drivers/usb: regorganisation

move to linux usb driver organisation

as following

drivers/usb/gadget
drivers/usb/host
drivers/usb/musb

Signed-off-by: Jean-Christophe PLAGNIOL-VILLARD <plagnioj@jcrosoft.com>
Signed-off-by: Remy Bohmer <linux@bohmer.net>
diff --git a/drivers/usb/gadget/omap1510_udc.c b/drivers/usb/gadget/omap1510_udc.c
new file mode 100644
index 0000000..90f7907
--- /dev/null
+++ b/drivers/usb/gadget/omap1510_udc.c
@@ -0,0 +1,1567 @@
+/*
+ * (C) Copyright 2003
+ * Gerry Hamel, geh@ti.com, Texas Instruments
+ *
+ * Based on
+ * linux/drivers/usb/device/bi/omap.c
+ * TI OMAP1510 USB bus interface driver
+ *
+ * Author: MontaVista Software, Inc.
+ *	   source@mvista.com
+ *	   (C) Copyright 2002
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307	 USA
+ *
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#ifdef CONFIG_OMAP_SX1
+#include <i2c.h>
+#endif
+#include <usbdevice.h>
+#include <usb/omap1510_udc.h>
+
+#include "ep0.h"
+
+
+#define UDC_INIT_MDELAY		     80 /* Device settle delay */
+#define UDC_MAX_ENDPOINTS	     31 /* Number of endpoints on this UDC */
+
+/* Some kind of debugging output... */
+#if 1
+#define UDCDBG(str)
+#define UDCDBGA(fmt,args...)
+#else  /* The bugs still exists... */
+#define UDCDBG(str) serial_printf("[%s] %s:%d: " str "\n", __FILE__,__FUNCTION__,__LINE__)
+#define UDCDBGA(fmt,args...) serial_printf("[%s] %s:%d: " fmt "\n", __FILE__,__FUNCTION__,__LINE__, ##args)
+#endif
+
+#if 1
+#define UDCREG(name)
+#define UDCREGL(name)
+#else  /* The bugs still exists... */
+#define UDCREG(name)	 serial_printf("%s():%d: %s[%08x]=%.4x\n",__FUNCTION__,__LINE__, (#name), name, inw(name))	/* For 16-bit regs */
+#define UDCREGL(name)	 serial_printf("%s():%d: %s[%08x]=%.8x\n",__FUNCTION__,__LINE__, (#name), name, inl(name))	/* For 32-bit regs */
+#endif
+
+
+static struct urb *ep0_urb = NULL;
+
+static struct usb_device_instance *udc_device;	/* Used in interrupt handler */
+static u16 udc_devstat = 0;	/* UDC status (DEVSTAT) */
+static u32 udc_interrupts = 0;
+
+static void udc_stall_ep (unsigned int ep_addr);
+
+
+static struct usb_endpoint_instance *omap1510_find_ep (int ep)
+{
+	int i;
+
+	for (i = 0; i < udc_device->bus->max_endpoints; i++) {
+		if (udc_device->bus->endpoint_array[i].endpoint_address == ep)
+			return &udc_device->bus->endpoint_array[i];
+	}
+	return NULL;
+}
+
+/* ************************************************************************** */
+/* IO
+ */
+
+/*
+ * omap1510_prepare_endpoint_for_rx
+ *
+ * This function implements TRM Figure 14-11.
+ *
+ * The endpoint to prepare for transfer is specified as a physical endpoint
+ * number.  For OUT (rx) endpoints 1 through 15, the corresponding endpoint
+ * configuration register is checked to see if the endpoint is ISO or not.
+ * If the OUT endpoint is valid and is non-ISO then its FIFO is enabled.
+ * No action is taken for endpoint 0 or for IN (tx) endpoints 16 through 30.
+ */
+static void omap1510_prepare_endpoint_for_rx (int ep_addr)
+{
+	int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
+
+	UDCDBGA ("omap1510_prepare_endpoint %x", ep_addr);
+	if (((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT)) {
+		if ((inw (UDC_EP_RX (ep_num)) &
+		     (UDC_EPn_RX_Valid | UDC_EPn_RX_Iso)) ==
+		    UDC_EPn_RX_Valid) {
+			/* rx endpoint is valid, non-ISO, so enable its FIFO */
+			outw (UDC_EP_Sel | ep_num, UDC_EP_NUM);
+			outw (UDC_Set_FIFO_En, UDC_CTRL);
+			outw (0, UDC_EP_NUM);
+		}
+	}
+}
+
+/* omap1510_configure_endpoints
+ *
+ * This function implements TRM Figure 14-10.
+ */
+static void omap1510_configure_endpoints (struct usb_device_instance *device)
+{
+	int ep;
+	struct usb_bus_instance *bus;
+	struct usb_endpoint_instance *endpoint;
+	unsigned short ep_ptr;
+	unsigned short ep_size;
+	unsigned short ep_isoc;
+	unsigned short ep_doublebuffer;
+	int ep_addr;
+	int packet_size;
+	int buffer_size;
+	int attributes;
+
+	bus = device->bus;
+
+	/* There is a dedicated 2048 byte buffer for USB packets that may be
+	 * arbitrarily partitioned among the endpoints on 8-byte boundaries.
+	 * The first 8 bytes are reserved for receiving setup packets on
+	 * endpoint 0.
+	 */
+	ep_ptr = 8;		/* reserve the first 8 bytes for the setup fifo */
+
+	for (ep = 0; ep < bus->max_endpoints; ep++) {
+		endpoint = bus->endpoint_array + ep;
+		ep_addr = endpoint->endpoint_address;
+		if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
+			/* IN endpoint */
+			packet_size = endpoint->tx_packetSize;
+			attributes = endpoint->tx_attributes;
+		} else {
+			/* OUT endpoint */
+			packet_size = endpoint->rcv_packetSize;
+			attributes = endpoint->rcv_attributes;
+		}
+
+		switch (packet_size) {
+		case 0:
+			ep_size = 0;
+			break;
+		case 8:
+			ep_size = 0;
+			break;
+		case 16:
+			ep_size = 1;
+			break;
+		case 32:
+			ep_size = 2;
+			break;
+		case 64:
+			ep_size = 3;
+			break;
+		case 128:
+			ep_size = 4;
+			break;
+		case 256:
+			ep_size = 5;
+			break;
+		case 512:
+			ep_size = 6;
+			break;
+		default:
+			UDCDBGA ("ep 0x%02x has bad packet size %d",
+				 ep_addr, packet_size);
+			packet_size = 0;
+			ep_size = 0;
+			break;
+		}
+
+		switch (attributes & USB_ENDPOINT_XFERTYPE_MASK) {
+		case USB_ENDPOINT_XFER_CONTROL:
+		case USB_ENDPOINT_XFER_BULK:
+		case USB_ENDPOINT_XFER_INT:
+		default:
+			/* A non-isochronous endpoint may optionally be
+			 * double-buffered. For now we disable
+			 * double-buffering.
+			 */
+			ep_doublebuffer = 0;
+			ep_isoc = 0;
+			if (packet_size > 64)
+				packet_size = 0;
+			if (!ep || !ep_doublebuffer)
+				buffer_size = packet_size;
+			else
+				buffer_size = packet_size * 2;
+			break;
+		case USB_ENDPOINT_XFER_ISOC:
+			/* Isochronous endpoints are always double-
+			 * buffered, but the double-buffering bit
+			 * in the endpoint configuration register
+			 * becomes the msb of the endpoint size so we
+			 * set the double-buffering flag to zero.
+			 */
+			ep_doublebuffer = 0;
+			ep_isoc = 1;
+			buffer_size = packet_size * 2;
+			break;
+		}
+
+		/* check to see if our packet buffer RAM is exhausted */
+		if ((ep_ptr + buffer_size) > 2048) {
+			UDCDBGA ("out of packet RAM for ep 0x%02x buf size %d", ep_addr, buffer_size);
+			buffer_size = packet_size = 0;
+		}
+
+		/* force a default configuration for endpoint 0 since it is
+		 * always enabled
+		 */
+		if (!ep && ((packet_size < 8) || (packet_size > 64))) {
+			buffer_size = packet_size = 64;
+			ep_size = 3;
+		}
+
+		if (!ep) {
+			/* configure endpoint 0 */
+			outw ((ep_size << 12) | (ep_ptr >> 3), UDC_EP0);
+			/*UDCDBGA("ep 0 buffer offset 0x%03x packet size 0x%03x", */
+			/*	ep_ptr, packet_size); */
+		} else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
+			/* IN endpoint */
+			if (packet_size) {
+				outw ((1 << 15) | (ep_doublebuffer << 14) |
+				      (ep_size << 12) | (ep_isoc << 11) |
+				      (ep_ptr >> 3),
+				      UDC_EP_TX (ep_addr &
+						 USB_ENDPOINT_NUMBER_MASK));
+				UDCDBGA ("IN ep %d buffer offset 0x%03x"
+					 " packet size 0x%03x",
+					 ep_addr & USB_ENDPOINT_NUMBER_MASK,
+					 ep_ptr, packet_size);
+			} else {
+				outw (0,
+				      UDC_EP_TX (ep_addr &
+						 USB_ENDPOINT_NUMBER_MASK));
+			}
+		} else {
+			/* OUT endpoint */
+			if (packet_size) {
+				outw ((1 << 15) | (ep_doublebuffer << 14) |
+				      (ep_size << 12) | (ep_isoc << 11) |
+				      (ep_ptr >> 3),
+				      UDC_EP_RX (ep_addr &
+						 USB_ENDPOINT_NUMBER_MASK));
+				UDCDBGA ("OUT ep %d buffer offset 0x%03x"
+					 " packet size 0x%03x",
+					 ep_addr & USB_ENDPOINT_NUMBER_MASK,
+					 ep_ptr, packet_size);
+			} else {
+				outw (0,
+				      UDC_EP_RX (ep_addr &
+						 USB_ENDPOINT_NUMBER_MASK));
+			}
+		}
+		ep_ptr += buffer_size;
+	}
+}
+
+/* omap1510_deconfigure_device
+ *
+ * This function balances omap1510_configure_device.
+ */
+static void omap1510_deconfigure_device (void)
+{
+	int epnum;
+
+	UDCDBG ("clear Cfg_Lock");
+	outw (inw (UDC_SYSCON1) & ~UDC_Cfg_Lock, UDC_SYSCON1);
+	UDCREG (UDC_SYSCON1);
+
+	/* deconfigure all endpoints */
+	for (epnum = 1; epnum <= 15; epnum++) {
+		outw (0, UDC_EP_RX (epnum));
+		outw (0, UDC_EP_TX (epnum));
+	}
+}
+
+/* omap1510_configure_device
+ *
+ * This function implements TRM Figure 14-9.
+ */
+static void omap1510_configure_device (struct usb_device_instance *device)
+{
+	omap1510_configure_endpoints (device);
+
+
+	/* Figure 14-9 indicates we should enable interrupts here, but we have
+	 * other routines (udc_all_interrupts, udc_suspended_interrupts) to
+	 * do that.
+	 */
+
+	UDCDBG ("set Cfg_Lock");
+	outw (inw (UDC_SYSCON1) | UDC_Cfg_Lock, UDC_SYSCON1);
+	UDCREG (UDC_SYSCON1);
+}
+
+/* omap1510_write_noniso_tx_fifo
+ *
+ * This function implements TRM Figure 14-30.
+ *
+ * If the endpoint has an active tx_urb, then the next packet of data from the
+ * URB is written to the tx FIFO.  The total amount of data in the urb is given
+ * by urb->actual_length.  The maximum amount of data that can be sent in any
+ * one packet is given by endpoint->tx_packetSize.  The number of data bytes
+ * from this URB that have already been transmitted is given by endpoint->sent.
+ * endpoint->last is updated by this routine with the number of data bytes
+ * transmitted in this packet.
+ *
+ * In accordance with Figure 14-30, the EP_NUM register must already have been
+ * written with the value to select the appropriate tx FIFO before this routine
+ * is called.
+ */
+static void omap1510_write_noniso_tx_fifo (struct usb_endpoint_instance
+					   *endpoint)
+{
+	struct urb *urb = endpoint->tx_urb;
+
+	if (urb) {
+		unsigned int last, i;
+
+		UDCDBGA ("urb->buffer %p, buffer_length %d, actual_length %d",
+			 urb->buffer, urb->buffer_length, urb->actual_length);
+		if ((last =
+		     MIN (urb->actual_length - endpoint->sent,
+			  endpoint->tx_packetSize))) {
+			u8 *cp = urb->buffer + endpoint->sent;
+
+			UDCDBGA ("endpoint->sent %d, tx_packetSize %d, last %d", endpoint->sent, endpoint->tx_packetSize, last);
+
+			if (((u32) cp & 1) == 0) {	/* word aligned? */
+				outsw (UDC_DATA, cp, last >> 1);
+			} else {	/* byte aligned. */
+				for (i = 0; i < (last >> 1); i++) {
+					u16 w = ((u16) cp[2 * i + 1] << 8) |
+						(u16) cp[2 * i];
+					outw (w, UDC_DATA);
+				}
+			}
+			if (last & 1) {
+				outb (*(cp + last - 1), UDC_DATA);
+			}
+		}
+		endpoint->last = last;
+	}
+}
+
+/* omap1510_read_noniso_rx_fifo
+ *
+ * This function implements TRM Figure 14-28.
+ *
+ * If the endpoint has an active rcv_urb, then the next packet of data is read
+ * from the rcv FIFO and written to rcv_urb->buffer at offset
+ * rcv_urb->actual_length to append the packet data to the data from any
+ * previous packets for this transfer.	We assume that there is sufficient room
+ * left in the buffer to hold an entire packet of data.
+ *
+ * The return value is the number of bytes read from the FIFO for this packet.
+ *
+ * In accordance with Figure 14-28, the EP_NUM register must already have been
+ * written with the value to select the appropriate rcv FIFO before this routine
+ * is called.
+ */
+static int omap1510_read_noniso_rx_fifo (struct usb_endpoint_instance
+					 *endpoint)
+{
+	struct urb *urb = endpoint->rcv_urb;
+	int len = 0;
+
+	if (urb) {
+		len = inw (UDC_RXFSTAT);
+
+		if (len) {
+			unsigned char *cp = urb->buffer + urb->actual_length;
+
+			insw (UDC_DATA, cp, len >> 1);
+			if (len & 1)
+				*(cp + len - 1) = inb (UDC_DATA);
+		}
+	}
+	return len;
+}
+
+/* omap1510_prepare_for_control_write_status
+ *
+ * This function implements TRM Figure 14-17.
+ *
+ * We have to deal here with non-autodecoded control writes that haven't already
+ * been dealt with by ep0_recv_setup.  The non-autodecoded standard control
+ * write requests are:	set/clear endpoint feature, set configuration, set
+ * interface, and set descriptor.  ep0_recv_setup handles set/clear requests for
+ * ENDPOINT_HALT by halting the endpoint for a set request and resetting the
+ * endpoint for a clear request.  ep0_recv_setup returns an error for
+ * SET_DESCRIPTOR requests which causes them to be terminated with a stall by
+ * the setup handler.  A SET_INTERFACE request is handled by ep0_recv_setup by
+ * generating a DEVICE_SET_INTERFACE event.  This leaves only the
+ * SET_CONFIGURATION event for us to deal with here.
+ *
+ */
+static void omap1510_prepare_for_control_write_status (struct urb *urb)
+{
+	struct usb_device_request *request = &urb->device_request;;
+
+	/* check for a SET_CONFIGURATION request */
+	if (request->bRequest == USB_REQ_SET_CONFIGURATION) {
+		int configuration = le16_to_cpu (request->wValue) & 0xff;
+		unsigned short devstat = inw (UDC_DEVSTAT);
+
+		if ((devstat & (UDC_ADD | UDC_CFG)) == UDC_ADD) {
+			/* device is currently in ADDRESSED state */
+			if (configuration) {
+				/* Assume the specified non-zero configuration
+				 * value is valid and switch to the CONFIGURED
+				 * state.
+				 */
+				outw (UDC_Dev_Cfg, UDC_SYSCON2);
+			}
+		} else if ((devstat & UDC_CFG) == UDC_CFG) {
+			/* device is currently in CONFIGURED state */
+			if (!configuration) {
+				/* Switch to ADDRESSED state. */
+				outw (UDC_Clr_Cfg, UDC_SYSCON2);
+			}
+		}
+	}
+
+	/* select EP0 tx FIFO */
+	outw (UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM);
+	/* clear endpoint (no data bytes in status stage) */
+	outw (UDC_Clr_EP, UDC_CTRL);
+	/* enable the EP0 tx FIFO */
+	outw (UDC_Set_FIFO_En, UDC_CTRL);
+	/* deselect the endpoint */
+	outw (UDC_EP_Dir, UDC_EP_NUM);
+}
+
+/* udc_state_transition_up
+ * udc_state_transition_down
+ *
+ * Helper functions to implement device state changes.	The device states and
+ * the events that transition between them are:
+ *
+ *				STATE_ATTACHED
+ *				||	/\
+ *				\/	||
+ *	DEVICE_HUB_CONFIGURED			DEVICE_HUB_RESET
+ *				||	/\
+ *				\/	||
+ *				STATE_POWERED
+ *				||	/\
+ *				\/	||
+ *	DEVICE_RESET				DEVICE_POWER_INTERRUPTION
+ *				||	/\
+ *				\/	||
+ *				STATE_DEFAULT
+ *				||	/\
+ *				\/	||
+ *	DEVICE_ADDRESS_ASSIGNED			DEVICE_RESET
+ *				||	/\
+ *				\/	||
+ *				STATE_ADDRESSED
+ *				||	/\
+ *				\/	||
+ *	DEVICE_CONFIGURED			DEVICE_DE_CONFIGURED
+ *				||	/\
+ *				\/	||
+ *				STATE_CONFIGURED
+ *
+ * udc_state_transition_up transitions up (in the direction from STATE_ATTACHED
+ * to STATE_CONFIGURED) from the specified initial state to the specified final
+ * state, passing through each intermediate state on the way.  If the initial
+ * state is at or above (i.e. nearer to STATE_CONFIGURED) the final state, then
+ * no state transitions will take place.
+ *
+ * udc_state_transition_down transitions down (in the direction from
+ * STATE_CONFIGURED to STATE_ATTACHED) from the specified initial state to the
+ * specified final state, passing through each intermediate state on the way.
+ * If the initial state is at or below (i.e. nearer to STATE_ATTACHED) the final
+ * state, then no state transitions will take place.
+ *
+ * These functions must only be called with interrupts disabled.
+ */
+static void udc_state_transition_up (usb_device_state_t initial,
+				     usb_device_state_t final)
+{
+	if (initial < final) {
+		switch (initial) {
+		case STATE_ATTACHED:
+			usbd_device_event_irq (udc_device,
+					       DEVICE_HUB_CONFIGURED, 0);
+			if (final == STATE_POWERED)
+				break;
+		case STATE_POWERED:
+			usbd_device_event_irq (udc_device, DEVICE_RESET, 0);
+			if (final == STATE_DEFAULT)
+				break;
+		case STATE_DEFAULT:
+			usbd_device_event_irq (udc_device,
+					       DEVICE_ADDRESS_ASSIGNED, 0);
+			if (final == STATE_ADDRESSED)
+				break;
+		case STATE_ADDRESSED:
+			usbd_device_event_irq (udc_device, DEVICE_CONFIGURED,
+					       0);
+		case STATE_CONFIGURED:
+			break;
+		default:
+			break;
+		}
+	}
+}
+
+static void udc_state_transition_down (usb_device_state_t initial,
+				       usb_device_state_t final)
+{
+	if (initial > final) {
+		switch (initial) {
+		case STATE_CONFIGURED:
+			usbd_device_event_irq (udc_device, DEVICE_DE_CONFIGURED, 0);
+			if (final == STATE_ADDRESSED)
+				break;
+		case STATE_ADDRESSED:
+			usbd_device_event_irq (udc_device, DEVICE_RESET, 0);
+			if (final == STATE_DEFAULT)
+				break;
+		case STATE_DEFAULT:
+			usbd_device_event_irq (udc_device, DEVICE_POWER_INTERRUPTION, 0);
+			if (final == STATE_POWERED)
+				break;
+		case STATE_POWERED:
+			usbd_device_event_irq (udc_device, DEVICE_HUB_RESET, 0);
+		case STATE_ATTACHED:
+			break;
+		default:
+			break;
+		}
+	}
+}
+
+/* Handle all device state changes.
+ * This function implements TRM Figure 14-21.
+ */
+static void omap1510_udc_state_changed (void)
+{
+	u16 bits;
+	u16 devstat = inw (UDC_DEVSTAT);
+
+	UDCDBGA ("state changed, devstat %x, old %x", devstat, udc_devstat);
+
+	bits = devstat ^ udc_devstat;
+	if (bits) {
+		if (bits & UDC_ATT) {
+			if (devstat & UDC_ATT) {
+				UDCDBG ("device attached and powered");
+				udc_state_transition_up (udc_device->device_state, STATE_POWERED);
+			} else {
+				UDCDBG ("device detached or unpowered");
+				udc_state_transition_down (udc_device->device_state, STATE_ATTACHED);
+			}
+		}
+		if (bits & UDC_USB_Reset) {
+			if (devstat & UDC_USB_Reset) {
+				UDCDBG ("device reset in progess");
+				udc_state_transition_down (udc_device->device_state, STATE_POWERED);
+			} else {
+				UDCDBG ("device reset completed");
+			}
+		}
+		if (bits & UDC_DEF) {
+			if (devstat & UDC_DEF) {
+				UDCDBG ("device entering default state");
+				udc_state_transition_up (udc_device->device_state, STATE_DEFAULT);
+			} else {
+				UDCDBG ("device leaving default state");
+				udc_state_transition_down (udc_device->device_state, STATE_POWERED);
+			}
+		}
+		if (bits & UDC_SUS) {
+			if (devstat & UDC_SUS) {
+				UDCDBG ("entering suspended state");
+				usbd_device_event_irq (udc_device, DEVICE_BUS_INACTIVE, 0);
+			} else {
+				UDCDBG ("leaving suspended state");
+				usbd_device_event_irq (udc_device, DEVICE_BUS_ACTIVITY, 0);
+			}
+		}
+		if (bits & UDC_R_WK_OK) {
+			UDCDBGA ("remote wakeup %s", (devstat & UDC_R_WK_OK)
+				 ? "enabled" : "disabled");
+		}
+		if (bits & UDC_ADD) {
+			if (devstat & UDC_ADD) {
+				UDCDBG ("default -> addressed");
+				udc_state_transition_up (udc_device->device_state, STATE_ADDRESSED);
+			} else {
+				UDCDBG ("addressed -> default");
+				udc_state_transition_down (udc_device->device_state, STATE_DEFAULT);
+			}
+		}
+		if (bits & UDC_CFG) {
+			if (devstat & UDC_CFG) {
+				UDCDBG ("device configured");
+				/* The ep0_recv_setup function generates the
+				 * DEVICE_CONFIGURED event when a
+				 * USB_REQ_SET_CONFIGURATION setup packet is
+				 * received, so we should already be in the
+				 * state STATE_CONFIGURED.
+				 */
+				udc_state_transition_up (udc_device->device_state, STATE_CONFIGURED);
+			} else {
+				UDCDBG ("device deconfigured");
+				udc_state_transition_down (udc_device->device_state, STATE_ADDRESSED);
+			}
+		}
+	}
+
+	/* Clear interrupt source */
+	outw (UDC_DS_Chg, UDC_IRQ_SRC);
+
+	/* Save current DEVSTAT */
+	udc_devstat = devstat;
+}
+
+/* Handle SETUP USB interrupt.
+ * This function implements TRM Figure 14-14.
+ */
+static void omap1510_udc_setup (struct usb_endpoint_instance *endpoint)
+{
+	UDCDBG ("-> Entering device setup");
+
+	do {
+		const int setup_pktsize = 8;
+		unsigned char *datap =
+			(unsigned char *) &ep0_urb->device_request;
+
+		/* Gain access to EP 0 setup FIFO */
+		outw (UDC_Setup_Sel, UDC_EP_NUM);
+
+		/* Read control request data */
+		insb (UDC_DATA, datap, setup_pktsize);
+
+		UDCDBGA ("EP0 setup read [%x %x %x %x %x %x %x %x]",
+			 *(datap + 0), *(datap + 1), *(datap + 2),
+			 *(datap + 3), *(datap + 4), *(datap + 5),
+			 *(datap + 6), *(datap + 7));
+
+		/* Reset EP0 setup FIFO */
+		outw (0, UDC_EP_NUM);
+	} while (inw (UDC_IRQ_SRC) & UDC_Setup);
+
+	/* Try to process setup packet */
+	if (ep0_recv_setup (ep0_urb)) {
+		/* Not a setup packet, stall next EP0 transaction */
+		udc_stall_ep (0);
+		UDCDBG ("can't parse setup packet, still waiting for setup");
+		return;
+	}
+
+	/* Check direction */
+	if ((ep0_urb->device_request.bmRequestType & USB_REQ_DIRECTION_MASK)
+	    == USB_REQ_HOST2DEVICE) {
+		UDCDBG ("control write on EP0");
+		if (le16_to_cpu (ep0_urb->device_request.wLength)) {
+			/* We don't support control write data stages.
+			 * The only standard control write request with a data
+			 * stage is SET_DESCRIPTOR, and ep0_recv_setup doesn't
+			 * support that so we just stall those requests.  A
+			 * function driver might support a non-standard
+			 * write request with a data stage, but it isn't
+			 * obvious what we would do with the data if we read it
+			 * so we'll just stall it.  It seems like the API isn't
+			 * quite right here.
+			 */
+#if 0
+			/* Here is what we would do if we did support control
+			 * write data stages.
+			 */
+			ep0_urb->actual_length = 0;
+			outw (0, UDC_EP_NUM);
+			/* enable the EP0 rx FIFO */
+			outw (UDC_Set_FIFO_En, UDC_CTRL);
+#else
+			/* Stall this request */
+			UDCDBG ("Stalling unsupported EP0 control write data "
+				"stage.");
+			udc_stall_ep (0);
+#endif
+		} else {
+			omap1510_prepare_for_control_write_status (ep0_urb);
+		}
+	} else {
+		UDCDBG ("control read on EP0");
+		/* The ep0_recv_setup function has already placed our response
+		 * packet data in ep0_urb->buffer and the packet length in
+		 * ep0_urb->actual_length.
+		 */
+		endpoint->tx_urb = ep0_urb;
+		endpoint->sent = 0;
+		/* select the EP0 tx FIFO */
+		outw (UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM);
+		/* Write packet data to the FIFO.  omap1510_write_noniso_tx_fifo
+		 * will update endpoint->last with the number of bytes written
+		 * to the FIFO.
+		 */
+		omap1510_write_noniso_tx_fifo (endpoint);
+		/* enable the FIFO to start the packet transmission */
+		outw (UDC_Set_FIFO_En, UDC_CTRL);
+		/* deselect the EP0 tx FIFO */
+		outw (UDC_EP_Dir, UDC_EP_NUM);
+	}
+
+	UDCDBG ("<- Leaving device setup");
+}
+
+/* Handle endpoint 0 RX interrupt
+ * This routine implements TRM Figure 14-16.
+ */
+static void omap1510_udc_ep0_rx (struct usb_endpoint_instance *endpoint)
+{
+	unsigned short status;
+
+	UDCDBG ("RX on EP0");
+	/* select EP0 rx FIFO */
+	outw (UDC_EP_Sel, UDC_EP_NUM);
+
+	status = inw (UDC_STAT_FLG);
+
+	if (status & UDC_ACK) {
+		/* Check direction */
+		if ((ep0_urb->device_request.bmRequestType
+		     & USB_REQ_DIRECTION_MASK) == USB_REQ_HOST2DEVICE) {
+			/* This rx interrupt must be for a control write data
+			 * stage packet.
+			 *
+			 * We don't support control write data stages.
+			 * We should never end up here.
+			 */
+
+			/* clear the EP0 rx FIFO */
+			outw (UDC_Clr_EP, UDC_CTRL);
+
+			/* deselect the EP0 rx FIFO */
+			outw (0, UDC_EP_NUM);
+
+			UDCDBG ("Stalling unexpected EP0 control write "
+				"data stage packet");
+			udc_stall_ep (0);
+		} else {
+			/* This rx interrupt must be for a control read status
+			 * stage packet.
+			 */
+			UDCDBG ("ACK on EP0 control read status stage packet");
+			/* deselect EP0 rx FIFO */
+			outw (0, UDC_EP_NUM);
+		}
+	} else if (status & UDC_STALL) {
+		UDCDBG ("EP0 stall during RX");
+		/* deselect EP0 rx FIFO */
+		outw (0, UDC_EP_NUM);
+	} else {
+		/* deselect EP0 rx FIFO */
+		outw (0, UDC_EP_NUM);
+	}
+}
+
+/* Handle endpoint 0 TX interrupt
+ * This routine implements TRM Figure 14-18.
+ */
+static void omap1510_udc_ep0_tx (struct usb_endpoint_instance *endpoint)
+{
+	unsigned short status;
+	struct usb_device_request *request = &ep0_urb->device_request;
+
+	UDCDBG ("TX on EP0");
+	/* select EP0 TX FIFO */
+	outw (UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM);
+
+	status = inw (UDC_STAT_FLG);
+	if (status & UDC_ACK) {
+		/* Check direction */
+		if ((request->bmRequestType & USB_REQ_DIRECTION_MASK) ==
+		    USB_REQ_HOST2DEVICE) {
+			/* This tx interrupt must be for a control write status
+			 * stage packet.
+			 */
+			UDCDBG ("ACK on EP0 control write status stage packet");
+			/* deselect EP0 TX FIFO */
+			outw (UDC_EP_Dir, UDC_EP_NUM);
+		} else {
+			/* This tx interrupt must be for a control read data
+			 * stage packet.
+			 */
+			int wLength = le16_to_cpu (request->wLength);
+
+			/* Update our count of bytes sent so far in this
+			 * transfer.
+			 */
+			endpoint->sent += endpoint->last;
+
+			/* We are finished with this transfer if we have sent
+			 * all of the bytes in our tx urb (urb->actual_length)
+			 * unless we need a zero-length terminating packet.  We
+			 * need a zero-length terminating packet if we returned
+			 * fewer bytes than were requested (wLength) by the host,
+			 * and the number of bytes we returned is an exact
+			 * multiple of the packet size endpoint->tx_packetSize.
+			 */
+			if ((endpoint->sent == ep0_urb->actual_length)
+			    && ((ep0_urb->actual_length == wLength)
+				|| (endpoint->last !=
+				    endpoint->tx_packetSize))) {
+				/* Done with control read data stage. */
+				UDCDBG ("control read data stage complete");
+				/* deselect EP0 TX FIFO */
+				outw (UDC_EP_Dir, UDC_EP_NUM);
+				/* select EP0 RX FIFO to prepare for control
+				 * read status stage.
+				 */
+				outw (UDC_EP_Sel, UDC_EP_NUM);
+				/* clear the EP0 RX FIFO */
+				outw (UDC_Clr_EP, UDC_CTRL);
+				/* enable the EP0 RX FIFO */
+				outw (UDC_Set_FIFO_En, UDC_CTRL);
+				/* deselect the EP0 RX FIFO */
+				outw (0, UDC_EP_NUM);
+			} else {
+				/* We still have another packet of data to send
+				 * in this control read data stage or else we
+				 * need a zero-length terminating packet.
+				 */
+				UDCDBG ("ACK control read data stage packet");
+				omap1510_write_noniso_tx_fifo (endpoint);
+				/* enable the EP0 tx FIFO to start transmission */
+				outw (UDC_Set_FIFO_En, UDC_CTRL);
+				/* deselect EP0 TX FIFO */
+				outw (UDC_EP_Dir, UDC_EP_NUM);
+			}
+		}
+	} else if (status & UDC_STALL) {
+		UDCDBG ("EP0 stall during TX");
+		/* deselect EP0 TX FIFO */
+		outw (UDC_EP_Dir, UDC_EP_NUM);
+	} else {
+		/* deselect EP0 TX FIFO */
+		outw (UDC_EP_Dir, UDC_EP_NUM);
+	}
+}
+
+/* Handle RX transaction on non-ISO endpoint.
+ * This function implements TRM Figure 14-27.
+ * The ep argument is a physical endpoint number for a non-ISO OUT endpoint
+ * in the range 1 to 15.
+ */
+static void omap1510_udc_epn_rx (int ep)
+{
+	unsigned short status;
+
+	/* Check endpoint status */
+	status = inw (UDC_STAT_FLG);
+
+	if (status & UDC_ACK) {
+		int nbytes;
+		struct usb_endpoint_instance *endpoint =
+			omap1510_find_ep (ep);
+
+		nbytes = omap1510_read_noniso_rx_fifo (endpoint);
+		usbd_rcv_complete (endpoint, nbytes, 0);
+
+		/* enable rx FIFO to prepare for next packet */
+		outw (UDC_Set_FIFO_En, UDC_CTRL);
+	} else if (status & UDC_STALL) {
+		UDCDBGA ("STALL on RX endpoint %d", ep);
+	} else if (status & UDC_NAK) {
+		UDCDBGA ("NAK on RX ep %d", ep);
+	} else {
+		serial_printf ("omap-bi: RX on ep %d with status %x", ep,
+			       status);
+	}
+}
+
+/* Handle TX transaction on non-ISO endpoint.
+ * This function implements TRM Figure 14-29.
+ * The ep argument is a physical endpoint number for a non-ISO IN endpoint
+ * in the range 16 to 30.
+ */
+static void omap1510_udc_epn_tx (int ep)
+{
+	unsigned short status;
+
+	/*serial_printf("omap1510_udc_epn_tx( %x )\n",ep); */
+
+	/* Check endpoint status */
+	status = inw (UDC_STAT_FLG);
+
+	if (status & UDC_ACK) {
+		struct usb_endpoint_instance *endpoint =
+			omap1510_find_ep (ep);
+
+		/* We need to transmit a terminating zero-length packet now if
+		 * we have sent all of the data in this URB and the transfer
+		 * size was an exact multiple of the packet size.
+		 */
+		if (endpoint->tx_urb
+		    && (endpoint->last == endpoint->tx_packetSize)
+		    && (endpoint->tx_urb->actual_length - endpoint->sent -
+			endpoint->last == 0)) {
+			/* Prepare to transmit a zero-length packet. */
+			endpoint->sent += endpoint->last;
+			/* write 0 bytes of data to FIFO */
+			omap1510_write_noniso_tx_fifo (endpoint);
+			/* enable tx FIFO to start transmission */
+			outw (UDC_Set_FIFO_En, UDC_CTRL);
+		} else if (endpoint->tx_urb
+			   && endpoint->tx_urb->actual_length) {
+			/* retire the data that was just sent */
+			usbd_tx_complete (endpoint);
+			/* Check to see if we have more data ready to transmit
+			 * now.
+			 */
+			if (endpoint->tx_urb
+			    && endpoint->tx_urb->actual_length) {
+				/* write data to FIFO */
+				omap1510_write_noniso_tx_fifo (endpoint);
+				/* enable tx FIFO to start transmission */
+				outw (UDC_Set_FIFO_En, UDC_CTRL);
+			}
+		}
+	} else if (status & UDC_STALL) {
+		UDCDBGA ("STALL on TX endpoint %d", ep);
+	} else if (status & UDC_NAK) {
+		UDCDBGA ("NAK on TX endpoint %d", ep);
+	} else {
+		/*serial_printf("omap-bi: TX on ep %d with status %x\n", ep, status); */
+	}
+}
+
+
+/*
+-------------------------------------------------------------------------------
+*/
+
+/* Handle general USB interrupts and dispatch according to type.
+ * This function implements TRM Figure 14-13.
+ */
+void omap1510_udc_irq (void)
+{
+	u16 irq_src = inw (UDC_IRQ_SRC);
+	int valid_irq = 0;
+
+	if (!(irq_src & ~UDC_SOF_Flg))	/* ignore SOF interrupts ) */
+		return;
+
+	UDCDBGA ("< IRQ #%d start >- %x", udc_interrupts, irq_src);
+	/*serial_printf("< IRQ #%d start >- %x\n", udc_interrupts, irq_src); */
+
+	if (irq_src & UDC_DS_Chg) {
+		/* Device status changed */
+		omap1510_udc_state_changed ();
+		valid_irq++;
+	}
+	if (irq_src & UDC_EP0_RX) {
+		/* Endpoint 0 receive */
+		outw (UDC_EP0_RX, UDC_IRQ_SRC); /* ack interrupt */
+		omap1510_udc_ep0_rx (udc_device->bus->endpoint_array + 0);
+		valid_irq++;
+	}
+	if (irq_src & UDC_EP0_TX) {
+		/* Endpoint 0 transmit */
+		outw (UDC_EP0_TX, UDC_IRQ_SRC); /* ack interrupt */
+		omap1510_udc_ep0_tx (udc_device->bus->endpoint_array + 0);
+		valid_irq++;
+	}
+	if (irq_src & UDC_Setup) {
+		/* Device setup */
+		omap1510_udc_setup (udc_device->bus->endpoint_array + 0);
+		valid_irq++;
+	}
+	/*if (!valid_irq) */
+	/*	serial_printf("unknown interrupt, IRQ_SRC %.4x\n", irq_src); */
+	UDCDBGA ("< IRQ #%d end >", udc_interrupts);
+	udc_interrupts++;
+}
+
+/* This function implements TRM Figure 14-26. */
+void omap1510_udc_noniso_irq (void)
+{
+	unsigned short epnum;
+	unsigned short irq_src = inw (UDC_IRQ_SRC);
+	int valid_irq = 0;
+
+	if (!(irq_src & (UDC_EPn_RX | UDC_EPn_TX)))
+		return;
+
+	UDCDBGA ("non-ISO IRQ, IRQ_SRC %x", inw (UDC_IRQ_SRC));
+
+	if (irq_src & UDC_EPn_RX) {	/* Endpoint N OUT transaction */
+		/* Determine the endpoint number for this interrupt */
+		epnum = (inw (UDC_EPN_STAT) & 0x0f00) >> 8;
+		UDCDBGA ("RX on ep %x", epnum);
+
+		/* acknowledge interrupt */
+		outw (UDC_EPn_RX, UDC_IRQ_SRC);
+
+		if (epnum) {
+			/* select the endpoint FIFO */
+			outw (UDC_EP_Sel | epnum, UDC_EP_NUM);
+
+			omap1510_udc_epn_rx (epnum);
+
+			/* deselect the endpoint FIFO */
+			outw (epnum, UDC_EP_NUM);
+		}
+		valid_irq++;
+	}
+	if (irq_src & UDC_EPn_TX) {	/* Endpoint N IN transaction */
+		/* Determine the endpoint number for this interrupt */
+		epnum = (inw (UDC_EPN_STAT) & 0x000f) | USB_DIR_IN;
+		UDCDBGA ("TX on ep %x", epnum);
+
+		/* acknowledge interrupt */
+		outw (UDC_EPn_TX, UDC_IRQ_SRC);
+
+		if (epnum) {
+			/* select the endpoint FIFO */
+			outw (UDC_EP_Sel | UDC_EP_Dir | epnum, UDC_EP_NUM);
+
+			omap1510_udc_epn_tx (epnum);
+
+			/* deselect the endpoint FIFO */
+			outw (UDC_EP_Dir | epnum, UDC_EP_NUM);
+		}
+		valid_irq++;
+	}
+	if (!valid_irq)
+		serial_printf (": unknown non-ISO interrupt, IRQ_SRC %.4x\n",
+			       irq_src);
+}
+
+/*
+-------------------------------------------------------------------------------
+*/
+
+
+/*
+ * Start of public functions.
+ */
+
+/* Called to start packet transmission. */
+int udc_endpoint_write (struct usb_endpoint_instance *endpoint)
+{
+	unsigned short epnum =
+		endpoint->endpoint_address & USB_ENDPOINT_NUMBER_MASK;
+
+	UDCDBGA ("Starting transmit on ep %x", epnum);
+
+	if (endpoint->tx_urb) {
+		/* select the endpoint FIFO */
+		outw (UDC_EP_Sel | UDC_EP_Dir | epnum, UDC_EP_NUM);
+		/* write data to FIFO */
+		omap1510_write_noniso_tx_fifo (endpoint);
+		/* enable tx FIFO to start transmission */
+		outw (UDC_Set_FIFO_En, UDC_CTRL);
+		/* deselect the endpoint FIFO */
+		outw (UDC_EP_Dir | epnum, UDC_EP_NUM);
+	}
+
+	return 0;
+}
+
+/* Start to initialize h/w stuff */
+int udc_init (void)
+{
+	u16 udc_rev;
+	uchar value;
+	ulong gpio;
+	int i;
+
+	/* Let the device settle down before we start */
+	for (i = 0; i < UDC_INIT_MDELAY; i++) udelay(1000);
+
+	udc_device = NULL;
+
+	UDCDBG ("starting");
+
+	/* Check peripheral reset. Must be 1 to make sure
+	   MPU TIPB peripheral reset is inactive */
+	UDCREG (ARM_RSTCT2);
+
+	/* Set and check clock control.
+	 * We might ought to be using the clock control API to do
+	 * this instead of fiddling with the clock registers directly
+	 * here.
+	 */
+	outw ((1 << 4) | (1 << 5), CLOCK_CTRL);
+	UDCREG (CLOCK_CTRL);
+
+#ifdef CONFIG_OMAP1510
+	/* This code was originally implemented for OMAP1510 and
+	 * therefore is only applicable for OMAP1510 boards. For
+	 * OMAP5912 or OMAP16xx the register APLL_CTRL does not
+	 * exist and DPLL_CTRL is already configured.
+	 */
+
+	/* Set and check APLL */
+	outw (0x0008, APLL_CTRL);
+	UDCREG (APLL_CTRL);
+	/* Set and check DPLL */
+	outw (0x2210, DPLL_CTRL);
+	UDCREG (DPLL_CTRL);
+#endif
+	/* Set and check SOFT
+	 * The below line of code has been changed to perform a
+	 * read-modify-write instead of a simple write for
+	 * configuring the SOFT_REQ register. This allows the code
+	 * to be compatible with OMAP5912 and OMAP16xx devices
+	 */
+	outw ((1 << 4) | (1 << 3) | 1 | (inw(SOFT_REQ)), SOFT_REQ);
+
+	/* Short delay to wait for DPLL */
+	udelay (1000);
+
+	/* Print banner with device revision */
+	udc_rev = inw (UDC_REV) & 0xff;
+#ifdef CONFIG_OMAP1510
+	printf ("USB:   TI OMAP1510 USB function module rev %d.%d\n",
+		udc_rev >> 4, udc_rev & 0xf);
+#endif
+
+#ifdef CONFIG_OMAP1610
+	printf ("USB:   TI OMAP5912 USB function module rev %d.%d\n",
+		udc_rev >> 4, udc_rev & 0xf);
+#endif
+
+#ifdef CONFIG_OMAP_SX1
+	i2c_read (0x32, 0x04, 1, &value, 1);
+	value |= 0x04;
+	i2c_write (0x32, 0x04, 1, &value, 1);
+
+	i2c_read (0x32, 0x03, 1, &value, 1);
+	value |= 0x01;
+	i2c_write (0x32, 0x03, 1, &value, 1);
+
+	gpio = inl(GPIO_PIN_CONTROL_REG);
+	gpio |=  0x0002; /* A_IRDA_OFF */
+	gpio |=  0x0800; /* A_SWITCH   */
+	gpio |=  0x8000; /* A_USB_ON   */
+	outl (gpio, GPIO_PIN_CONTROL_REG);
+
+	gpio = inl(GPIO_DIR_CONTROL_REG);
+	gpio &= ~0x0002; /* A_IRDA_OFF */
+	gpio &= ~0x0800; /* A_SWITCH   */
+	gpio &= ~0x8000; /* A_USB_ON   */
+	outl (gpio, GPIO_DIR_CONTROL_REG);
+
+	gpio = inl(GPIO_DATA_OUTPUT_REG);
+	gpio |=  0x0002; /* A_IRDA_OFF */
+	gpio &= ~0x0800; /* A_SWITCH   */
+	gpio &= ~0x8000; /* A_USB_ON   */
+	outl (gpio, GPIO_DATA_OUTPUT_REG);
+#endif
+
+	/* The VBUS_MODE bit selects whether VBUS detection is done via
+	 * software (1) or hardware (0).  When software detection is
+	 * selected, VBUS_CTRL selects whether USB is not connected (0)
+	 * or connected (1).
+	 */
+	outl (inl (FUNC_MUX_CTRL_0) | UDC_VBUS_MODE, FUNC_MUX_CTRL_0);
+	outl (inl (FUNC_MUX_CTRL_0) & ~UDC_VBUS_CTRL, FUNC_MUX_CTRL_0);
+	UDCREGL (FUNC_MUX_CTRL_0);
+
+	/*
+	 * At this point, device is ready for configuration...
+	 */
+
+	UDCDBG ("disable USB interrupts");
+	outw (0, UDC_IRQ_EN);
+	UDCREG (UDC_IRQ_EN);
+
+	UDCDBG ("disable USB DMA");
+	outw (0, UDC_DMA_IRQ_EN);
+	UDCREG (UDC_DMA_IRQ_EN);
+
+	UDCDBG ("initialize SYSCON1");
+	outw (UDC_Self_Pwr | UDC_Pullup_En, UDC_SYSCON1);
+	UDCREG (UDC_SYSCON1);
+
+	return 0;
+}
+
+/* Stall endpoint */
+static void udc_stall_ep (unsigned int ep_addr)
+{
+	/*int ep_addr = PHYS_EP_TO_EP_ADDR(ep); */
+	int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
+
+	UDCDBGA ("stall ep_addr %d", ep_addr);
+
+	/* REVISIT?
+	 * The OMAP TRM section 14.2.4.2 says we must check that the FIFO
+	 * is empty before halting the endpoint.  The current implementation
+	 * doesn't check that the FIFO is empty.
+	 */
+
+	if (!ep_num) {
+		outw (UDC_Stall_Cmd, UDC_SYSCON2);
+	} else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) {
+		if (inw (UDC_EP_RX (ep_num)) & UDC_EPn_RX_Valid) {
+			/* we have a valid rx endpoint, so halt it */
+			outw (UDC_EP_Sel | ep_num, UDC_EP_NUM);
+			outw (UDC_Set_Halt, UDC_CTRL);
+			outw (ep_num, UDC_EP_NUM);
+		}
+	} else {
+		if (inw (UDC_EP_TX (ep_num)) & UDC_EPn_TX_Valid) {
+			/* we have a valid tx endpoint, so halt it */
+			outw (UDC_EP_Sel | UDC_EP_Dir | ep_num, UDC_EP_NUM);
+			outw (UDC_Set_Halt, UDC_CTRL);
+			outw (ep_num, UDC_EP_NUM);
+		}
+	}
+}
+
+/* Reset endpoint */
+#if 0
+static void udc_reset_ep (unsigned int ep_addr)
+{
+	/*int ep_addr = PHYS_EP_TO_EP_ADDR(ep); */
+	int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
+
+	UDCDBGA ("reset ep_addr %d", ep_addr);
+
+	if (!ep_num) {
+		/* control endpoint 0 can't be reset */
+	} else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) {
+		UDCDBGA ("UDC_EP_RX(%d) = 0x%04x", ep_num,
+			 inw (UDC_EP_RX (ep_num)));
+		if (inw (UDC_EP_RX (ep_num)) & UDC_EPn_RX_Valid) {
+			/* we have a valid rx endpoint, so reset it */
+			outw (ep_num | UDC_EP_Sel, UDC_EP_NUM);
+			outw (UDC_Reset_EP, UDC_CTRL);
+			outw (ep_num, UDC_EP_NUM);
+			UDCDBGA ("OUT endpoint %d reset", ep_num);
+		}
+	} else {
+		UDCDBGA ("UDC_EP_TX(%d) = 0x%04x", ep_num,
+			 inw (UDC_EP_TX (ep_num)));
+		/* Resetting of tx endpoints seems to be causing the USB function
+		 * module to fail, which causes problems when the driver is
+		 * uninstalled.	 We'll skip resetting tx endpoints for now until
+		 * we figure out what the problem is.
+		 */
+#if 0
+		if (inw (UDC_EP_TX (ep_num)) & UDC_EPn_TX_Valid) {
+			/* we have a valid tx endpoint, so reset it */
+			outw (ep_num | UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM);
+			outw (UDC_Reset_EP, UDC_CTRL);
+			outw (ep_num | UDC_EP_Dir, UDC_EP_NUM);
+			UDCDBGA ("IN endpoint %d reset", ep_num);
+		}
+#endif
+	}
+}
+#endif
+
+/* ************************************************************************** */
+
+/**
+ * udc_check_ep - check logical endpoint
+  *
+ * Return physical endpoint number to use for this logical endpoint or zero if not valid.
+ */
+#if 0
+int udc_check_ep (int logical_endpoint, int packetsize)
+{
+	if ((logical_endpoint == 0x80) ||
+	    ((logical_endpoint & 0x8f) != logical_endpoint)) {
+		return 0;
+	}
+
+	switch (packetsize) {
+	case 8:
+	case 16:
+	case 32:
+	case 64:
+	case 128:
+	case 256:
+	case 512:
+		break;
+	default:
+		return 0;
+	}
+
+	return EP_ADDR_TO_PHYS_EP (logical_endpoint);
+}
+#endif
+
+/*
+ * udc_setup_ep - setup endpoint
+ *
+ * Associate a physical endpoint with endpoint_instance
+ */
+void udc_setup_ep (struct usb_device_instance *device,
+		   unsigned int ep, struct usb_endpoint_instance *endpoint)
+{
+	UDCDBGA ("setting up endpoint addr %x", endpoint->endpoint_address);
+
+	/* This routine gets called by bi_modinit for endpoint 0 and from
+	 * bi_config for all of the other endpoints.  bi_config gets called
+	 * during the DEVICE_CREATE, DEVICE_CONFIGURED, and
+	 * DEVICE_SET_INTERFACE events.	 We need to reconfigure the OMAP packet
+	 * RAM after bi_config scans the selected device configuration and
+	 * initializes the endpoint structures, but before this routine enables
+	 * the OUT endpoint FIFOs.  Since bi_config calls this routine in a
+	 * loop for endpoints 1 through UDC_MAX_ENDPOINTS, we reconfigure our
+	 * packet RAM here when ep==1.
+	 * I really hate to do this here, but it seems like the API exported
+	 * by the USB bus interface controller driver to the usbd-bi module
+	 * isn't quite right so there is no good place to do this.
+	 */
+	if (ep == 1) {
+		omap1510_deconfigure_device ();
+		omap1510_configure_device (device);
+	}
+
+	if (endpoint && (ep < UDC_MAX_ENDPOINTS)) {
+		int ep_addr = endpoint->endpoint_address;
+
+		if (!ep_addr) {
+			/* nothing to do for endpoint 0 */
+		} else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
+			/* nothing to do for IN (tx) endpoints */
+		} else {	/* OUT (rx) endpoint */
+			if (endpoint->rcv_packetSize) {
+				/*struct urb* urb = &(urb_out_array[ep&0xFF]); */
+				/*urb->endpoint = endpoint; */
+				/*urb->device = device; */
+				/*urb->buffer_length = sizeof(urb->buffer); */
+
+				/*endpoint->rcv_urb = urb; */
+				omap1510_prepare_endpoint_for_rx (ep_addr);
+			}
+		}
+	}
+}
+
+/**
+ * udc_disable_ep - disable endpoint
+ * @ep:
+ *
+ * Disable specified endpoint
+ */
+#if 0
+void udc_disable_ep (unsigned int ep_addr)
+{
+	/*int ep_addr = PHYS_EP_TO_EP_ADDR(ep); */
+	int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
+	struct usb_endpoint_instance *endpoint = omap1510_find_ep (ep_addr);	/*udc_device->bus->endpoint_array + ep; */
+
+	UDCDBGA ("disable ep_addr %d", ep_addr);
+
+	if (!ep_num) {
+		/* nothing to do for endpoint 0 */ ;
+	} else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
+		if (endpoint->tx_packetSize) {
+			/* we have a valid tx endpoint */
+			/*usbd_flush_tx(endpoint); */
+			endpoint->tx_urb = NULL;
+		}
+	} else {
+		if (endpoint->rcv_packetSize) {
+			/* we have a valid rx endpoint */
+			/*usbd_flush_rcv(endpoint); */
+			endpoint->rcv_urb = NULL;
+		}
+	}
+}
+#endif
+
+/* ************************************************************************** */
+
+/**
+ * udc_connected - is the USB cable connected
+ *
+ * Return non-zero if cable is connected.
+ */
+#if 0
+int udc_connected (void)
+{
+	return ((inw (UDC_DEVSTAT) & UDC_ATT) == UDC_ATT);
+}
+#endif
+
+/* Turn on the USB connection by enabling the pullup resistor */
+void udc_connect (void)
+{
+	UDCDBG ("connect, enable Pullup");
+	outl (0x00000018, FUNC_MUX_CTRL_D);
+}
+
+/* Turn off the USB connection by disabling the pullup resistor */
+void udc_disconnect (void)
+{
+	UDCDBG ("disconnect, disable Pullup");
+	outl (0x00000000, FUNC_MUX_CTRL_D);
+}
+
+/* ************************************************************************** */
+
+
+/*
+ * udc_disable_interrupts - disable interrupts
+ * switch off interrupts
+ */
+#if 0
+void udc_disable_interrupts (struct usb_device_instance *device)
+{
+	UDCDBG ("disabling all interrupts");
+	outw (0, UDC_IRQ_EN);
+}
+#endif
+
+/* ************************************************************************** */
+
+/**
+ * udc_ep0_packetsize - return ep0 packetsize
+ */
+#if 0
+int udc_ep0_packetsize (void)
+{
+	return EP0_PACKETSIZE;
+}
+#endif
+
+/* Switch on the UDC */
+void udc_enable (struct usb_device_instance *device)
+{
+	UDCDBGA ("enable device %p, status %d", device, device->status);
+
+	/* initialize driver state variables */
+	udc_devstat = 0;
+
+	/* Save the device structure pointer */
+	udc_device = device;
+
+	/* Setup ep0 urb */
+	if (!ep0_urb) {
+		ep0_urb =
+			usbd_alloc_urb (udc_device,
+					udc_device->bus->endpoint_array);
+	} else {
+		serial_printf ("udc_enable: ep0_urb already allocated %p\n",
+			       ep0_urb);
+	}
+
+	UDCDBG ("Check clock status");
+	UDCREG (STATUS_REQ);
+
+	/* The VBUS_MODE bit selects whether VBUS detection is done via
+	 * software (1) or hardware (0).  When software detection is
+	 * selected, VBUS_CTRL selects whether USB is not connected (0)
+	 * or connected (1).
+	 */
+	outl (inl (FUNC_MUX_CTRL_0) | UDC_VBUS_CTRL | UDC_VBUS_MODE,
+	      FUNC_MUX_CTRL_0);
+	UDCREGL (FUNC_MUX_CTRL_0);
+
+	omap1510_configure_device (device);
+}
+
+/* Switch off the UDC */
+void udc_disable (void)
+{
+	UDCDBG ("disable UDC");
+
+	omap1510_deconfigure_device ();
+
+	/* The VBUS_MODE bit selects whether VBUS detection is done via
+	 * software (1) or hardware (0).  When software detection is
+	 * selected, VBUS_CTRL selects whether USB is not connected (0)
+	 * or connected (1).
+	 */
+	outl (inl (FUNC_MUX_CTRL_0) | UDC_VBUS_MODE, FUNC_MUX_CTRL_0);
+	outl (inl (FUNC_MUX_CTRL_0) & ~UDC_VBUS_CTRL, FUNC_MUX_CTRL_0);
+	UDCREGL (FUNC_MUX_CTRL_0);
+
+	/* Free ep0 URB */
+	if (ep0_urb) {
+		/*usbd_dealloc_urb(ep0_urb); */
+		ep0_urb = NULL;
+	}
+
+	/* Reset device pointer.
+	 * We ought to do this here to balance the initialization of udc_device
+	 * in udc_enable, but some of our other exported functions get called
+	 * by the bus interface driver after udc_disable, so we have to hang on
+	 * to the device pointer to avoid a null pointer dereference. */
+	/* udc_device = NULL; */
+}
+
+/**
+ * udc_startup - allow udc code to do any additional startup
+ */
+void udc_startup_events (struct usb_device_instance *device)
+{
+	/* The DEVICE_INIT event puts the USB device in the state STATE_INIT. */
+	usbd_device_event_irq (device, DEVICE_INIT, 0);
+
+	/* The DEVICE_CREATE event puts the USB device in the state
+	 * STATE_ATTACHED.
+	 */
+	usbd_device_event_irq (device, DEVICE_CREATE, 0);
+
+	/* Some USB controller driver implementations signal
+	 * DEVICE_HUB_CONFIGURED and DEVICE_RESET events here.
+	 * DEVICE_HUB_CONFIGURED causes a transition to the state STATE_POWERED,
+	 * and DEVICE_RESET causes a transition to the state STATE_DEFAULT.
+	 * The OMAP USB client controller has the capability to detect when the
+	 * USB cable is connected to a powered USB bus via the ATT bit in the
+	 * DEVSTAT register, so we will defer the DEVICE_HUB_CONFIGURED and
+	 * DEVICE_RESET events until later.
+	 */
+
+	udc_enable (device);
+}
+
+/**
+ * udc_irq - do pseudo interrupts
+ */
+void udc_irq(void)
+{
+	/* Loop while we have interrupts.
+	 * If we don't do this, the input chain
+	 * polling delay is likely to miss
+	 * host requests.
+	 */
+	while (inw (UDC_IRQ_SRC) & ~UDC_SOF_Flg) {
+		/* Handle any new IRQs */
+		omap1510_udc_irq ();
+		omap1510_udc_noniso_irq ();
+	}
+}
+
+/* Flow control */
+void udc_set_nak(int epid)
+{
+	/* TODO: implement this functionality in omap1510 */
+}
+
+void udc_unset_nak (int epid)
+{
+	/* TODO: implement this functionality in omap1510 */
+}