| /** |
| * @file printer_lyb.c |
| * @author Michal Vasko <mvasko@cesnet.cz> |
| * @brief LYB printer for libyang data structure |
| * |
| * Copyright (c) 2020 CESNET, z.s.p.o. |
| * |
| * This source code is licensed under BSD 3-Clause License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * https://opensource.org/licenses/BSD-3-Clause |
| */ |
| |
| #include "lyb.h" |
| |
| #include <assert.h> |
| #include <stdio.h> |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/types.h> |
| |
| #include "common.h" |
| #include "compat.h" |
| #include "context.h" |
| #include "hash_table.h" |
| #include "log.h" |
| #include "parser_data.h" |
| #include "printer.h" |
| #include "printer_data.h" |
| #include "printer_internal.h" |
| #include "set.h" |
| #include "tree.h" |
| #include "tree_data_internal.h" |
| #include "tree_schema.h" |
| #include "tree_schema_internal.h" |
| |
| /** |
| * @brief Hash table equal callback for checking hash equality only. |
| */ |
| static uint8_t |
| lyb_hash_equal_cb(void *UNUSED(val1_p), void *UNUSED(val2_p), uint8_t UNUSED(mod), void *UNUSED(cb_data)) |
| { |
| /* for this purpose, if hash matches, the value does also, we do not want 2 values to have the same hash */ |
| return 1; |
| } |
| |
| /** |
| * @brief Hash table equal callback for checking value pointer equality only. |
| */ |
| static uint8_t |
| lyb_ptr_equal_cb(void *val1_p, void *val2_p, uint8_t UNUSED(mod), void *UNUSED(cb_data)) |
| { |
| struct lysc_node *val1 = *(struct lysc_node **)val1_p; |
| struct lysc_node *val2 = *(struct lysc_node **)val2_p; |
| |
| if (val1 == val2) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| /** |
| * @brief Check that sibling collision hash is safe to insert into hash table. |
| * |
| * @param[in] ht Hash table. |
| * @param[in] sibling Hashed sibling. |
| * @param[in] ht_col_id Sibling hash collision ID. |
| * @param[in] compare_col_id Last collision ID to compare with. |
| * @return LY_SUCCESS when the whole hash sequence does not collide, |
| * @return LY_EEXIST when the whole hash sequence sollides. |
| */ |
| static LY_ERR |
| lyb_hash_sequence_check(struct hash_table *ht, struct lysc_node *sibling, LYB_HASH ht_col_id, LYB_HASH compare_col_id) |
| { |
| struct lysc_node **col_node; |
| |
| /* get the first node inserted with last hash col ID ht_col_id */ |
| if (lyht_find(ht, &sibling, lyb_hash(sibling, ht_col_id), (void **)&col_node)) { |
| /* there is none. valid situation */ |
| return LY_SUCCESS; |
| } |
| |
| lyht_set_cb(ht, lyb_ptr_equal_cb); |
| do { |
| int64_t j; |
| for (j = (int64_t)compare_col_id; j > -1; --j) { |
| if (lyb_hash(sibling, j) != lyb_hash(*col_node, j)) { |
| /* one non-colliding hash */ |
| break; |
| } |
| } |
| if (j == -1) { |
| /* all whole hash sequences of nodes inserted with last hash col ID compare_col_id collide */ |
| lyht_set_cb(ht, lyb_hash_equal_cb); |
| return LY_EEXIST; |
| } |
| |
| /* get next node inserted with last hash col ID ht_col_id */ |
| } while (!lyht_find_next(ht, col_node, lyb_hash(*col_node, ht_col_id), (void **)&col_node)); |
| |
| lyht_set_cb(ht, lyb_hash_equal_cb); |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Hash all the siblings and add them also into a separate hash table. |
| * |
| * @param[in] sibling Any sibling in all the siblings on one level. |
| * @param[out] ht_p Created hash table. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyb_hash_siblings(struct lysc_node *sibling, struct hash_table **ht_p) |
| { |
| struct hash_table *ht; |
| const struct lysc_node *parent; |
| const struct lys_module *mod; |
| LYB_HASH i; |
| |
| ht = lyht_new(1, sizeof(struct lysc_node *), lyb_hash_equal_cb, NULL, 1); |
| LY_CHECK_ERR_RET(!ht, LOGMEM(sibling->module->ctx), LY_EMEM); |
| |
| parent = lysc_data_parent(sibling); |
| mod = sibling->module; |
| |
| sibling = NULL; |
| /* ignore features so that their state does not affect hashes */ |
| while ((sibling = (struct lysc_node *)lys_getnext(sibling, parent, mod->compiled, LYS_GETNEXT_NOSTATECHECK))) { |
| /* find the first non-colliding hash (or specifically non-colliding hash sequence) */ |
| for (i = 0; i < LYB_HASH_BITS; ++i) { |
| /* check that we are not colliding with nodes inserted with a lower collision ID than ours */ |
| int64_t j; |
| for (j = (int64_t)i - 1; j > -1; --j) { |
| if (lyb_hash_sequence_check(ht, sibling, (LYB_HASH)j, i)) { |
| break; |
| } |
| } |
| if (j > -1) { |
| /* some check failed, we must use a higher collision ID */ |
| continue; |
| } |
| |
| /* try to insert node with the current collision ID */ |
| if (!lyht_insert_with_resize_cb(ht, &sibling, lyb_hash(sibling, i), lyb_ptr_equal_cb, NULL)) { |
| /* success, no collision */ |
| break; |
| } |
| |
| /* make sure we really cannot insert it with this hash col ID (meaning the whole hash sequence is colliding) */ |
| if (i && !lyb_hash_sequence_check(ht, sibling, i, i)) { |
| /* it can be inserted after all, even though there is already a node with the same last collision ID */ |
| lyht_set_cb(ht, lyb_ptr_equal_cb); |
| if (lyht_insert(ht, &sibling, lyb_hash(sibling, i), NULL)) { |
| LOGINT(sibling->module->ctx); |
| lyht_set_cb(ht, lyb_hash_equal_cb); |
| lyht_free(ht); |
| return LY_EINT; |
| } |
| lyht_set_cb(ht, lyb_hash_equal_cb); |
| break; |
| } |
| /* there is still another colliding schema node with the same hash sequence, try higher collision ID */ |
| } |
| |
| if (i == LYB_HASH_BITS) { |
| /* wow */ |
| LOGINT(sibling->module->ctx); |
| lyht_free(ht); |
| return LY_EINT; |
| } |
| } |
| |
| /* change val equal callback so that the HT is usable for finding value hashes */ |
| lyht_set_cb(ht, lyb_ptr_equal_cb); |
| |
| *ht_p = ht; |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Find node hash in a hash table. |
| * |
| * @param[in] ht Hash table to search in. |
| * @param[in] node Node to find. |
| * @param[out] hash_p First non-colliding hash found. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyb_hash_find(struct hash_table *ht, struct lysc_node *node, LYB_HASH *hash_p) |
| { |
| LYB_HASH hash; |
| uint32_t i; |
| |
| for (i = 0; i < LYB_HASH_BITS; ++i) { |
| hash = lyb_hash(node, i); |
| if (!hash) { |
| LOGINT_RET(node->module->ctx); |
| } |
| |
| if (!lyht_find(ht, &node, hash, NULL)) { |
| /* success, no collision */ |
| break; |
| } |
| } |
| /* cannot happen, we already calculated the hash */ |
| if (i == LYB_HASH_BITS) { |
| LOGINT_RET(node->module->ctx); |
| } |
| |
| *hash_p = hash; |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Write LYB data fully handling the metadata. |
| * |
| * @param[in] out Out structure. |
| * @param[in] buf Source buffer. |
| * @param[in] count Number of bytes to write. |
| * @param[in] lybctx LYB context. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyb_write(struct ly_out *out, const uint8_t *buf, size_t count, struct lylyb_ctx *lybctx) |
| { |
| LY_ARRAY_COUNT_TYPE u; |
| struct lyd_lyb_subtree *full, *iter; |
| size_t to_write; |
| uint8_t meta_buf[LYB_META_BYTES]; |
| |
| while (1) { |
| /* check for full data chunks */ |
| to_write = count; |
| full = NULL; |
| LY_ARRAY_FOR(lybctx->subtrees, u) { |
| /* we want the innermost chunks resolved first, so replace previous full chunks */ |
| if (lybctx->subtrees[u].written + to_write >= LYB_SIZE_MAX) { |
| /* full chunk, do not write more than allowed */ |
| to_write = LYB_SIZE_MAX - lybctx->subtrees[u].written; |
| full = &lybctx->subtrees[u]; |
| } |
| } |
| |
| if (!full && !count) { |
| break; |
| } |
| |
| /* we are actually writing some data, not just finishing another chunk */ |
| if (to_write) { |
| LY_CHECK_RET(ly_write_(out, (char *)buf, to_write)); |
| |
| LY_ARRAY_FOR(lybctx->subtrees, u) { |
| /* increase all written counters */ |
| lybctx->subtrees[u].written += to_write; |
| assert(lybctx->subtrees[u].written <= LYB_SIZE_MAX); |
| } |
| /* decrease count/buf */ |
| count -= to_write; |
| buf += to_write; |
| } |
| |
| if (full) { |
| /* write the meta information (inner chunk count and chunk size) */ |
| meta_buf[0] = full->written & 0xFF; |
| meta_buf[1] = full->inner_chunks & 0xFF; |
| LY_CHECK_RET(ly_write_skipped(out, full->position, (char *)meta_buf, LYB_META_BYTES)); |
| |
| /* zero written and inner chunks */ |
| full->written = 0; |
| full->inner_chunks = 0; |
| |
| /* skip space for another chunk size */ |
| LY_CHECK_RET(ly_write_skip(out, LYB_META_BYTES, &full->position)); |
| |
| /* increase inner chunk count */ |
| for (iter = &lybctx->subtrees[0]; iter != full; ++iter) { |
| if (iter->inner_chunks == LYB_INCHUNK_MAX) { |
| LOGINT(lybctx->ctx); |
| return LY_EINT; |
| } |
| ++iter->inner_chunks; |
| } |
| } |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Stop the current subtree - write its final metadata. |
| * |
| * @param[in] out Out structure. |
| * @param[in] lybctx LYB context. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyb_write_stop_subtree(struct ly_out *out, struct lylyb_ctx *lybctx) |
| { |
| uint8_t meta_buf[LYB_META_BYTES]; |
| |
| /* write the meta chunk information */ |
| meta_buf[0] = LYB_LAST_SUBTREE(lybctx).written & 0xFF; |
| meta_buf[1] = LYB_LAST_SUBTREE(lybctx).inner_chunks & 0xFF; |
| LY_CHECK_RET(ly_write_skipped(out, LYB_LAST_SUBTREE(lybctx).position, (char *)&meta_buf, LYB_META_BYTES)); |
| |
| LY_ARRAY_DECREMENT(lybctx->subtrees); |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Start a new subtree - skip bytes for its metadata. |
| * |
| * @param[in] out Out structure. |
| * @param[in] lybctx LYB context. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyb_write_start_subtree(struct ly_out *out, struct lylyb_ctx *lybctx) |
| { |
| LY_ARRAY_COUNT_TYPE u; |
| |
| if (!lybctx->subtrees) { |
| assert(lybctx->subtree_size == 0); |
| u = 0; |
| } else { |
| u = LY_ARRAY_COUNT(lybctx->subtrees); |
| } |
| if (u == lybctx->subtree_size) { |
| LY_ARRAY_CREATE_RET(lybctx->ctx, lybctx->subtrees, u + LYB_SUBTREE_STEP, LY_EMEM); |
| lybctx->subtree_size = u + LYB_SUBTREE_STEP; |
| } |
| |
| LY_ARRAY_INCREMENT(lybctx->subtrees); |
| LYB_LAST_SUBTREE(lybctx).written = 0; |
| LYB_LAST_SUBTREE(lybctx).inner_chunks = 0; |
| |
| /* another inner chunk */ |
| for (u = 0; u < LY_ARRAY_COUNT(lybctx->subtrees) - 1; ++u) { |
| if (lybctx->subtrees[u].inner_chunks == LYB_INCHUNK_MAX) { |
| LOGINT(lybctx->ctx); |
| return LY_EINT; |
| } |
| ++lybctx->subtrees[u].inner_chunks; |
| } |
| |
| LY_CHECK_RET(ly_write_skip(out, LYB_META_BYTES, &LYB_LAST_SUBTREE(lybctx).position)); |
| |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Write a number. |
| * |
| * @param[in] num Number to write. |
| * @param[in] bytes Actual accessible bytes of @p num. |
| * @param[in] out Out structure. |
| * @param[in] lybctx LYB context. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyb_write_number(uint64_t num, size_t bytes, struct ly_out *out, struct lylyb_ctx *lybctx) |
| { |
| /* correct byte order */ |
| num = htole64(num); |
| |
| return lyb_write(out, (uint8_t *)&num, bytes, lybctx); |
| } |
| |
| /** |
| * @brief Write a string. |
| * |
| * @param[in] str String to write. |
| * @param[in] str_len Length of @p str. |
| * @param[in] with_length Whether to precede the string with its length. |
| * @param[in] out Out structure. |
| * @param[in] lybctx LYB context. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyb_write_string(const char *str, size_t str_len, uint8_t with_length, struct ly_out *out, struct lylyb_ctx *lybctx) |
| { |
| if (!str) { |
| str = ""; |
| LY_CHECK_ERR_RET(str_len, LOGINT(lybctx->ctx), LY_EINT); |
| } |
| if (!str_len) { |
| str_len = strlen(str); |
| } |
| |
| if (with_length) { |
| /* print length on 2 bytes */ |
| if (str_len > UINT16_MAX) { |
| LOGINT(lybctx->ctx); |
| return LY_EINT; |
| } |
| LY_CHECK_RET(lyb_write_number(str_len, 2, out, lybctx)); |
| } |
| |
| LY_CHECK_RET(lyb_write(out, (const uint8_t *)str, str_len, lybctx)); |
| |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Print YANG module info. |
| * |
| * @param[in] out Out structure. |
| * @param[in] mod Module to print. |
| * @param[in] lybctx LYB context. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyb_print_model(struct ly_out *out, const struct lys_module *mod, struct lylyb_ctx *lybctx) |
| { |
| uint16_t revision; |
| |
| /* model name length and model name */ |
| if (mod) { |
| LY_CHECK_RET(lyb_write_string(mod->name, 0, 1, out, lybctx)); |
| } else { |
| LY_CHECK_RET(lyb_write_string("", 0, 1, out, lybctx)); |
| } |
| |
| /* model revision as XXXX XXXX XXXX XXXX (2B) (year is offset from 2000) |
| * YYYY YYYM MMMD DDDD */ |
| revision = 0; |
| if (mod && mod->revision) { |
| int r = atoi(mod->revision); |
| r -= 2000; |
| r <<= 9; |
| |
| revision |= r; |
| |
| r = atoi(mod->revision + 5); |
| r <<= 5; |
| |
| revision |= r; |
| |
| r = atoi(mod->revision + 8); |
| |
| revision |= r; |
| } |
| LY_CHECK_RET(lyb_write_number(revision, sizeof revision, out, lybctx)); |
| |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Print all used YANG modules. |
| * |
| * @param[in] out Out structure. |
| * @param[in] root Data root. |
| * @param[in] lybctx LYB context. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyb_print_data_models(struct ly_out *out, const struct lyd_node *root, struct lylyb_ctx *lybctx) |
| { |
| struct ly_set *set; |
| LY_ARRAY_COUNT_TYPE u; |
| LY_ERR ret = LY_SUCCESS; |
| struct lys_module *mod; |
| const struct lyd_node *node; |
| uint32_t i; |
| |
| LY_CHECK_RET(ly_set_new(&set)); |
| |
| /* collect all data node modules */ |
| LY_LIST_FOR(root, node) { |
| if (!node->schema) { |
| continue; |
| } |
| |
| mod = node->schema->module; |
| ret = ly_set_add(set, mod, 0, NULL); |
| LY_CHECK_GOTO(ret, cleanup); |
| |
| /* add also their modules deviating or augmenting them */ |
| LY_ARRAY_FOR(mod->compiled->deviated_by, u) { |
| ret = ly_set_add(set, mod->compiled->deviated_by[u], 0, NULL); |
| LY_CHECK_GOTO(ret, cleanup); |
| } |
| LY_ARRAY_FOR(mod->compiled->augmented_by, u) { |
| ret = ly_set_add(set, mod->compiled->augmented_by[u], 0, NULL); |
| LY_CHECK_GOTO(ret, cleanup); |
| } |
| } |
| |
| /* now write module count on 2 bytes */ |
| LY_CHECK_GOTO(ret = lyb_write_number(set->count, 2, out, lybctx), cleanup); |
| |
| /* and all the used models */ |
| for (i = 0; i < set->count; ++i) { |
| LY_CHECK_GOTO(ret = lyb_print_model(out, set->objs[i], lybctx), cleanup); |
| } |
| |
| cleanup: |
| ly_set_free(set, NULL); |
| return ret; |
| } |
| |
| /** |
| * @brief Print LYB magic number. |
| * |
| * @param[in] out Out structure. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyb_print_magic_number(struct ly_out *out) |
| { |
| uint32_t magic_number; |
| |
| /* 'l', 'y', 'b' - 0x6c7962 */ |
| ((char *)&magic_number)[0] = 'l'; |
| ((char *)&magic_number)[1] = 'y'; |
| ((char *)&magic_number)[2] = 'b'; |
| |
| LY_CHECK_RET(ly_write_(out, (char *)&magic_number, 3)); |
| |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Print LYB header. |
| * |
| * @param[in] out Out structure. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyb_print_header(struct ly_out *out) |
| { |
| uint8_t byte = 0; |
| |
| /* version, future flags */ |
| byte |= LYB_VERSION_NUM; |
| |
| LY_CHECK_RET(ly_write_(out, (char *)&byte, 1)); |
| |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Print opaque prefixes. |
| * |
| * @param[in] out Out structure. |
| * @param[in] prefs Prefixes to print. |
| * @param[in] lybctx LYB context. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyb_print_opaq_prefixes(struct ly_out *out, const struct ly_prefix *prefs, struct lylyb_ctx *lybctx) |
| { |
| uint8_t count; |
| LY_ARRAY_COUNT_TYPE u; |
| |
| if (prefs && (LY_ARRAY_COUNT(prefs) > UINT8_MAX)) { |
| LOGERR(lybctx->ctx, LY_EINT, "Maximum supported number of prefixes is %u.", UINT8_MAX); |
| return LY_EINT; |
| } |
| |
| count = prefs ? LY_ARRAY_COUNT(prefs) : 0; |
| |
| /* write number of prefixes on 1 byte */ |
| LY_CHECK_RET(lyb_write(out, &count, 1, lybctx)); |
| |
| /* write all the prefixes */ |
| LY_ARRAY_FOR(prefs, u) { |
| /* prefix */ |
| LY_CHECK_RET(lyb_write_string(prefs[u].id, 0, 1, out, lybctx)); |
| |
| /* namespace */ |
| LY_CHECK_RET(lyb_write_string(prefs[u].module_name, 0, 1, out, lybctx)); |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Print opaque node. |
| * |
| * @param[in] opaq Node to print. |
| * @param[in] out Out structure. |
| * @param[in] lybctx LYB context. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyb_print_opaq(struct lyd_node_opaq *opaq, struct ly_out *out, struct lylyb_ctx *lybctx) |
| { |
| /* prefix */ |
| LY_CHECK_RET(lyb_write_string(opaq->prefix.id, 0, 1, out, lybctx)); |
| |
| /* module reference */ |
| LY_CHECK_RET(lyb_write_string(opaq->prefix.module_name, 0, 1, out, lybctx)); |
| |
| /* name */ |
| LY_CHECK_RET(lyb_write_string(opaq->name, 0, 1, out, lybctx)); |
| |
| /* value prefixes */ |
| LY_CHECK_RET(lyb_print_opaq_prefixes(out, opaq->val_prefs, lybctx)); |
| |
| /* format */ |
| LY_CHECK_RET(lyb_write_number(opaq->format, 1, out, lybctx)); |
| |
| /* value */ |
| LY_CHECK_RET(lyb_write_string(opaq->value, 0, 0, out, lybctx)); |
| |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Print anydata node. |
| * |
| * @param[in] anydata Node to print. |
| * @param[in] out Out structure. |
| * @param[in] lybctx LYB context. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyb_print_anydata(struct lyd_node_any *anydata, struct ly_out *out, struct lylyb_ctx *lybctx) |
| { |
| LY_ERR ret = LY_SUCCESS; |
| LYD_ANYDATA_VALUETYPE value_type; |
| int len; |
| char *buf = NULL; |
| const char *str; |
| struct ly_out *out2 = NULL; |
| |
| if (anydata->value_type == LYD_ANYDATA_DATATREE) { |
| /* will be printed as a nested LYB data tree */ |
| value_type = LYD_ANYDATA_LYB; |
| } else { |
| value_type = anydata->value_type; |
| } |
| |
| /* first byte is type */ |
| LY_CHECK_GOTO(ret = lyb_write(out, (uint8_t *)&value_type, sizeof value_type, lybctx), cleanup); |
| |
| if (anydata->value_type == LYD_ANYDATA_DATATREE) { |
| /* print LYB data tree to memory */ |
| LY_CHECK_GOTO(ret = ly_out_new_memory(&buf, 0, &out2), cleanup); |
| LY_CHECK_GOTO(ret = lyb_print_data(out2, anydata->value.tree, LYD_PRINT_WITHSIBLINGS), cleanup); |
| |
| len = lyd_lyb_data_length(buf); |
| assert(len != -1); |
| str = buf; |
| } else if (anydata->value_type == LYD_ANYDATA_LYB) { |
| len = lyd_lyb_data_length(anydata->value.mem); |
| assert(len != -1); |
| str = anydata->value.mem; |
| } else { |
| len = strlen(anydata->value.str); |
| str = anydata->value.str; |
| } |
| |
| /* followed by the content */ |
| LY_CHECK_GOTO(ret = lyb_write_string(str, (size_t)len, 0, out, lybctx), cleanup); |
| |
| cleanup: |
| ly_out_free(out2, NULL, 1); |
| return ret; |
| } |
| |
| /** |
| * @brief Print term node. |
| * |
| * @param[in] term Node to print. |
| * @param[in] out Out structure. |
| * @param[in] lybctx LYB context. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyb_print_term(struct lyd_node_term *term, struct ly_out *out, struct lylyb_ctx *lybctx) |
| { |
| /* print the value */ |
| return lyb_write_string(LYD_CANON_VALUE(term), 0, 0, out, lybctx); |
| } |
| |
| /** |
| * @brief Print YANG node metadata. |
| * |
| * @param[in] out Out structure. |
| * @param[in] node Data node whose metadata to print. |
| * @param[in] lybctx LYB context. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyb_print_metadata(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx) |
| { |
| uint8_t count = 0; |
| const struct lys_module *wd_mod = NULL; |
| struct lyd_meta *iter; |
| |
| /* with-defaults */ |
| if (node->schema->nodetype & LYD_NODE_TERM) { |
| if (((node->flags & LYD_DEFAULT) && (lybctx->print_options & (LYD_PRINT_WD_ALL_TAG | LYD_PRINT_WD_IMPL_TAG))) || |
| ((lybctx->print_options & LYD_PRINT_WD_ALL_TAG) && ly_is_default(node))) { |
| /* we have implicit OR explicit default node, print attribute only if context include with-defaults schema */ |
| wd_mod = ly_ctx_get_module_latest(node->schema->module->ctx, "ietf-netconf-with-defaults"); |
| } |
| } |
| |
| /* count metadata */ |
| if (wd_mod) { |
| ++count; |
| } |
| for (iter = node->meta; iter; iter = iter->next) { |
| if (count == UINT8_MAX) { |
| LOGERR(lybctx->lybctx->ctx, LY_EINT, "Maximum supported number of data node metadata is %u.", UINT8_MAX); |
| return LY_EINT; |
| } |
| ++count; |
| } |
| |
| /* write number of metadata on 1 byte */ |
| LY_CHECK_RET(lyb_write(out, &count, 1, lybctx->lybctx)); |
| |
| if (wd_mod) { |
| /* write the "default" metadata */ |
| LY_CHECK_RET(lyb_write_start_subtree(out, lybctx->lybctx)); |
| LY_CHECK_RET(lyb_print_model(out, wd_mod, lybctx->lybctx)); |
| LY_CHECK_RET(lyb_write_string("default", 0, 1, out, lybctx->lybctx)); |
| LY_CHECK_RET(lyb_write_string("true", 0, 0, out, lybctx->lybctx)); |
| LY_CHECK_RET(lyb_write_stop_subtree(out, lybctx->lybctx)); |
| } |
| |
| /* write all the node metadata */ |
| LY_LIST_FOR(node->meta, iter) { |
| /* each metadata is a subtree */ |
| LY_CHECK_RET(lyb_write_start_subtree(out, lybctx->lybctx)); |
| |
| /* model */ |
| LY_CHECK_RET(lyb_print_model(out, iter->annotation->module, lybctx->lybctx)); |
| |
| /* annotation name with length */ |
| LY_CHECK_RET(lyb_write_string(iter->name, 0, 1, out, lybctx->lybctx)); |
| |
| /* metadata value */ |
| LY_CHECK_RET(lyb_write_string(iter->value.canonical, 0, 0, out, lybctx->lybctx)); |
| |
| /* finish metadata subtree */ |
| LY_CHECK_RET(lyb_write_stop_subtree(out, lybctx->lybctx)); |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Print opaque node attributes. |
| * |
| * @param[in] out Out structure. |
| * @param[in] node Opaque node whose attributes to print. |
| * @param[in] lybctx LYB context. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyb_print_attributes(struct ly_out *out, const struct lyd_node_opaq *node, struct lylyb_ctx *lybctx) |
| { |
| uint8_t count = 0; |
| struct lyd_attr *iter; |
| |
| for (iter = node->attr; iter; iter = iter->next) { |
| if (count == UINT8_MAX) { |
| LOGERR(lybctx->ctx, LY_EINT, "Maximum supported number of data node attributes is %u.", UINT8_MAX); |
| return LY_EINT; |
| } |
| ++count; |
| } |
| |
| /* write number of attributes on 1 byte */ |
| LY_CHECK_RET(lyb_write(out, &count, 1, lybctx)); |
| |
| /* write all the attributes */ |
| LY_LIST_FOR(node->attr, iter) { |
| /* each attribute is a subtree */ |
| LY_CHECK_RET(lyb_write_start_subtree(out, lybctx)); |
| |
| /* prefix */ |
| LY_CHECK_RET(lyb_write_string(iter->prefix.id, 0, 1, out, lybctx)); |
| |
| /* namespace */ |
| LY_CHECK_RET(lyb_write_string(iter->prefix.module_name, 0, 1, out, lybctx)); |
| |
| /* name */ |
| LY_CHECK_RET(lyb_write_string(iter->name, 0, 1, out, lybctx)); |
| |
| /* value prefixes */ |
| LY_CHECK_RET(lyb_print_opaq_prefixes(out, iter->val_prefs, lybctx)); |
| |
| /* format */ |
| LY_CHECK_RET(lyb_write_number(iter->format, 1, out, lybctx)); |
| |
| /* value */ |
| LY_CHECK_RET(lyb_write_string(iter->value, 0, 0, out, lybctx)); |
| |
| /* finish attribute subtree */ |
| LY_CHECK_RET(lyb_write_stop_subtree(out, lybctx)); |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Print schema node hash. |
| * |
| * @param[in] out Out structure. |
| * @param[in] schema Schema node whose hash to print. |
| * @param[in,out] sibling_ht Cached hash table for these siblings, created if NULL. |
| * @param[in] lybctx LYB context. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyb_print_schema_hash(struct ly_out *out, struct lysc_node *schema, struct hash_table **sibling_ht, struct lylyb_ctx *lybctx) |
| { |
| LY_ARRAY_COUNT_TYPE u; |
| uint32_t i; |
| LYB_HASH hash; |
| struct lyd_lyb_sib_ht *sib_ht; |
| struct lysc_node *first_sibling; |
| |
| if (!schema) { |
| /* opaque node, write empty hash */ |
| hash = 0; |
| LY_CHECK_RET(lyb_write(out, &hash, sizeof hash, lybctx)); |
| return LY_SUCCESS; |
| } |
| |
| /* create whole sibling HT if not already created and saved */ |
| if (!*sibling_ht) { |
| /* get first schema data sibling (or input/output) */ |
| first_sibling = (struct lysc_node *)lys_getnext(NULL, lysc_data_parent(schema), schema->module->compiled, 0); |
| LY_ARRAY_FOR(lybctx->sib_hts, u) { |
| if (lybctx->sib_hts[u].first_sibling == first_sibling) { |
| /* we have already created a hash table for these siblings */ |
| *sibling_ht = lybctx->sib_hts[u].ht; |
| break; |
| } |
| } |
| |
| if (!*sibling_ht) { |
| /* we must create sibling hash table */ |
| LY_CHECK_RET(lyb_hash_siblings(first_sibling, sibling_ht)); |
| |
| /* and save it */ |
| LY_ARRAY_NEW_RET(lybctx->ctx, lybctx->sib_hts, sib_ht, LY_EMEM); |
| |
| sib_ht->first_sibling = first_sibling; |
| sib_ht->ht = *sibling_ht; |
| } |
| } |
| |
| /* get our hash */ |
| LY_CHECK_RET(lyb_hash_find(*sibling_ht, schema, &hash)); |
| |
| /* write the hash */ |
| LY_CHECK_RET(lyb_write(out, &hash, sizeof hash, lybctx)); |
| |
| if (hash & LYB_HASH_COLLISION_ID) { |
| /* no collision for this hash, we are done */ |
| return LY_SUCCESS; |
| } |
| |
| /* written hash was a collision, write also all the preceding hashes */ |
| for (i = 0; !(hash & (LYB_HASH_COLLISION_ID >> i)); ++i) {} |
| |
| for ( ; i; --i) { |
| hash = lyb_hash(schema, i - 1); |
| if (!hash) { |
| return LY_EINT; |
| } |
| assert(hash & (LYB_HASH_COLLISION_ID >> (i - 1))); |
| |
| LY_CHECK_RET(lyb_write(out, &hash, sizeof hash, lybctx)); |
| } |
| |
| return LY_SUCCESS; |
| } |
| |
| /** |
| * @brief Print data subtree. |
| * |
| * @param[in] out Out structure. |
| * @param[in] node Root node of the subtree to print. |
| * @param[in,out] sibling_ht Cached hash table for these data siblings, created if NULL. |
| * @param[in] lybctx LYB context. |
| * @return LY_ERR value. |
| */ |
| static LY_ERR |
| lyb_print_subtree(struct ly_out *out, const struct lyd_node *node, struct hash_table **sibling_ht, struct lyd_lyb_ctx *lybctx) |
| { |
| struct hash_table *child_ht = NULL; |
| |
| /* register a new subtree */ |
| LY_CHECK_RET(lyb_write_start_subtree(out, lybctx->lybctx)); |
| |
| /* write model info first */ |
| if (!node->schema && !((struct lyd_node_opaq *)node)->parent) { |
| LY_CHECK_RET(lyb_print_model(out, NULL, lybctx->lybctx)); |
| } else if (node->schema && !lysc_data_parent(node->schema)) { |
| LY_CHECK_RET(lyb_print_model(out, node->schema->module, lybctx->lybctx)); |
| } |
| |
| /* write schema hash */ |
| LY_CHECK_RET(lyb_print_schema_hash(out, (struct lysc_node *)node->schema, sibling_ht, lybctx->lybctx)); |
| |
| /* write any metadata/attributes */ |
| if (node->schema) { |
| LY_CHECK_RET(lyb_print_metadata(out, node, lybctx)); |
| } else { |
| LY_CHECK_RET(lyb_print_attributes(out, (struct lyd_node_opaq *)node, lybctx->lybctx)); |
| } |
| |
| /* write node content */ |
| if (!node->schema) { |
| LY_CHECK_RET(lyb_print_opaq((struct lyd_node_opaq *)node, out, lybctx->lybctx)); |
| } else if (node->schema->nodetype & LYD_NODE_INNER) { |
| /* nothing to write */ |
| } else if (node->schema->nodetype & LYD_NODE_TERM) { |
| LY_CHECK_RET(lyb_print_term((struct lyd_node_term *)node, out, lybctx->lybctx)); |
| } else if (node->schema->nodetype & LYD_NODE_ANY) { |
| LY_CHECK_RET(lyb_print_anydata((struct lyd_node_any *)node, out, lybctx->lybctx)); |
| } else { |
| LOGINT_RET(lybctx->lybctx->ctx); |
| } |
| |
| /* recursively write all the descendants */ |
| LY_LIST_FOR(lyd_node_children(node, 0), node) { |
| LY_CHECK_RET(lyb_print_subtree(out, node, &child_ht, lybctx)); |
| } |
| |
| /* finish this subtree */ |
| LY_CHECK_RET(lyb_write_stop_subtree(out, lybctx->lybctx)); |
| |
| return LY_SUCCESS; |
| } |
| |
| LY_ERR |
| lyb_print_data(struct ly_out *out, const struct lyd_node *root, uint32_t options) |
| { |
| LY_ERR ret = LY_SUCCESS; |
| uint8_t zero = 0; |
| struct hash_table *top_sibling_ht = NULL; |
| const struct lys_module *prev_mod = NULL; |
| struct lyd_lyb_ctx *lybctx; |
| const struct ly_ctx *ctx = root ? LYD_CTX(root) : NULL; |
| |
| lybctx = calloc(1, sizeof *lybctx); |
| LY_CHECK_ERR_RET(!lybctx, LOGMEM(ctx), LY_EMEM); |
| lybctx->lybctx = calloc(1, sizeof *lybctx->lybctx); |
| LY_CHECK_ERR_RET(!lybctx, LOGMEM(ctx), LY_EMEM); |
| |
| lybctx->print_options = options; |
| if (root) { |
| lybctx->lybctx->ctx = ctx; |
| |
| if (root->schema && lysc_data_parent(root->schema)) { |
| LOGERR(lybctx->lybctx->ctx, LY_EINVAL, "LYB printer supports only printing top-level nodes."); |
| ret = LY_EINVAL; |
| goto cleanup; |
| } |
| } |
| |
| /* LYB magic number */ |
| LY_CHECK_GOTO(ret = lyb_print_magic_number(out), cleanup); |
| |
| /* LYB header */ |
| LY_CHECK_GOTO(ret = lyb_print_header(out), cleanup); |
| |
| /* all used models */ |
| LY_CHECK_GOTO(ret = lyb_print_data_models(out, root, lybctx->lybctx), cleanup); |
| |
| LY_LIST_FOR(root, root) { |
| /* do not reuse sibling hash tables from different modules */ |
| if (!root->schema || (root->schema->module != prev_mod)) { |
| top_sibling_ht = NULL; |
| prev_mod = root->schema ? root->schema->module : NULL; |
| } |
| |
| LY_CHECK_GOTO(ret = lyb_print_subtree(out, root, &top_sibling_ht, lybctx), cleanup); |
| |
| if (!(options & LYD_PRINT_WITHSIBLINGS)) { |
| break; |
| } |
| } |
| |
| /* ending zero byte */ |
| LY_CHECK_GOTO(ret = lyb_write(out, &zero, sizeof zero, lybctx->lybctx), cleanup); |
| |
| cleanup: |
| lyd_lyb_ctx_free((struct lyd_ctx *)lybctx); |
| return ret; |
| } |