blob: c1d4417e6f3cda6fa9d735da4dfc4d8e3877fde9 [file] [log] [blame]
/*
* Copyright (C) 2018 CESNET, https://photonics.cesnet.cz/
* Copyright (C) 2018 FIT CVUT, https://fit.cvut.cz/
*
* Written by Václav Kubernát <kubervac@fit.cvut.cz>
*
*/
#include <boost/algorithm/string/predicate.hpp>
#include "static_schema.hpp"
#include "utils.hpp"
StaticSchema::StaticSchema()
{
m_nodes.emplace("/", std::unordered_map<std::string, NodeInfo>());
}
const std::unordered_map<std::string, NodeInfo>& StaticSchema::children(const std::string& name) const
{
return m_nodes.at(name);
}
bool StaticSchema::isModule(const std::string& name) const
{
return m_modules.find(name) != m_modules.end();
}
void StaticSchema::addContainer(const std::string& location, const std::string& name, yang::ContainerTraits isPresence)
{
m_nodes.at(location).emplace(name, NodeInfo{yang::container{isPresence}, yang::AccessType::Writable});
//create a new set of children for the new node
std::string key = joinPaths(location, name);
m_nodes.emplace(key, std::unordered_map<std::string, NodeInfo>());
}
void StaticSchema::addRpc(const std::string& location, const std::string& name)
{
m_nodes.at(location).emplace(name, NodeInfo{yang::rpc{}, yang::AccessType::Writable});
//create a new set of children for the new node
std::string key = joinPaths(location, name);
m_nodes.emplace(key, std::unordered_map<std::string, NodeInfo>());
m_nodes.emplace(joinPaths(key, "input"), std::unordered_map<std::string, NodeInfo>());
m_nodes.emplace(joinPaths(key, "output"), std::unordered_map<std::string, NodeInfo>());
}
void StaticSchema::addAction(const std::string& location, const std::string& name)
{
m_nodes.at(location).emplace(name, NodeInfo{yang::action{}, yang::AccessType::Writable});
//create a new set of children for the new node
std::string key = joinPaths(location, name);
m_nodes.emplace(key, std::unordered_map<std::string, NodeInfo>());
}
bool StaticSchema::listHasKey(const schemaPath_& listPath, const std::string& key) const
{
return listKeys(listPath).count(key);
}
std::string lastNodeOfSchemaPath(const std::string& path)
{
std::string res = path;
if (auto pos = res.find_last_of('/'); pos != res.npos) {
res.erase(0, pos + 1);
}
return res;
}
const std::set<std::string> StaticSchema::listKeys(const schemaPath_& listPath) const
{
auto listPathString = pathToSchemaString(listPath, Prefixes::Always);
const auto& child = children(stripLastNodeFromPath(listPathString)).at(lastNodeOfSchemaPath(listPathString));
const auto& list = std::get<yang::list>(child.m_nodeType);
return list.m_keys;
}
void StaticSchema::addList(const std::string& location, const std::string& name, const std::set<std::string>& keys)
{
m_nodes.at(location).emplace(name, NodeInfo{yang::list{keys}, yang::AccessType::Writable});
std::string key = joinPaths(location, name);
m_nodes.emplace(key, std::unordered_map<std::string, NodeInfo>());
}
std::set<identityRef_> StaticSchema::validIdentities(std::string_view module, std::string_view value)
{
std::set<identityRef_> identities;
getIdentSet(identityRef_{std::string{module}, std::string{value}}, identities);
return identities;
}
void StaticSchema::addLeaf(const std::string& location, const std::string& name, const yang::LeafDataType& type, const yang::AccessType accessType)
{
m_nodes.at(location).emplace(name, NodeInfo{yang::leaf{yang::TypeInfo{type, std::nullopt}}, accessType});
std::string key = joinPaths(location, name);
m_nodes.emplace(key, std::unordered_map<std::string, NodeInfo>());
}
void StaticSchema::addLeafList(const std::string& location, const std::string& name, const yang::LeafDataType& type)
{
m_nodes.at(location).emplace(name, NodeInfo{yang::leaflist{yang::TypeInfo{type, std::nullopt}}, yang::AccessType::Writable});
std::string key = joinPaths(location, name);
m_nodes.emplace(key, std::unordered_map<std::string, NodeInfo>());
}
void StaticSchema::addModule(const std::string& name)
{
m_modules.emplace(name);
}
void StaticSchema::addIdentity(const std::optional<identityRef_>& base, const identityRef_& name)
{
if (base) {
m_identities.at(base.value()).emplace(name);
}
m_identities.emplace(name, std::set<identityRef_>());
}
void StaticSchema::getIdentSet(const identityRef_& ident, std::set<identityRef_>& res) const
{
res.insert(ident);
auto derivedIdentities = m_identities.at(ident);
for (auto it : derivedIdentities) {
getIdentSet(it, res);
}
}
yang::TypeInfo StaticSchema::leafType(const schemaPath_& location, const ModuleNodePair& node) const
{
std::string locationString = pathToSchemaString(location, Prefixes::Always);
auto nodeType = children(locationString).at(fullNodeName(location, node)).m_nodeType;
if (std::holds_alternative<yang::leaf>(nodeType)) {
return std::get<yang::leaf>(nodeType).m_type;
}
if (std::holds_alternative<yang::leaflist>(nodeType)) {
return std::get<yang::leaflist>(nodeType).m_type;
}
throw std::logic_error("StaticSchema::leafType: Path is not a leaf or a leaflist");
}
yang::TypeInfo StaticSchema::leafType(const std::string& path) const
{
auto locationString = stripLastNodeFromPath(path);
auto node = lastNodeOfSchemaPath(path);
return std::get<yang::leaf>(children(locationString).at(node).m_nodeType).m_type;
}
std::set<ModuleNodePair> StaticSchema::availableNodes(const boost::variant<dataPath_, schemaPath_, module_>& path, const Recursion recursion) const
{
if (recursion == Recursion::Recursive) {
throw std::logic_error("Recursive StaticSchema::availableNodes is not implemented. It shouldn't be used in tests.");
}
std::set<ModuleNodePair> res;
if (path.type() == typeid(module_)) {
auto topLevelNodes = m_nodes.at("");
auto modulePlusColon = boost::get<module_>(path).m_name + ":";
for (const auto& it : topLevelNodes) {
if (boost::algorithm::starts_with(it.first, modulePlusColon)) {
res.insert(splitModuleNode(it.first));
}
}
return res;
}
auto getTopLevelModule = [](const auto& path) -> boost::optional<std::string> {
if (!path.m_nodes.empty()) {
return path.m_nodes.begin()->m_prefix.flat_map([](const auto& module) { return boost::optional<std::string>(module.m_name); });
}
return boost::none;
};
std::string locationString;
boost::optional<std::string> topLevelModule;
if (path.type() == typeid(schemaPath_)) {
locationString = pathToSchemaString(boost::get<schemaPath_>(path), Prefixes::Always);
topLevelModule = getTopLevelModule(boost::get<schemaPath_>(path));
} else {
locationString = pathToSchemaString(boost::get<dataPath_>(path), Prefixes::Always);
topLevelModule = getTopLevelModule(boost::get<dataPath_>(path));
}
auto childrenRef = children(locationString);
std::transform(childrenRef.begin(), childrenRef.end(), std::inserter(res, res.end()), [path, topLevelModule](const auto& it) {
auto res = splitModuleNode(it.first);
if (topLevelModule == res.first) {
res.first = boost::none;
}
return res;
});
return res;
}
struct impl_nodeType {
yang::NodeTypes operator()(const yang::container& cont)
{
if (cont.m_presence == yang::ContainerTraits::Presence) {
return yang::NodeTypes::PresenceContainer;
}
return yang::NodeTypes::Container;
}
yang::NodeTypes operator()(const yang::list&)
{
return yang::NodeTypes::List;
}
yang::NodeTypes operator()(const yang::leaf&)
{
return yang::NodeTypes::Leaf;
}
yang::NodeTypes operator()(const yang::leaflist&)
{
return yang::NodeTypes::LeafList;
}
yang::NodeTypes operator()(const yang::rpc)
{
return yang::NodeTypes::Rpc;
}
yang::NodeTypes operator()(const yang::action)
{
return yang::NodeTypes::Action;
}
};
yang::NodeTypes StaticSchema::nodeType(const schemaPath_& location, const ModuleNodePair& node) const
{
std::string locationString = pathToSchemaString(location, Prefixes::Always);
auto fullName = fullNodeName(location, node);
try {
auto targetNode = children(locationString).at(fullName);
return std::visit(impl_nodeType{}, targetNode.m_nodeType);
} catch (std::out_of_range&) {
throw InvalidNodeException();
}
}
std::string fullNodeName(const std::string& location, const std::string& node)
{
// If the node already contains a module name, just return it.
if (node.find_first_of(':') != std::string::npos) {
return node;
}
// Otherwise take the module name from the first node of location.
return location.substr(location.find_first_not_of('/'), location.find_first_of(':') - 1) + ":" + node;
}
bool StaticSchema::isConfig(const std::string& leafPath) const
{
auto locationString = stripLastNodeFromPath(leafPath);
auto node = fullNodeName(locationString, lastNodeOfSchemaPath(leafPath));
return children(locationString).at(node).m_configType == yang::AccessType::Writable;
}
std::optional<std::string> StaticSchema::description([[maybe_unused]] const std::string& path) const
{
throw std::runtime_error{"StaticSchema::description not implemented"};
}
yang::Status StaticSchema::status([[maybe_unused]] const std::string& location) const
{
throw std::runtime_error{"Internal error: StaticSchema::status(std::string) not implemented. The tests should not have called this overload."};
}
bool StaticSchema::hasInputNodes(const std::string& path) const
{
if (nodeType(path) != yang::NodeTypes::Action && nodeType(path) != yang::NodeTypes::Rpc) {
throw std::logic_error("StaticSchema::hasInputNodes called with non-RPC/action path");
}
return m_nodes.at(joinPaths(path, "input")).size() != 0;
}
yang::NodeTypes StaticSchema::nodeType(const std::string& path) const
{
auto locationString = stripLastNodeFromPath(path);
auto node = fullNodeName(locationString, lastNodeOfSchemaPath(path));
return std::visit(impl_nodeType{}, children(locationString).at(node).m_nodeType);
}
std::string StaticSchema::leafrefPath([[maybe_unused]] const std::string& leafrefPath) const
{
throw std::runtime_error{"Internal error: StaticSchema::leafrefPath(std::string) not implemented. The tests should not have called this overload."};
}
bool StaticSchema::leafIsKey([[maybe_unused]] const std::string& leafPath) const
{
throw std::runtime_error{"Internal error: StaticSchema::leafIsKey(std::string) not implemented. The tests should not have called this overload."};
}
std::optional<std::string> StaticSchema::leafTypeName([[maybe_unused]] const std::string& path) const
{
throw std::runtime_error{"Internal error: StaticSchema::leafTypeName(std::string) not implemented. The tests should not have called this overload."};
}
std::optional<std::string> StaticSchema::defaultValue([[maybe_unused]] const std::string& leafPath) const
{
throw std::runtime_error{"Internal error: StaticSchema::defaultValue(std::string) not implemented. The tests should not have called this overload."};
}