache ca, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc)
{
return trb_max_gap_to_type(ca, pc, tc);
}
/**
* @brief Check if there is no case statement
* under the choice statement.
*
* It can return true only if the Parsed schema tree
* is used for browsing.
*
* @param[in] tc is tree context.
* @return 1 if implicit case statement is present otherwise 0.
*/
static ly_bool
trb_need_implicit_node_case(struct trt_tree_ctx *tc)
{
return !tc->lysc_tree && tc->pn->parent &&
(tc->pn->parent->nodetype & LYS_CHOICE) &&
(tc->pn->nodetype & (LYS_ANYDATA | LYS_CHOICE | LYS_CONTAINER |
LYS_LEAF | LYS_LEAFLIST));
}
static void trb_print_subtree_nodes(struct trt_node *node, uint32_t max_gap_before_type,
struct trt_wrapper wr, struct trt_parent_cache ca, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc);
/**
* @brief Print implicit case node and his subtree.
*
* @param[in] node is child of implicit case.
* @param[in] wr is wrapper for printing identation before node.
* @param[in] pc contains mainly functions for printing.
* @param[in] tc is tree context. Its settings should be the same as
* before the function call.
* @return new indentation wrapper for @p node.
*/
static struct trt_wrapper
trb_print_implicit_node(const struct trt_node *node, struct trt_wrapper wr, struct trt_printer_ctx *pc,
struct trt_tree_ctx *tc)
{
struct trt_node case_node;
struct trt_wrapper wr_case_child;
tro_create_implicit_case_node(node, &case_node);
ly_print_(pc->out, "\n");
trb_print_entire_node(&case_node, 0, wr, pc, tc);
ly_print_(pc->out, "\n");
wr_case_child = pc->fp.read.if_sibling_exists(tc) ?
trp_wrapper_set_mark(wr) : trp_wrapper_set_shift(wr);
return wr_case_child;
}
/**
* @brief Calculate the wrapper about how deep in the tree the node is.
* @param[in] wr_in A wrapper to use as a starting point
* @param[in] node from which to count.
* @return wrapper for @p node.
*/
static struct trt_wrapper
trb_count_depth(const struct trt_wrapper *wr_in, const struct lysc_node *node)
{
struct trt_wrapper wr = wr_in ? *wr_in : TRP_INIT_WRAPPER_TOP;
const struct lysc_node *parent;
if (!node) {
return wr;
}
for (parent = node->parent; parent; parent = parent->parent) {
wr = trp_wrapper_set_shift(wr);
}
return wr;
}
/**
* @brief Print all parent nodes of @p node and the @p node itself.
*
* Side-effect -> trt_tree_ctx.cn will be set to @p node.
*
* @param[in] node on which the function is focused.
* @param[in] wr_in for printing identation before node.
* @param[in] pc is @ref TRP_trp settings.
* @param[in,out] tc is context of tree printer.
*/
static void
trb_print_parents(const struct lysc_node *node, struct trt_wrapper *wr_in, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc)
{
uint32_t max_gap_before_type;
struct trt_wrapper wr;
struct trt_node print_node;
assert(pc && tc && tc->section == TRD_SECT_MODULE);
/* stop recursion */
if (!node) {
return;
}
trb_print_parents(node->parent, wr_in, pc, tc);
/* setup for printing */
tc->cn = node;
wr = trb_count_depth(wr_in, node);
/* print node */
ly_print_(pc->out, "\n");
print_node = pc->fp.read.node(TRP_EMPTY_PARENT_CACHE, tc);
max_gap_before_type = trb_max_gap_to_type(TRP_EMPTY_PARENT_CACHE, pc, tc);
trb_print_entire_node(&print_node, max_gap_before_type, wr, pc, tc);
}
/**
* @brief Set current node on its child.
* @param[in,out] tc contains current node.
*/
static void
trb_tree_ctx_set_child(struct trt_tree_ctx *tc)
{
const void *node = tro_tree_ctx_get_child(tc);
if (tc->lysc_tree) {
tc->cn = node;
} else {
tc->pn = node;
}
}
/**
* @brief Move extension iterator to the next position.
*
* @param[in] lysc_tree flag if exts is from compiled tree.
* @param[in] exts is current array of extensions.
* @param[in,out] i is state of iterator.
* @return Pointer to the first/next extension.
*/
static void *
trb_ext_iter_next(ly_bool lysc_tree, void *exts, uint64_t *i)
{
void *ext = NULL;
struct lysc_ext_instance *ce;
struct lysp_ext_instance *pe;
if (!exts) {
return NULL;
}
if (lysc_tree) {
ce = exts;
while (*i < LY_ARRAY_COUNT(ce)) {
if (ce->def->plugin && trp_ext_parent_is_valid(1, &ce[*i])) {
ext = &ce[*i];
break;
}
++(*i);
}
} else {
pe = exts;
while (*i < LY_ARRAY_COUNT(pe)) {
if (trp_ext_parent_is_valid(0, &pe[*i])) {
ext = &pe[*i];
break;
}
++(*i);
}
}
++(*i);
return ext;
}
/**
* @brief Iterate over extensions in module.
*
* @param[in] tc contains current node.
* @param[in,out] i is state of iterator.
* @return First/next extension or NULL.
*/
static void *
trb_mod_ext_iter(const struct trt_tree_ctx *tc, uint64_t *i)
{
if (tc->lysc_tree) {
return trb_ext_iter_next(1, tc->cmod->exts, i);
} else {
return trb_ext_iter_next(0, tc->pmod->exts, i);
}
}
/**
* @brief Iterate over extensions in node.
*
* @param[in] tc contains current node.
* @param[in,out] i is state of iterator.
* @return First/next extension or NULL.
*/
static void *
trb_ext_iter(const struct trt_tree_ctx *tc, uint64_t *i)
{
if (tc->lysc_tree) {
return trb_ext_iter_next(1, tc->cn->exts, i);
} else {
return trb_ext_iter_next(0, tc->pn->exts, i);
}
}
/**
* @brief Initialize plugin context.
*
* @param[in] compiled if @p ext is lysc structure.
* @param[in] ext current processed extension.
* @param[out] plug_ctx is plugin context which will be initialized.
* @return LY_ERR value.
*/
static LY_ERR
tro_ext_printer_tree(ly_bool compiled, void *ext, const struct lyspr_tree_ctx *plug_ctx)
{
struct lysc_ext_instance *ext_comp;
struct lysp_ext_instance *ext_pars;
const char *flags = NULL, *add_opts = NULL;
if (compiled) {
ext_comp = ext;
if (ext_comp->def->plugin->printer_ctree) {
return ext_comp->def->plugin->printer_ctree(ext, plug_ctx, &flags, &add_opts);
}
} else {
ext_pars = ext;
if (ext_pars->record->plugin.printer_ptree) {
return ext_pars->record->plugin.printer_ptree(ext, plug_ctx, &flags, &add_opts);
}
}
return LY_SUCCESS;
}
/**
* @brief Reset tree context by plugin context.
*
* @param[in] plug_ctx is plugin context.
* @param[in] i which index in schemas should be used.
* @param[in] pc are printing functions.
* @param[out] tc tree context which will be updated.
*/
static void
trm_reset_tree_ctx_by_plugin(struct lyspr_tree_ctx *plug_ctx, LY_ARRAY_COUNT_TYPE i, struct trt_printer_ctx *pc,
struct trt_tree_ctx *tc)
{
tc->plugin_ctx.ctx = plug_ctx;
tc->pmod = NULL;
tc->cmod = NULL;
if (plug_ctx->schemas[i].compiled) {
tc->lysc_tree = 1;
tc->cn = plug_ctx->schemas[i].ctree;
tc->plugin_ctx.schema = &plug_ctx->schemas[i];
pc->fp.modify = TRP_TRT_FP_MODIFY_COMPILED;
pc->fp.read = TRP_TRT_FP_READ_COMPILED;
} else {
tc->lysc_tree = 0;
tc->pn = plug_ctx->schemas[i].ptree;
tc->tpn = tc->pn;
tc->plugin_ctx.schema = &plug_ctx->schemas[i];
pc->fp.modify = TRP_TRT_FP_MODIFY_PARSED;
pc->fp.read = TRP_TRT_FP_READ_PARSED;
}
}
/**
* @brief Print schemas from plugin context.
*
* @param[in] plug_ctx is plugin context.
* @param[in] last_nodes if this schemas will be the last.
* @param[in] max_gap_before_type is gap before type.
* @param[in] wr is indentation wrapper.
* @param[in] ca containing information from parent.
* @param[in] pc functions for tree traversing.
* @param[in] tc current tree context.
*/
static void
trb_ext_print_schemas(struct lyspr_tree_ctx *plug_ctx, ly_bool last_nodes, uint32_t max_gap_before_type,
struct trt_wrapper wr, struct trt_parent_cache ca, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc)
{
LY_ARRAY_COUNT_TYPE i;
struct trt_printer_ctx pc_dupl;
struct trt_tree_ctx tc_dupl;
struct trt_node node;
tc_dupl = *tc;
pc_dupl = *pc;
LY_ARRAY_FOR(plug_ctx->schemas, i) {
trm_reset_tree_ctx_by_plugin(plug_ctx, i, pc, tc);
tc->plugin_ctx.last_schema = last_nodes && ((i + 1) == LY_ARRAY_COUNT(plug_ctx->schemas));
node = TRP_EMPTY_NODE;
trb_print_subtree_nodes(&node, max_gap_before_type, wr, ca, pc, tc);
*tc = tc_dupl;
}
*pc = pc_dupl;
}
/**
* @brief Count unified indentation across schemas from extension instance.
*
* @param[in] plug_ctx is plugin context.
* @param[in] ca containing parent settings.
* @param[out] max_gap_before_type is result of unified indent.
* @param[in] pc functions for tree traversing.
* @param[in] tc is tree context.
*/
static void
trb_ext_try_unified_indent(struct lyspr_tree_ctx *plug_ctx, struct trt_parent_cache ca, uint32_t *max_gap_before_type,
struct trt_printer_ctx *pc, struct trt_tree_ctx *tc)
{
LY_ARRAY_COUNT_TYPE i;
struct trt_printer_ctx pc_dupl;
struct trt_tree_ctx tc_dupl;
uint32_t max;
tc_dupl = *tc;
pc_dupl = *pc;
LY_ARRAY_FOR(plug_ctx->schemas, i) {
trm_reset_tree_ctx_by_plugin(plug_ctx, i, pc, tc);
max = trb_try_unified_indent(ca, pc, tc);
*max_gap_before_type = max > *max_gap_before_type ? max : *max_gap_before_type;
*tc = tc_dupl;
}
*pc = pc_dupl;
}
/**
* @brief For every extension instance print all schemas.
*
* @param[in] wr indentation wrapper for node.
* @param[in] ca parent settings.
* @param[in] pc function used for tree traversing.
* @param[in] tc tree context.
*/
static void
trb_ext_print_instances(struct trt_wrapper wr, struct trt_parent_cache ca, struct trt_printer_ctx *pc,
struct trt_tree_ctx *tc)
{
LY_ERR rc;
LY_ARRAY_COUNT_TYPE i;
uint64_t last_instance = UINT64_MAX;
void *ext;
ly_bool child_exists;
uint32_t max, max_gap_before_type = 0;
ca = tro_parent_cache_for_child(ca, tc);
/* if node is last sibling, then do not add '|' to wrapper */
wr = trb_node_is_last_sibling(&pc->fp, tc) ?
trp_wrapper_set_shift(wr) : trp_wrapper_set_mark(wr);
if (tc->lysc_tree) {
child_exists = tro_next_child(tc->cn, tc) ? 1 : 0;
} else {
child_exists = tro_next_child(tc->pn, tc) ? 1 : 0;
}
i = 0;
while ((ext = trb_ext_iter(tc, &i))) {
struct lyspr_tree_ctx plug_ctx = {0};
rc = tro_ext_printer_tree(tc->lysc_tree, ext, &plug_ctx);
LY_CHECK_ERR_GOTO(rc, tc->last_error = rc, end);
trb_ext_try_unified_indent(&plug_ctx, ca, &max_gap_before_type, pc, tc);
if (plug_ctx.schemas) {
last_instance = i;
}
trp_ext_free_plugin_ctx(&plug_ctx);
}
if (child_exists) {
pc->fp.modify.next_child(ca, tc);
max = trb_try_unified_indent(ca, pc, tc);
max_gap_before_type = max > max_gap_before_type ? max : max_gap_before_type;
pc->fp.modify.parent(tc);
}
i = 0;
while ((ext = trb_ext_iter(tc, &i))) {
struct lyspr_tree_ctx plug_ctx = {0};
rc = tro_ext_printer_tree(tc->lysc_tree, ext, &plug_ctx);
LY_CHECK_ERR_GOTO(rc, tc->last_error = rc, end);
if (!child_exists && (last_instance == i)) {
trb_ext_print_schemas(&plug_ctx, 1, max_gap_before_type, wr, ca, pc, tc);
} else {
trb_ext_print_schemas(&plug_ctx, 0, max_gap_before_type, wr, ca, pc, tc);
}
trp_ext_free_plugin_ctx(&plug_ctx);
}
end:
return;
}
/**
* @brief Print subtree of nodes.
*
* The current node is expected to be the root of the subtree.
* Before root node is no linebreak printing. This must be addressed by
* the caller. Root node will also be printed. Behind last printed node
* is no linebreak.
*
* @param[in,out] node current processed node used as iterator.
* @param[in] max_gap_before_type is result from
* ::trb_try_unified_indent() function for root node.
* Set parameter to 0 if distance does not matter.
* @param[in] wr is wrapper saying how deep in the whole tree
* is the root of the subtree.
* @param[in] ca is parent_cache from root's parent.
* If root is top-level node, insert ::TRP_EMPTY_PARENT_CACHE.
* @param[in] pc is @ref TRP_trp settings.
* @param[in,out] tc is context of tree printer.
*/
static void
trb_print_subtree_nodes(struct trt_node *node, uint32_t max_gap_before_type, struct trt_wrapper wr,
struct trt_parent_cache ca, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc)
{
if (!trp_node_is_empty(node)) {
/* Print root node. */
trb_print_entire_node(node, max_gap_before_type, wr, pc, tc);
if (trp_ext_is_present_in_node(tc)) {
trb_ext_print_instances(wr, ca, pc, tc);
}
/* if node is last sibling, then do not add '|' to wrapper */
wr = trb_node_is_last_sibling(&pc->fp, tc) ?
trp_wrapper_set_shift(wr) : trp_wrapper_set_mark(wr);
/* go to the child */
ca = tro_parent_cache_for_child(ca, tc);
*node = pc->fp.modify.next_child(ca, tc);
if (trp_node_is_empty(node)) {
return;
}
/* TODO comment browse through instances + filtered. try unified indentation for children */
max_gap_before_type = trb_try_unified_indent(ca, pc, tc);
} else {
/* Root node is ignored, continue with child. */
*node = pc->fp.modify.first_sibling(ca, tc);
}
do {
if (!tc->plugin_ctx.filtered && !trb_need_implicit_node_case(tc)) {
/* normal behavior */
ly_print_(pc->out, "\n");
trb_print_subtree_nodes(node, max_gap_before_type, wr, ca, pc, tc);
} else if (!tc->plugin_ctx.filtered) {
struct trt_wrapper wr_case_child;
wr_case_child = trb_print_implicit_node(node, wr, pc, tc);
trb_print_subtree_nodes(node, max_gap_before_type, wr_case_child, ca, pc, tc);
}
/* go to the actual node's sibling */
*node = pc->fp.modify.next_sibling(ca, tc);
} while (!trp_node_is_empty(node));
/* get back from child node to root node */
pc->fp.modify.parent(tc);
}
/**
* @brief Print all parents and their children.
*
* This function is suitable for printing top-level nodes that
* do not have ancestors. Function call ::trb_print_subtree_nodes()
* for all top-level siblings. Use this function after 'module' keyword
* or 'augment' and so. The nodes may not be exactly top-level in the
* tree, but the function considers them that way.
*
* @param[in] wr is wrapper saying how deeply the top-level nodes are
* immersed in the tree.
* @param[pc] pc contains mainly functions for printing.
* @param[in,out] tc is tree context.
*/
static void
trb_print_family_tree(struct trt_wrapper wr, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc)
{
struct trt_parent_cache ca;
struct trt_node node;
uint32_t max_gap_before_type;
if (!tro_tree_ctx_get_node(tc)) {
return;
}
ca = TRP_EMPTY_PARENT_CACHE;
max_gap_before_type = trb_try_unified_indent(ca, pc, tc);
if (!tc->lysc_tree) {
if ((tc->section == TRD_SECT_GROUPING) && (tc->tpn == tc->pn->parent)) {
ca.lys_config = 0x0;
}
}
for (node = pc->fp.modify.first_sibling(ca, tc);
!trp_node_is_empty(&node);
node = pc->fp.modify.next_sibling(ca, tc)) {
ly_print_(pc->out, "\n");
trb_print_subtree_nodes(&node, max_gap_before_type, wr, ca, pc, tc);
}
}
/**********************************************************************
* Definition of trm main functions
*********************************************************************/
/**
* @brief Settings if lysp_node are used for browsing through the tree.
*
* @param[in] module YANG schema tree structure representing
* YANG module.
* @param[in] out is output handler.
* @param[in] max_line_length is the maximum line length limit
* that should not be exceeded.
* @param[in,out] pc will be adapted to lysp_tree.
* @param[in,out] tc will be adapted to lysp_tree.
*/
static void
trm_lysp_tree_ctx(const struct lys_module *module, struct ly_out *out, size_t max_line_length,
struct trt_printer_ctx *pc, struct trt_tree_ctx *tc)
{
*tc = (struct trt_tree_ctx) {
.lysc_tree = 0,
.section = TRD_SECT_MODULE,
.pmod = module->parsed,
.cmod = NULL,
.pn = module->parsed ? module->parsed->data : NULL,
.tpn = module->parsed ? module->parsed->data : NULL,
.cn = NULL,
.last_error = 0,
.plugin_ctx.ctx = NULL,
.plugin_ctx.schema = NULL,
.plugin_ctx.filtered = 0,
.plugin_ctx.node_overr = TRP_TREE_CTX_EMPTY_NODE_OVERR,
.plugin_ctx.last_schema = 1,
.plugin_ctx.last_error = 0
};
pc->out = out;
pc->fp.modify = TRP_TRT_FP_MODIFY_PARSED;
pc->fp.read = TRP_TRT_FP_READ_PARSED;
pc->fp.print = (struct trt_fp_print) {
.print_features_names = tro_print_features_names,
.print_keys = tro_print_keys
};
pc->max_line_length = max_line_length;
}
/**
* @brief Settings if lysc_node are used for browsing through the tree.
*
* Pointers to current nodes will be set to module data.
*
* @param[in] module YANG schema tree structure representing
* YANG module.
* @param[in] out is output handler.
* @param[in] max_line_length is the maximum line length limit
* that should not be exceeded.
* @param[in,out] pc will be adapted to lysc_tree.
* @param[in,out] tc will be adapted to lysc_tree.
*/
static void
trm_lysc_tree_ctx(const struct lys_module *module, struct ly_out *out, size_t max_line_length,
struct trt_printer_ctx *pc, struct trt_tree_ctx *tc)
{
*tc = (struct trt_tree_ctx) {
.lysc_tree = 1,
.section = TRD_SECT_MODULE,
.pmod = module->parsed,
.cmod = module->compiled,
.tpn = NULL,
.pn = NULL,
.cn = module->compiled->data,
.last_error = 0,
.plugin_ctx.ctx = NULL,
.plugin_ctx.schema = NULL,
.plugin_ctx.filtered = 0,
.plugin_ctx.node_overr = TRP_TREE_CTX_EMPTY_NODE_OVERR,
.plugin_ctx.last_schema = 1,
.plugin_ctx.last_error = 0
};
pc->out = out;
pc->fp.modify = TRP_TRT_FP_MODIFY_COMPILED;
pc->fp.read = TRP_TRT_FP_READ_COMPILED;
pc->fp.print = (struct trt_fp_print) {
.print_features_names = tro_print_features_names,
.print_keys = tro_print_keys
};
pc->max_line_length = max_line_length;
}
/**
* @brief Reset settings to browsing through the lysc tree.
* @param[in,out] pc resets to @ref TRP_troc functions.
* @param[in,out] tc resets to lysc browsing.
*/
static void
trm_reset_to_lysc_tree_ctx(struct trt_printer_ctx *pc, struct trt_tree_ctx *tc)
{
LY_ERR erc;
erc = tc->last_error;
trp_ext_free_node_override(&tc->plugin_ctx.node_overr, &tc->plugin_ctx.filtered);
trm_lysc_tree_ctx(tc->pmod->mod, pc->out, pc->max_line_length, pc, tc);
tc->last_error = erc;
}
/**
* @brief Reset settings to browsing through the lysp tree.
* @param[in,out] pc resets to @ref TRP_trop functions.
* @param[in,out] tc resets to lysp browsing.
*/
static void
trm_reset_to_lysp_tree_ctx(struct trt_printer_ctx *pc, struct trt_tree_ctx *tc)
{
LY_ERR erc;
erc = tc->last_error;
trp_ext_free_node_override(&tc->plugin_ctx.node_overr, &tc->plugin_ctx.filtered);
trm_lysp_tree_ctx(tc->pmod->mod, pc->out, pc->max_line_length, pc, tc);
tc->last_error = erc;
}
/**
* @brief If augment's target node is located on the current module.
* @param[in] pn is examined augment.
* @param[in] pmod is current module.
* @return 1 if nodeid refers to the local node, otherwise 0.
*/
static ly_bool
trm_nodeid_target_is_local(const struct lysp_node_augment *pn, const struct lysp_module *pmod)
{
const char *id, *prefix, *name;
size_t prefix_len, name_len;
const struct lys_module *mod;
ly_bool ret = 0;
if (pn == NULL) {
return ret;
}
id = pn->nodeid;
if (!id) {
return ret;
}
/* only absolute-schema-nodeid is taken into account */
assert(id[0] == '/');
++id;
ly_parse_nodeid(&id, &prefix, &prefix_len, &name, &name_len);
if (prefix) {
mod = ly_resolve_prefix(pmod->mod->ctx, prefix, prefix_len, LY_VALUE_SCHEMA, pmod);
ret = mod ? (mod->parsed == pmod) : 0;
} else {
ret = 1;
}
return ret;
}
/**
* @brief Printing section module, rpcs, notifications or yang-data.
*
* First node must be the first child of 'module',
* 'rpcs', 'notifications' or 'yang-data'.
*
* @param[in] ks is section representation.
* @param[in] pc contains mainly functions for printing.
* @param[in,out] tc is the tree context.
*/
static void
trm_print_section_as_family_tree(struct trt_keyword_stmt ks, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc)
{
assert(ks.section_name);
trp_print_keyword_stmt(ks, pc->max_line_length, pc->out);
if (!strcmp(ks.section_name, TRD_KEYWORD_MODULE) || !strcmp(ks.section_name, TRD_KEYWORD_SUBMODULE)) {
trb_print_family_tree(TRP_INIT_WRAPPER_TOP, pc, tc);
} else {
trb_print_family_tree(TRP_INIT_WRAPPER_BODY, pc, tc);
}
}
/**
* @brief Printing section augment or grouping.
*
* First node is 'augment' or 'grouping' itself.
*
* @param[in] ks is section representation.
* @param[in] pc contains mainly functions for printing.
* @param[in,out] tc is the tree context.
*/
static void
trm_print_section_as_subtree(struct trt_keyword_stmt ks, struct trt_printer_ctx *pc, struct trt_tree_ctx *tc)
{
assert(ks.section_name);
trp_print_keyword_stmt(ks, pc->max_line_length, pc->out);
trb_tree_ctx_set_child(tc);
trb_print_family_tree(TRP_INIT_WRAPPER_BODY, pc, tc);
}
/**
* @brief Print 'module' keyword, its name and all nodes.
* @param[in] pc contains mainly functions for printing.
* @param[in,out] tc is the tree context.
*/
static void
trm_print_module_section(struct trt_printer_ctx *pc, struct trt_tree_ctx *tc)
{
trm_print_section_as_family_tree(pc->fp.read.module_name(tc), pc, tc);
}
/**
* @brief For all augment sections: print 'augment' keyword,
* its target node and all nodes.
* @param[in] pc contains mainly functions for printing.
* @param[in,out] tc is the tree context.
*/
static void
trm_print_augmentations(struct trt_printer_ctx *pc, struct trt_tree_ctx *tc)
{
ly_bool once;
ly_bool origin_was_lysc_tree = 0;
struct trt_keyword_stmt ks;
if (tc->lysc_tree) {
origin_was_lysc_tree = 1;
trm_reset_to_lysp_tree_ctx(pc, tc);
}
once = 1;
for (ks = trop_modi_next_augment(tc); ks.section_name; ks = trop_modi_next_augment(tc)) {
if (origin_was_lysc_tree) {
/* if lysc tree is used, then only augments targeting
* another module are printed
*/
if (trm_nodeid_target_is_local((const struct lysp_node_augment *)tc->tpn, tc->pmod)) {
continue;
}
}
if (once) {
ly_print_(pc->out, "\n");
ly_print_(pc->out, "\n");
once = 0;
} else {
ly_print_(pc->out, "\n");
}
trm_print_section_as_subtree(ks, pc, tc);
}
if (origin_was_lysc_tree) {
trm_reset_to_lysc_tree_ctx(pc, tc);
}
}
/**
* @brief For rpcs section: print 'rpcs' keyword and all its nodes.
* @param[in] pc contains mainly functions for printing.
* @param[in,out] tc is the tree context.
*/
static void
trm_print_rpcs(struct trt_printer_ctx *pc, struct trt_tree_ctx *tc)
{
struct trt_keyword_stmt rpc;
rpc = tro_modi_get_rpcs(tc);
if (rpc.section_name) {
ly_print_(pc->out, "\n");
ly_print_(pc->out, "\n");
trm_print_section_as_family_tree(rpc, pc, tc);
}
}
/**
* @brief For notifications section: print 'notifications' keyword
* and all its nodes.
* @param[in] pc contains mainly functions for printing.
* @param[in,out] tc is the tree context.
*/
static void
trm_print_notifications(struct trt_printer_ctx *pc, struct trt_tree_ctx *tc)
{
struct trt_keyword_stmt notifs;
notifs = tro_modi_get_notifications(tc);
if (notifs.section_name) {
ly_print_(pc->out, "\n");
ly_print_(pc->out, "\n");
trm_print_section_as_family_tree(notifs, pc, tc);
}
}
/**
* @brief For all grouping sections: print 'grouping' keyword, its name
* and all nodes.
* @param[in] pc contains mainly functions for printing.
* @param[in,out] tc is the tree context.
*/
static void
trm_print_groupings(struct trt_printer_ctx *pc, struct trt_tree_ctx *tc)
{
ly_bool once;
struct trt_keyword_stmt ks;
if (tc->lysc_tree) {
return;
}
once = 1;
for (ks = trop_modi_next_grouping(tc); ks.section_name; ks = trop_modi_next_grouping(tc)) {
if (once) {
ly_print_(pc->out, "\n");
ly_print_(pc->out, "\n");
once = 0;
} else {
ly_print_(pc->out, "\n");
}
trm_print_section_as_subtree(ks, pc, tc);
}
}
/**
* @brief Print all sections defined in plugins.
*
* @param[in] pc contains mainly functions for printing.
* @param[in,out] tc is the tree context.
*/
static void
trm_print_plugin_ext(struct trt_printer_ctx *pc, struct trt_tree_ctx *tc)
{
LY_ERR rc;
ly_bool once;
LY_ARRAY_COUNT_TYPE i = 0, j;
struct trt_keyword_stmt ks, prev_ks = {0};
struct trt_printer_ctx pc_dupl;
struct trt_tree_ctx tc_dupl;
struct trt_node node;
uint32_t max_gap_before_type;
void *ext;
tc->section = TRD_SECT_PLUG_DATA;
tc_dupl = *tc;
pc_dupl = *pc;
once = 1;
while ((ext = trb_mod_ext_iter(tc, &i))) {
struct lyspr_tree_ctx plug_ctx = {0};
rc = tro_ext_printer_tree(tc->lysc_tree, ext, &plug_ctx);
LY_CHECK_ERR_GOTO(rc, tc->last_error = rc, end);
if (!plug_ctx.schemas) {
continue;
}
ks = tro_get_ext_section(tc, ext, &plug_ctx);
if (once || (prev_ks.section_name && strcmp(prev_ks.section_name, ks.section_name))) {
ly_print_(pc->out, "\n");
ly_print_(pc->out, "\n");
once = 0;
} else {
ly_print_(pc->out, "\n");
}
trp_print_keyword_stmt(ks, pc->max_line_length, pc->out);
max_gap_before_type = 0;
trb_ext_try_unified_indent(&plug_ctx, TRP_EMPTY_PARENT_CACHE, &max_gap_before_type, pc, tc);
LY_ARRAY_FOR(plug_ctx.schemas, j) {
trm_reset_tree_ctx_by_plugin(&plug_ctx, j, pc, tc);
node = TRP_EMPTY_NODE;
trb_print_subtree_nodes(&node, max_gap_before_type, TRP_INIT_WRAPPER_BODY, TRP_EMPTY_PARENT_CACHE, pc, tc);
}
*tc = tc_dupl;
trp_ext_free_plugin_ctx(&plug_ctx);
prev_ks = ks;
}
end:
*pc = pc_dupl;
return;
}
/**
* @brief Print sections module, augment, rpcs, notifications,
* grouping, yang-data.
* @param[in] pc contains mainly functions for printing.
* @param[in,out] tc is the tree context.
*/
static void
trm_print_sections(struct trt_printer_ctx *pc, struct trt_tree_ctx *tc)
{
trm_print_module_section(pc, tc);
trm_print_augmentations(pc, tc);
trm_print_rpcs(pc, tc);
trm_print_notifications(pc, tc);
trm_print_groupings(pc, tc);
trm_print_plugin_ext(pc, tc);
ly_print_(pc->out, "\n");
}
static LY_ERR
tree_print_check_error(struct ly_out_clb_arg *out, struct trt_tree_ctx *tc)
{
if (out->last_error) {
return out->last_error;
} else if (tc->last_error) {
return tc->last_error;
} else {
return LY_SUCCESS;
}
}
/**********************************************************************
* Definition of module interface
*********************************************************************/
LY_ERR
tree_print_module(struct ly_out *out, const struct lys_module *module, uint32_t UNUSED(options), size_t line_length)
{
struct trt_printer_ctx pc;
struct trt_tree_ctx tc;
struct ly_out *new_out;
LY_ERR erc;
struct ly_out_clb_arg clb_arg = TRP_INIT_LY_OUT_CLB_ARG(TRD_PRINT, out, 0, LY_SUCCESS);
LY_CHECK_ARG_RET3(module->ctx, out, module, module->parsed, LY_EINVAL);
if ((erc = ly_out_new_clb(&trp_ly_out_clb_func, &clb_arg, &new_out))) {
return erc;
}
line_length = line_length == 0 ? SIZE_MAX : line_length;
if ((module->ctx->flags & LY_CTX_SET_PRIV_PARSED) && module->compiled) {
trm_lysc_tree_ctx(module, new_out, line_length, &pc, &tc);
} else {
trm_lysp_tree_ctx(module, new_out, line_length, &pc, &tc);
}
trm_print_sections(&pc, &tc);
erc = tree_print_check_error(&clb_arg, &tc);
ly_out_free(new_out, NULL, 1);
return erc;
}
LY_ERR
tree_print_compiled_node(struct ly_out *out, const struct lysc_node *node, uint32_t options, size_t line_length)
{
struct trt_printer_ctx pc;
struct trt_tree_ctx tc;
struct ly_out *new_out;
struct trt_wrapper wr;
LY_ERR erc;
struct ly_out_clb_arg clb_arg = TRP_INIT_LY_OUT_CLB_ARG(TRD_PRINT, out, 0, LY_SUCCESS);
assert(out && node);
if (!(node->module->ctx->flags & LY_CTX_SET_PRIV_PARSED)) {
return LY_EINVAL;
}
if ((erc = ly_out_new_clb(&trp_ly_out_clb_func, &clb_arg, &new_out))) {
return erc;
}
line_length = line_length == 0 ? SIZE_MAX : line_length;
trm_lysc_tree_ctx(node->module, new_out, line_length, &pc, &tc);
trp_print_keyword_stmt(pc.fp.read.module_name(&tc), pc.max_line_length, pc.out);
trb_print_parents(node, NULL, &pc, &tc);
if (!(options & LYS_PRINT_NO_SUBSTMT)) {
tc.cn = lysc_node_child(node);
wr = trb_count_depth(NULL, tc.cn);
trb_print_family_tree(wr, &pc, &tc);
}
ly_print_(out, "\n");
erc = tree_print_check_error(&clb_arg, &tc);
ly_out_free(new_out, NULL, 1);
return erc;
}
LY_ERR
tree_print_parsed_submodule(struct ly_out *out, const struct lysp_submodule *submodp, uint32_t UNUSED(options),
size_t line_length)
{
struct trt_printer_ctx pc;
struct trt_tree_ctx tc;
struct ly_out *new_out;
LY_ERR erc;
struct ly_out_clb_arg clb_arg = TRP_INIT_LY_OUT_CLB_ARG(TRD_PRINT, out, 0, LY_SUCCESS);
assert(submodp);
LY_CHECK_ARG_RET(submodp->mod->ctx, out, LY_EINVAL);
if ((erc = ly_out_new_clb(&trp_ly_out_clb_func, &clb_arg, &new_out))) {
return erc;
}
line_length = line_length == 0 ? SIZE_MAX : line_length;
trm_lysp_tree_ctx(submodp->mod, new_out, line_length, &pc, &tc);
tc.pmod = (struct lysp_module *)submodp;
tc.tpn = submodp->data;
tc.pn = tc.tpn;
trm_print_sections(&pc, &tc);
erc = tree_print_check_error(&clb_arg, &tc);
ly_out_free(new_out, NULL, 1);
return erc;
}